首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dual specificity protein/lipid kinase, phosphoinositide 3-kinase (PI3K), promotes growth factor-mediated cell survival and is frequently deregulated in cancer. However, in contrast to canonical lipid-kinase functions, the role of PI3K protein kinase activity in regulating cell survival is unknown. We have employed a novel approach to purify and pharmacologically profile protein kinases from primary human acute myeloid leukemia (AML) cells that phosphorylate serine residues in the cytoplasmic portion of cytokine receptors to promote hemopoietic cell survival. We have isolated a kinase activity that is able to directly phosphorylate Ser585 in the cytoplasmic domain of the interleukin 3 (IL-3) and granulocyte macrophage colony stimulating factor (GM-CSF) receptors and shown it to be PI3K. Physiological concentrations of cytokine in the picomolar range were sufficient for activating the protein kinase activity of PI3K leading to Ser585 phosphorylation and hemopoietic cell survival but did not activate PI3K lipid kinase signaling or promote proliferation. Blockade of PI3K lipid signaling by expression of the pleckstrin homology of Akt1 had no significant impact on the ability of picomolar concentrations of cytokine to promote hemopoietic cell survival. Furthermore, inducible expression of a mutant form of PI3K that is defective in lipid kinase activity but retains protein kinase activity was able to promote Ser585 phosphorylation and hemopoietic cell survival in the absence of cytokine. Blockade of p110α by RNA interference or multiple independent PI3K inhibitors not only blocked Ser585 phosphorylation in cytokine-dependent cells and primary human AML blasts, but also resulted in a block in survival signaling and cell death. Our findings demonstrate a new role for the protein kinase activity of PI3K in phosphorylating the cytoplasmic tail of the GM-CSF and IL-3 receptors to selectively regulate cell survival highlighting the importance of targeting such pathways in cancer.  相似文献   

2.
W Krek  E A Nigg 《The EMBO journal》1991,10(2):305-316
The cdc2 kinase is a key regulator of the eukaryotic cell cycle. The activity of its catalytic subunit, p34cdc2, is controlled by cell cycle dependent interactions with other proteins as well as by phosphorylation--dephosphorylation reactions. In this paper, we examine the phosphorylation state of chicken p34cdc2 at various stages of the cell cycle. By peptide mapping, we detect four major phosphopeptides in chicken p34cdc2; three phosphorylation sites are identified as threonine (Thr) 14, tyrosine (Tyr) 15 and serine (Ser) 277. Analysis of synchronized cells demonstrates that phosphorylation of all four sites is cell cycle regulated. Thr 14 and Tyr 15 are phosphorylated maximally during G2 phase but dephosphorylated abruptly at the G2/M transition, concomitant with activation of p34cdc2 kinase. This result suggests that phosphorylation of Thr 14 and/or Tyr 15 inhibits p34cdc2 kinase activity, in line with the location of these residues within the putative ATP binding site of the kinase. During M phase, p34cdc2 is also phosphorylated, but phosphorylation occurs on a threonine residue distinct from Thr 14. Finally, phosphorylation of Ser 277 peaks during G1 phase and drops markedly as cells progress through S phase, raising the possibility that this modification may contribute to control the proposed G1/S function of the vertebrate p34cdc2 kinase.  相似文献   

3.
Focal adhesion kinase (FAK) is phosphorylated on tyrosine and serine residues after cell activation. In the present work, we investigated the relationship between tyrosine and serine phosphorylation of FAK in promoting endothelial cell migration in response to vascular endothelial growth factor (VEGF). We found that VEGF induces the activation of the Rho-dependent kinase (ROCK) downstream from vascular endothelial growth factor receptor (VEGFR) 2. In turn, activated ROCK directly phosphorylates FAK on Ser732. Proline-rich tyrosine kinase-2 (Pyk2) is also activated in response to VEGF. Its activation requires the clustering of integrin alphavbeta3 and triggers directly the phosphorylation of Tyr407 within FAK, an event necessary for cell migration. Interestingly, ROCK-mediated phosphorylation of Ser732 is essential for Pyk2-dependent phosphorylation of Tyr407, because the latter is abrogated in cells expressing a FAK mutant that is nonphosphorylatable on Ser732. We suggest that VEGF elicits the activation of the VEGFR2-ROCK pathway, leading to phosphorylation of Ser732 within FAK. In turn, phosphorylation of Ser732 would change the conformation of FAK, making it accessible to Pyk2 activated in response to its association with integrin beta3. Then, activated Pyk2 triggers the phosphorylation of FAK on Tyr407, promoting cell migration.  相似文献   

4.
The leptin receptor, LRb, and other cytokine receptors are devoid of intrinsic enzymatic activity and rely upon the activity of constitutively associated Jak family tyrosine kinases to mediate intracellular signaling. In order to clarify mechanisms by which Jak2, the cognate LRb-associated Jak kinase, is regulated and mediates downstream signaling, we employed tandem mass spectroscopic analysis to identify phosphorylation sites on Jak2. We identified Ser523 as the first-described site of Jak2 serine phosphorylation and demonstrated that this site is phosphorylated on Jak2 from intact cells and mouse spleen. Ser523 was highly phosphorylated in HEK293 cells independently of LRb-Jak2 activation, suggesting a potential role for the phosphorylation of Ser523 in the regulation of LRb by other pathways. Indeed, mutation of Ser523 sensitized and prolonged signaling by Jak2 following activation by the intracellular domain of LRb. The effect of Ser523 on Jak2 function was independent of Tyr570-mediated inhibition. Thus, the phosphorylation of Jak2 on Ser523 inhibits Jak2 activity and represents a novel mechanism for the regulation of Jak2-dependent cytokine signaling.  相似文献   

5.
Neurotrophins, such as nerve growth factor and brain-derived neurotrophic factor, activate Trk receptor tyrosine kinases through receptor dimerization at the cell surface followed by autophosphorylation and recruitment of intracellular signaling molecules. The intracellular pathways used by neurotrophins share many common protein substrates that are used by other receptor tyrosine kinases (RTK), such as Shc, Grb2, FRS2, and phospholipase C-gamma. Here we describe a novel RTK mechanism that involves a 220-kilodalton membrane tetraspanning protein, ARMS/Kidins220, which is rapidly tyrosine phosphorylated in primary neurons after neurotrophin treatment. ARMS/Kidins220 undergoes multiple tyrosine phosphorylation events and also serine phosphorylation by protein kinase D. We have identified a single tyrosine (Tyr(1096)) phosphorylation event in ARMS/Kidins220 that plays a critical role in neurotrophin signaling. A reassembled complex of ARMS/Kidins220 and CrkL, an upstream component of the C3G-Rap1-MAP kinase cascade, is SH3-dependent. However, Tyr(1096) phosphorylation enables ARMS/Kidins220 to recruit CrkL through its SH2 domain, thereby freeing the CrkL SH3 domain to engage C3G for MAP kinase activation in a neurotrophin dependent manner. Accordingly, mutation of Tyr(1096) abolished CrkL interaction and sustained MAPK kinase activity, a response that is not normally observed in other RTKs. Therefore, Trk receptor signaling involves an inducible switch mechanism through an unconventional substrate that distinguishes neurotrophin action from other growth factor receptors.  相似文献   

6.
We identified Caspase-8 as a new substrate for Src kinase. Phosphorylation occurs on Tyr380, situated in the linker region between the large and the small subunits of human Procaspase-8, and results in downregulation of Caspase-8 proapoptotic function. Src activation triggers Caspase-8 phosphorylation on Tyr380 and impairs Fas-induced apoptosis. Accordingly, Src failed to protect Caspase-8-defective human cells in which a Caspase-8-Y380F mutant is expressed from Fas-induced cell death. Remarkably, Src activation upon EGF-receptor stimulation triggers endogenous Caspase-8 phosphorylation and prevents Fas-induced apoptosis. Tyr380 is phosphorylated also in human colon cancers where Src is aberrantly activated. These data provide the first evidence for a direct role of tyrosine phosphorylation in the control of caspases and reveal a new mechanism through which tyrosine kinases inhibit apoptosis and participate in tumor progression.  相似文献   

7.
The AKT/PKB kinase is a key signaling component of one of the most frequently activated pathways in cancer and is a major target of cancer drug development. Most studies have focused on its activation by Receptor Tyrosine Kinase (RTK) mediated Phosphatidylinositol-3-OH kinase (PI3K) activation or loss of Phosphatase and Tensin homolog (PTEN). We have uncovered that growth factors binding to RTKs lead to activation of a non-receptor tyrosine kinase, Ack1 (also known as ACK or TNK2), which directly phosphorylates AKT at an evolutionarily conserved tyrosine 176 in the kinase domain. Tyr176-phosphorylated AKT localizes to the plasma membrane and promotes Thr308/Ser473-phosphorylation leading to AKT activation. Mice expressing activated Ack1 specifically in the prostate exhibit AKT Tyr176-phosphorylation and develop murine prostatic intraepithelial neoplasia (mPINs). Further, expression levels of Tyr176-phosphorylated-AKT and Tyr284-phosphorylated-Ack1 were positively correlated with the severity of disease progression, and inversely correlated with the survival of breast cancer patients. Thus, RTK/Ack1/AKT pathway provides a novel target for drug discovery.  相似文献   

8.
Protein kinase D (PKD) is a member of the AGC family of Ser/Thr kinases and is distantly related to protein kinase C (PKC). Formerly known as PKCmu, PKD contains protein domains not found in conventional PKC isoforms. A functional pleckstrin homology (PH) domain is critical for the regulation of PKD activity. Here we report that PKD is tyrosine-phosphorylated within the PH domain, leading to activation. This phosphorylation is mediated by a pathway that consists of the Src and Abl tyrosine kinases and occurs in response to stimulation with pervanadate and oxidative stress. Mutational analysis revealed three tyrosine phosphorylation sites (Tyr(432), Tyr(463), and Tyr(502)), which are regulated by the Src-Abl pathway, and phosphorylation of only one of these (Tyr(463)) leads to PKD activation. By using a phospho-specific antibody, we show that Abl directly phosphorylates PKD at Tyr(463) in vitro, and in cells phosphorylation of this site is sufficient to mediate full activation of PKD. Mutation of the other two sites, Tyr(432) and Tyr(502), had no significant influence on PKD activity. These data reveal a tyrosine phosphorylation-dependent activation mechanism for PKD and suggest that this event contributes to the release of the autoinhibitory PKD PH domain leading to kinase activation and downstream responses.  相似文献   

9.
Metabolic dysfunction is a major driver of tumorigenesis. The serine/threonine kinase mechanistic target of rapamycin (mTOR) constitutes a key central regulator of metabolic pathways promoting cancer cell proliferation and survival. mTOR activity is regulated by metabolic sensors as well as by numerous factors comprising the phosphatase and tensin homolog/PI3K/AKT canonical pathway, which are often mutated in cancer. However, some cancers displaying constitutively active mTOR do not carry alterations within this canonical pathway, suggesting alternative modes of mTOR regulation. Since DEPTOR, an endogenous inhibitor of mTOR, was previously found to modulate both mTOR complexes 1 and 2, we investigated the different post-translational modification that could affect its inhibitory function. We found that tyrosine (Tyr) 289 phosphorylation of DEPTOR impairs its interaction with mTOR, leading to increased mTOR activation. Using proximity biotinylation assays, we identified SYK (spleen tyrosine kinase) as a kinase involved in DEPTOR Tyr 289 phosphorylation in an ephrin (erythropoietin-producing hepatocellular carcinoma) receptor–dependent manner. Altogether, our work reveals that phosphorylation of Tyr 289 of DEPTOR represents a novel molecular switch involved in the regulation of both mTOR complex 1 and mTOR complex 2.  相似文献   

10.
We have previously demonstrated that ligand-stimulation of c-Kit induces phosphorylation of Tyr568 and Tyr570 in the juxtamembrane region of the receptor, leading to recruitment, phosphorylation and activation of members of the Src family of tyrosine kinases. In this paper, we demonstrate that members of the Src family of tyrosine kinases are able to phosphorylate c-Kit selectively on one particular tyrosine residue, Tyr900, located in the second part of the tyrosine kinase domain. In order to identify potential docking partners of Tyr900, a synthetic phosphopeptide corresponding to the amino acid sequence surrounding Tyr900 was used as an affinity matrix. By use of MALDI-TOF mass spectrometry, CrkII was identified as a protein that specifically bound to Tyr900 in a phosphorylation dependent manner, possibly via the p85 subunit of PI3-kinase. Expression of a mutant receptor where Tyr900 had been replaced with a phenylalanine residue (Y900F) resulted in a receptor with reduced ability to phosphorylate CrkII. Together these data support a model where c-Src phosphorylates the receptor, thereby creating docking sites for SH2 domain containing proteins, leading to recruitment of Crk to the receptor.  相似文献   

11.
《Cellular signalling》2014,26(4):691-696
PLEKHG2/FLJ00018, a Rho family-specific guanine nucleotide exchange factor (RhoGEF), is activated by heterotrimeric GTP-binding protein (G protein) Gβγ subunits, and in turn activates the small G protein Rac and Cdc42, which have been shown to mediate signaling pathways leading to actin cytoskeletal reorganization. In the present study, we show that co-expression of the constitutively active mutant of cSrc, a non-receptor tyrosine kinase, and PLEKHG2 induced the tyrosine phosphorylation of PLEKHG2 in HEK293 cells. Through deletion and base substitution mutagenesis we have identified Tyr489 of PLEKHG2 as the site phosphorylated by cSrc. Furthermore, using a high-throughput src homology 2 (SH2) domain binding assay, the SH2 domain of ABL1 and the PI 3-kinse regulator subunit (PIK3R3) were identified as candidates for the binding partner of tyrosine-phosphorylated PLEKHG2. The interaction between PLEKHG2 and the full-length of PIK3R3, but not ABL1, occurs in a tyrosine-phosphorylation-dependent manner. Furthermore, PLEKHG2 is tyrosine phosphorylated at Tyr489 by ephrinB2 receptor signaling via cSrc. Investigation of the physiological function of tyrosine phosphorylation at Tyr489 in PLEKHG2 remains a subject for future studies.  相似文献   

12.
Our previous studies demonstrated that the IL-13-induced 15-lipoxygenase expression in primary human monocytes is regulated by the activation of both Stat1 and Stat3 and by protein kinase C (PKC)delta. IL-13 stimulated the phosphorylation of Stat3 on both Tyr705 and Ser727. In this study we show that IL-13 induces the association of PKCdelta with Stat3, not with Stat1, and is required for Stat3 Ser727 phosphorylation. We found a novel IL-13-dependent cytosolic signaling complex of PKCdelta and tyrosine-phosphorylated Stat3. A tyrosine kinase inhibitor blocked PKCdelta association with Stat3 as well as Stat3 Ser727 phosphorylation. We therefore hypothesized that tyrosine phosphorylation was required for Stat3 interaction with PKCdelta and subsequent PKCdelta-dependent phosphorylation of Stat3 Ser727. We developed an efficient transfection protocol for human monocytes. Expression of Stat3 containing a mutation in Tyr705 inhibited the association of PKCdelta with Stat3 and blocked Stat3 Ser727 phosphorylation, whereas transfection with wild-type Stat3 did not. Furthermore, by transfecting monocytes with Stat3 containing mutations in Tyr705 or Ser727 or with wild-type Stat3, we demonstrated that both Stat3 tyrosine and serine phosphorylations are required for optimal binding of Stat3 with DNA and maximal expression of 15-lipoxygenase, an important regulator of inflammation and apoptosis.  相似文献   

13.
14.
Protein kinase C delta (PKCδ) is one of the important isoforms of PKCs that regulate various cellular processes, including cell survival and apoptosis. Studies have shown that activation of PKCδ is correlated with apoptosis in various cell types, depending upon various stimuli. Phosphorylation of Thr505, Ser643 and Ser662 is crucial in activation of PKCδ. Furthermore, phosphorylation of tyrosine residues, in particular that of Tyr311, is associated with PKCδ activation and induction of apoptosis. Here, we generated a hydrophobic motif phosphorylation-deficient mutant of PKCδ (PKCδ-S662A) by mutating Ser662 to Ala, and studied the effect of this mutation in inducing apoptosis in L929 murine fibroblasts. We report that this mutation renders PKCδ apoptotically more active. Furthermore, we found that the mutant PKCδ-S662A is tyrosine-phosphorylated and translocated to the membrane faster than its wild-type counterpart.  相似文献   

15.
16.
Jak family tyrosine kinases mediate signaling by cytokine receptors to regulate diverse biological processes. Although Jak2 and other Jak kinase family members are phosphorylated on numerous sites during cytokine signaling, the identity and function of most of these sites remains unknown. Using tandem mass spectroscopic analysis of activated Jak2 protein from intact cells, we identified Tyr(221) and Tyr(570) as novel sites of Jak2 phosphorylation. Phosphorylation of both sites was stimulated by cytokine treatment of cultured cells, and this stimulation required Jak2 kinase activity. While we observed no gross alteration of signaling upon mutation of Tyr(221), Tyr(570) lies within the inhibitory JH2 domain of Jak2, and mutation of this site (Jak2(Y570F)) results in constitutive Jak2-dependent signaling in the absence of cytokine stimulation and enhances and prolongs Jak2 activation during cytokine stimulation. Mutation of Tyr(570) does not alter the ability of SOCS3 to bind or inhibit Jak2, however. Thus, the phosphorylation of Tyr(570) in vivo inhibits Jak2-dependent signaling independently of SOCS3-mediated inhibition. This Tyr(570)-dependent mechanism of Jak2 inhibition likely represents an important mechanism by which cytokine function is regulated.  相似文献   

17.
18.
The Src homology 2-containing phosphotyrosine phosphatase (SHP2) is primarily a positive effector of receptor tyrosine kinase signaling. However, the molecular mechanism by which SHP2 effects its biological function is unknown. In this report, we provide evidence that defines the molecular mechanism and site of action of SHP2 in the epidermal growth factor-induced mitogenic pathway. We demonstrate that SHP2 acts upstream of Ras and functions by increasing the half-life of activated Ras (GTP-Ras) in the cell by interfering with the process of Ras inactivation catalyzed by Ras GTPase-activating protein (RasGAP). It does so by inhibition of tyrosine phosphorylation-dependent translocation of RasGAP to the plasma membrane, to its substrate (GTP-Ras) microdomain. Inhibition is achieved through the dephosphorylation of RasGAP binding sites at the level of the plasma membrane. We have identified Tyr992 of the epidermal growth factor receptor (EGFR) to be one such site, since its mutation to Phe renders the EGFR refractory to the effect of dominant-negative SHP2. To our knowledge, this is the first report to outline the site and molecular mechanism of action of SHP2 in EGFR signaling, which may also serve as a model to describe its role in other receptor tyrosine kinase signaling pathways.  相似文献   

19.
The inositol 1,4,5-trisphosphate receptor (IP3R) plays an essential role in Ca2+ signaling during lymphocyte activation. Engagement of the T cell or B cell receptor by antigen initiates a signal transduction cascade that leads to tyrosine phosphorylation of IP3R by Src family nonreceptor protein tyrosine kinases, including Fyn. However, the effect of tyrosine phosphorylation on the IP3R and subsequent Ca2+ release is poorly understood. We have identified tyrosine 353 (Tyr353) in the IP3-binding domain of type 1 IP3R (IP3R1) as a phosphorylation site for Fyn both in vitro and in vivo. We have developed a phosphoepitope-specific antibody and shown that IP3R1-Y353 becomes phosphorylated during T cell and B cell activation. Furthermore, tyrosine phosphorylation of IP3R1 increased IP3 binding at low IP3 concentrations (<10 nm). Using wild-type IP3R1 or an IP3R1-Y353F mutant that cannot be tyrosine phosphorylated at Tyr353 or expressed in IP3R-deficient DT40 B cells, we demonstrated that tyrosine phosphorylation of Tyr353 permits prolonged intracellular Ca2+ release during B cell activation. Taken together, these data suggest that one function of tyrosine phosphorylation of IP3R1-Y353 is to enhance Ca2+ signaling in lymphocytes by increasing the sensitivity of IP3R1 to activation by low levels of IP3.  相似文献   

20.
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase consisting of two isoforms, alpha and beta. The activities of GSK-3 are regulated negatively by serine phosphorylation but positively by tyrosine phosphorylation. GSK-3 inactivation has been proposed as a mechanism to promote neuronal survival. We used GSK-3 isoform-specific small interfering RNAs, dominant-negative mutants, or pharmacological inhibitors to search for functions of the two GSK-3 isoforms in regulating neuronal survival in cultured cortical neurons in response to glutamate insult or during neuronal maturation/aging. Surprisingly, RNA interference-induced depletion of either isoform was sufficient to block glutamate-induced excitotoxicity, and the resulting neuroprotection was associated with enhanced N-terminal serine phosphorylation in both GSK-3 isoforms. However, GSK-3beta depletion was more effective than GSK-3alpha depletion in suppressing spontaneous neuronal death in extended culture. This phenomenon is likely due to selective and robust inhibition of GSK-3beta activation resulting from GSK-3beta Ser9 dephosphorylation during the course of spontaneous neuronal death. GSK-3alpha silencing resulted in reduced tyrosine phosphorylation of GSK-3beta, suggesting that tyrosine phosphorylation is also a critical autoregulatory event. Interestingly, GSK-3 inhibitors caused a rapid and long-lasting increase in GSK-3alpha Ser21 phosphorylation levels, followed by a delayed increase in GSK-3beta Ser9 phosphorylation and a decrease in GSK-3alpha Tyr279 and GSK-3beta Tyr216 phosphorylation, thus implying additional levels of GSK-3 autoregulation. Taken together, our results underscore important similarities and dissimilarities of GSK-3alpha and GSK-3beta in the roles of cell survival as well as their distinct modes of regulation. The development of GSK-3 isoform-specific inhibitors seems to be warranted for treating GSK-3-mediated pathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号