首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Cell》2008,134(3):371-373
  相似文献   

3.
The production of phenotype is regulated by differential gene expression. However, the regulators of gene expression need not all reside within the embryo. Environmental factors, such as temperature, photoperiod, diet, population density, or the presence of predators, can produce specific phenotypes, presumably by altering gene-expression patterns. The field of ecological developmental biology seeks to look at development in the real world of predators, competitors, and changing seasons. Ecological concerns had played a major role in the formation of experimental embryology, and they are returning as the need for knowledge about the effects of environmental change on embryos and larvae becomes crucial. This essay reviews some of the areas of ecological developmental biology, concentrating on new studies of Amphibia and Homo.  相似文献   

4.
5.
Developmental biology is a theory of interpretation. Developmental signals are interpreted differently depending on the previous history of the responding cell. Thus, there is a context for the reception of a signal. While this conclusion is obvious during metamorphosis, when a single hormone instructs some cells to proliferate, some cells to differentiate, and other cells to die, it is commonplace during normal development. Paracrine factors such as BMP4 can induce apoptosis, proliferation, or differentiation depending upon the history of the responding cells. In addition, organisms have evolved to alter their development in response to differences in temperature, diet, the presence of predators, or the presence of competitors. This allows them to develop the phenotype, within the limits imposed by the genotype, best suited for the immediate habitat of the organism. Most developing organisms have also evolved to expect developmental signals from symbionts, and these organisms develop abnormally if the symbiont signals are not present. Thus Hoffmeyer’s “vertical semiotic system” of genetic communication and “horizontal semiotic system” of ecological communication are integrated during development.  相似文献   

6.
The relentless nature and increasing prevalence of human pancreatic diseases, in particular, diabetes mellitus and adenocarcinoma, has motivated further understanding of pancreas organogenesis. The pancreas is a multifunctional organ whose epithelial cells govern a diversity of physiologically vital endocrine and exocrine functions. The mechanisms governing the birth, differentiation, morphogenesis, growth, maturation, and maintenance of the endocrine and exocrine components in the pancreas have been discovered recently with increasing tempo. This includes recent studies unveiling mechanisms permitting unexpected flexibility in the developmental potential of immature and mature pancreatic cell subsets, including the ability to interconvert fates. In this article, we describe how classical cell biology, genetic analysis, lineage tracing, and embryological investigations are being complemented by powerful modern methods including epigenetic analysis, time-lapse imaging, and flow cytometry-based cell purification to dissect fundamental processes of pancreas development.  相似文献   

7.
Ozernyuk  N. D. 《Paleontological Journal》2019,53(11):1117-1133
Paleontological Journal - Evolutionary developmental biology (evo-devo) formed due to the interactions of evolutionary biology, paleontology, and comparative genomics, analyzes the interrelations...  相似文献   

8.
There is a large natural loss of human embryos in early gestation.Most conceptual losses occur before pregnancy has been diagnosedin the woman. It is now acknowledged that chromosomal aberrationsare the major etiologic agents responsible for spontaneous abortions.Fully 50 percent of naturally aborted embryos in the first trimesterhave an abnormal karyotype. Most of the chromosomal errors thathave been identified in abortuses are only rarely seen in livebirths.Natural in utero selection is relentless in eliminating 99 percentof the chromosomally abnormal conceptuses through spontaneousabortion. The birth of affected offspring that escape nature'sscreening mechanism can be averted by the option of prenataldiagnosis. The thrust of prenatal diagnosis is to prevent thetragic impact of debilitating genetic disorders. But notallat-risk parents wish to avail themselves of prenatal diagnosisbecause they are unwilling to accept the choice of therapeuticabortion. Prevention of a genetic disorder before implantationwould obviate the necessity of an abortion at a later stageof pregnancy. With this perspective, the correction of the basicgenetic flaw by replacing the faulty gene with a functioningallele is an attractive alternative. Notwithstanding the imprecisetechnology that presently serves to caution against immediateapplication, gene therapy is a reasonable and natural extensionof efforts to ameliorate the effects of severe inherited disorders.  相似文献   

9.
Russian Journal of Developmental Biology - Foundations of evolutionary developmental biology (evo-devo) were laid by K. von Baer, the author of the law of embryonic similarity in various animal...  相似文献   

10.
11.
12.
13.
14.
15.
Modern automated microsystems based on microhydrodynamic (microfluidic) technologies— labs on chips—make it possible to solve various basic and applied research problems. In the last 15 years, the development of these approaches in application to the problems of modern quantitative (systems) development biology has been observed. In this field, high-throughput experiments aimed at accumulating ample quantitative data for their subsequent computer analysis are important. In this review, the main directions in the development and application of microfluidics approaches for solving problems of modern developmental biology using the classical model object, Drosophila embryo, as an example is discussed. Microfluidic systems provide an opportunity to perform experiments that can hardly be performed using other approaches. These systems allow automated, rapid, reliable, and proper placing of many live embryos on a substrate for their simultaneous confocal scanning, sorting them, or injecting them with various agents. Such systems make it possible, in particular, to create controlled gradients of microenvironmental parameters along a series of developing embryos or even to introduce discontinuity in parameters within the microenvironment of one embryo, so that the head half is under other conditions compared to the tail half (at continuous scanning). These approaches are used both in basic research of the functions of gene ensembles that control early development, including the problems of resistance of early patterns to disturbances, and in test systems for screening chemical agents on developing embryos. The problems of integration of microfluidic devices in systems for automated performance of experiments simultaneously on many developing embryos under conditions of their continuous scanning using modern fluorescence microscopy instruments will be discussed. The methods and approaches developed for Drosophila are also applicable to other model objects, even mammalian embryos.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号