首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
目的炎症性肠病(IBD)包括克罗恩病(CD)和溃疡性结肠炎(UC),以持续性肠道非特异性炎症为特征,通常反复发作、迁延不愈,临床上仍无特效性的治疗手段。IBD确切的发病机制尚不清楚,涉及免疫、环境及遗传等因素,这些因素共同诱导肠道炎症、黏膜损伤和修复。肠道微生物群落及其代谢产物、宿主基因易感性及肠道黏膜免疫三方面共同参与了IBD的发病机制。本文从消化道微生态角度出发,对目前IBD相关的肠道微生物群落研究现状、宿主-微生物间免疫应答及益生菌治疗等内容进行探讨。  相似文献   

3.

Background

To investigate the function of the intestinal Vdr gene in inflammatory bowel disease (IBD), in conjunction with the discovery of possible metabolic markers for IBD using intestine-specific Vdr knockout mice.

Methods

VdrΔIEpC mice were generated, phenotyped and treated with a time-course of 3% dextran sulfate sodium (DSS) to induce colitis. Colitis was diagnosed by evaluating clinical symptoms and intestinal histopathology. Gene expression analysis was carried out. In addition, metabolic markers of IBD were explored by metabolomics.

Results

VdrΔIEpC mice showed abnormal body size, colon structures and feces color. Calcium, collagen, and intestinal proliferation-related gene expression were all decreased, and serum alkaline phosphatase was highly increased. In the acute model which was treated with 3% DSS for six days, VdrΔIEpC mice showed a high score of IBD symptoms; enlarged mucosal layer and damaged muscularis layer. In the recovery experiment model, where mice were treated with 3% DSS for four days and water for three days, VdrΔIEpC mice showed a high score of IBD symptoms; severe damage of mucosal layer and increased expression of genes encoding proinflammatory cytokines. Feces metabolomics revealed decreased concentrations of taurine, taurocholic acid, taurodeoxycholic acid and cholic acid in VdrΔIEpC mice.

Conclusions

Disruption of the intestinal Vdr gene showed phenotypical changes that may exacerbate IBD. These results suggest that VDR may play an important role in IBD.General significanceVDR function has been implicated in IBD. This is of value for understanding the etiology of IBD and for development of diagnostic biomarkers for IBD.  相似文献   

4.
周林妍  李岩 《微生物学通报》2020,47(5):1600-1606
炎症性肠病(inflammatoryboweldisease,IBD)是一种肠道慢性炎症性疾病,其发病机制尚不清楚。然而,IBD的发病率不断上升给患者及其家属带来了巨大的经济负担,需要找到积极有效的治疗方法来帮助患者。最新的观点认为,宿主和肠道微生物之间的平衡被打破会触发遗传易感个体的免疫炎症反应。肠道菌群失调在炎症性肠病的发病及发展过程中起着重要的作用。临床研究发现,IBD患者肠道菌群失调程度不同,而联合应用益生菌可以改善这些患者的症状。越来越多的研究者密切关注肠道菌群与IBD的关系,并进行了深入的基础和临床研究。本文从肠道菌群对IBD的生理影响以及益生菌和粪便细菌移植等方面进行综述。  相似文献   

5.

Background

The inflammatory bowel diseases (IBD) Crohn's disease and ulcerative colitis result from alterations in intestinal microbes and the immune system. However, the precise dysfunctions of microbial metabolism in the gastrointestinal microbiome during IBD remain unclear. We analyzed the microbiota of intestinal biopsies and stool samples from 231 IBD and healthy subjects by 16S gene pyrosequencing and followed up a subset using shotgun metagenomics. Gene and pathway composition were assessed, based on 16S data from phylogenetically-related reference genomes, and associated using sparse multivariate linear modeling with medications, environmental factors, and IBD status.

Results

Firmicutes and Enterobacteriaceae abundances were associated with disease status as expected, but also with treatment and subject characteristics. Microbial function, though, was more consistently perturbed than composition, with 12% of analyzed pathways changed compared with 2% of genera. We identified major shifts in oxidative stress pathways, as well as decreased carbohydrate metabolism and amino acid biosynthesis in favor of nutrient transport and uptake. The microbiome of ileal Crohn's disease was notable for increases in virulence and secretion pathways.

Conclusions

This inferred functional metagenomic information provides the first insights into community-wide microbial processes and pathways that underpin IBD pathogenesis.  相似文献   

6.
炎症性肠病(IBD)是一种非特异性肠道炎症性疾病,其病因和发病机制尚不完全明确。肠道菌群作为一个非常复杂的微生态系统,在IBD的患病机制中扮演着非常重要的角色。本研究就肠道微生态系统、肠道菌群与IBD发病的关系以及肠道菌群调控对IBD的作用的最新进展进行综述。  相似文献   

7.
PURPOSE OF REVIEW: Fatty acid and triacylglycerol metabolism in adipose tissue may be involved in the generation of risk factors for cardiovascular disease and type 2 diabetes. Pharmaceutical companies are targeting adipocyte metabolism in their search for drugs for treating, or reducing the risk of, these conditions. We review new developments in adipose tissue fatty acid metabolism and how that might relate to cardiovascular disease. RECENT FINDINGS: Fatty acid release from human adipose tissue is oscillatory, with a period of about 12 min. Remarkably, oscillatory fatty acid release is also seen in isolated adipocytes. Further evidence has emerged that not all adipose depots are equal, and that lower-body adipose tissue may exert protective effects against cardiovascular disease. There have been a number of developments in the area of fatty acid handling by adipocytes. Fatty acid binding proteins are clearly important in regulating fatty acid metabolism, with striking protection against atherosclerosis in mice deficient in both the binding proteins expressed in adipocytes. The demonstration that adipocytes lacking hormone-sensitive lipase still display lipolysis has led to the identification of novel lipases that may play crucial roles in adipose tissue fatty acid metabolism. Further evidence has accrued of the interaction between hormone-sensitive lipase and perilipin, the protein that coats the adipocyte lipid droplet. SUMMARY: Recent developments in our understanding of adipose tissue fatty acid metabolism open up the possibility of new pharmaceutical targets. However, interference with adipose tissue fatty acid metabolism is not to be undertaken lightly and needs a clear understanding of the normal role of adipocyte lipolysis.  相似文献   

8.
Over the past decade, much has been learned regarding the role of various cytokines in the pathogenesis of inflammatory bowel disease. Several cytokine 'knockout' models in mice have been shown to develop colitis, while alterations in the production of various cytokines has been documented in human Crohn's disease and ulcerative colitis. In recent years, attempts have been made to treat these diseases through modulation of cytokine production or action. This review focuses on the cytokines that have been implicated in the pathogenesis of inflammatory bowel disease. The evidence for and against a role for particular cytokines in intestinal inflammation is reviewed, as is the experimental and clinical data suggesting that cytokines are rational targets for the development of new therapies.  相似文献   

9.
Intestinal fatty acid-binding protein (I-FABP) is a cytosolic protein expressed at high levels (up to 2% of cytosolic proteins) in the small intestine epithelium. Despite cell transfection studies, its function is still unclear. Indeed, different effects on fatty acid metabolism depending on the cell type and the amount of I-FABP expressed have been reported. Furthermore, a decrease in fatty acid incorporation has been unexpectedly obtained when I-FABP reached 0. 72% of cytosolic proteins in fibroblasts (Prows et al. 1997. Arch. Biochem. Biophys. 340: 135). In the present study, the effect of a high level of I-FABP similar to amounts present in the small intestine was investigated in the human colon adenocarcinoma cell line, Caco-2. After transfection with human I-FABP cDNA, a clone expressing 1.5% I-FABP and unchanged level of liver FABP was selected. These cells, which had a lower rate of proliferation as compared with mock-transfected cells, developed the typical morphological characteristics of differentiated enterocytes. Incubation of differentiated cells with [(14)C]palmitate showed a 34% reduction (P < 0.01) of fatty acid incorporation, whereas the relative distribution of radiolabel into triglycerides was not affected. A nonsignificant 21% reduction of fatty acid incorporation was observed with another clone expressing 10-fold less I-FABP. In conclusion, a high level of I-FABP expressed in a differentiated enterocyte model inhibited fatty acid incorporation, by a mechanism which remains to be defined.  相似文献   

10.
Intestinal inflammation is controlled by various immunomodulating cells, interacting by molecular mediators. Neuropeptides, released by enteric nerve cells and neuroendocrine mucosa cells, are able to affect several aspects of the general and intestinal immune system, with both pro- as well as anti-inflammatory activities. In inflammatory bowel disease (IBD) there is both morphological as well as experimental evidence for involvement of neuropeptides in the pathogenesis. Somatostatin is the main inhibitory peptide in inflammatory processes, and its possible role in IBD is discussed.  相似文献   

11.
Although angiogenesis is viewed as a fundamental component of inflammatory bowel disease (IBD) pathogenesis, we presently lack a thorough knowledge of the cell type(s) involved in its induction and maintenance in the inflamed intestinal mucosa. This study aimed to determine whether platelet (PLT) adhesion to inflamed intestinal endothelial cells of human origin may favour angiogenesis. Unstimulated or thrombin‐activated human PLT were overlaid on resting or tumour necrosis factor (TNF)‐α‐treated human intestinal microvascular endothelial cells (HIMEC), in the presence or absence of blocking antibodies to either vascular cell adhesion molecule (VCAM)‐1, intercellular adhesion molecule (ICAM)‐1, integrin αvβ3, tissue factor (TF) or fractalkine (FKN). PLT adhesion to HIMEC was evaluated by fluorescence microscopy, and release of angiogenic factors (VEGF and soluble CD40L) was measured by ELISA. A matrigel tubule formation assay was used to estimate PLT capacity to induce angiogenesis after co‐culturing with HIMEC. TNF‐α up‐regulated ICAM‐1, αvβ3 and FKN expression on HIMEC. When thrombin‐activated PLT were co‐cultured with unstimulated HIMEC, PLT adhesion increased significantly, and this response was further enhanced by HIMEC activation with TNF‐α. PLT adhesion to HIMEC was VCAM‐1 and TF independent but ICAM‐1, FKN and integrin αvβ3 dependent. VEGF and sCD40L were undetectable in HIMEC cultures either before or after TNF‐α stimulation. By contrast, VEGF and sCD40L release significantly increased when resting or activated PLT were co‐cultured with TNF‐α‐pre‐treated HIMEC. These effects were much more pronounced when PLT were derived from IBD patients. Importantly, thrombin‐activated PLT promoted tubule formation in HIMEC, a functional estimate of their angiogenic potential. In conclusion, PLT adhesion to TNF‐α‐pre‐treated HIMEC is mediated by ICAM‐1, FKN and αvβ3, and is associated with VEGF and sCD40L release. These findings suggest that inflamed HIMEC may recruit PLT which, upon release of pro‐angiogenic factors, actively contribute to inflammation‐induced angiogenesis.  相似文献   

12.
The metabolism of polyunsaturated fatty acids (PUFAs) remains poorly characterized in ovarian tissues of patients with polycystic ovary syndrome (PCOS). This study aimed to explore alterations in the levels of PUFAs and their metabolites in serum and ovarian tissues in a PCOS rat model treated with a high‐fat diet and andronate. Levels of PUFAs and their metabolites were measured using gas/liquid chromatography‐mass spectrometry after the establishment of a PCOS rat model. Only 3 kinds of PUFAs [linoleic acid, arachidonic acid (AA) and docosahexaenoic acid] were detected in both the circulation and ovarian tissues of the rats, and their concentrations were lower in ovarian tissues than in serum. Moreover, significant differences in the ovarian levels of AA were observed between control, high‐fat diet‐fed and PCOS rats. The levels of prostaglandins, AA metabolites via the cyclooxygenase (COX) pathway, in ovarian tissues of the PCOS group were significantly increased compared to those in the controls. Further studies on the mechanism underlying this phenomenon showed a correlation between decreased expression of phosphorylated cytosolic phospholipase A2 (p‐cPLA2) and increased mRNA and protein expression of COX2, potentially leading to a deeper understanding of altered AA and prostaglandin levels in ovarian tissues of PCOS rats.  相似文献   

13.
目的探讨美沙拉嗪与益生菌联合应用对炎症性肠病患者的治疗效果。方法选取上海市第十人民医院2014年1月-2016年1月收治的160例炎症性肠病患者,将其分为观察组(n=80)和对照组(n=80),观察组患者给予美沙拉嗪与益生菌联合应用,对照组患者给予口服美沙拉嗪,用药期为4个月。对比两组患者临床疗效,内镜检查结果,不良反应,尿乳果糖/甘露醇比值和血浆D-乳酸水平。结果经过治疗,观察组患者总体有效率为91.25%,对照组患者总体有效率为76.25%,两组对比差异有统计学意义(P0.05);观察组患者内镜检查结果有效率为92.50%,对照组患者内镜检查结果有效率为80.00%,两组对比差异有统计学意义(P0.05);观察组患者共发生12例不良反应,其中包括2例恶心、4例腹痛、1例皮疹和5例腹泻,对照组患者共发生20例不良反应,其中包括5例恶心、6例腹痛、1例皮疹和8例腹泻,两组比较差异无统计学意义(P0.05);观察组和对照组患者尿乳果糖/甘露醇比值均显著降低,且4个月后观察组较对照组降低趋势更为明显(P0.05);血浆D-乳酸水平方面,两组治疗后均显著降低,并且4个月后观察组和对照组之间差异存在统计学意义(P0.05),观察组降低程度更大。结论美沙拉嗪联合益生菌治疗IBD可显著提升治疗效果,改善肠道黏膜屏障功能,一定程度的降低并发症的发生率。  相似文献   

14.
The loss of intestinal epithelial cell (IEC) function is a critical component in the initiation and perpetuation of chronic intestinal inflammation in the genetically susceptible host. We applied proteome analysis (PA) to characterize changes in the protein expression profile of primary IEC from patients with Crohn's disease (CD) and ulcerative colitis (UC). Surgical specimens from 18 patients with active CD (N = 6), UC (N = 6), and colonic cancer (N = 6) were used to purify primary IEC from ileal and colonic tissues. Changes in protein expression were identified using 2D-gel electrophoreses (2D SDS-PAGE) and peptide mass fingerprinting via MALDI-TOF mass spectrometry (MS) as well as Western blot analysis. PA of primary IEC from inflamed ileal tissue of CD patients and colonic tissue of UC patients identified 21 protein spots with at least 2-fold changes in steady-state expression levels compared to the noninflamed tissue of control patients. Statistical significance was achieved for 9 proteins including the Rho-GDP dissociation inhibitor alpha that was up-regulated in CD and UC patients. Additionally, 40 proteins with significantly altered expression levels were identified in IEC from inflamed compared to noninflamed tissue regions of single UC (N = 2) patients. The most significant change was detected for programmed cell death protein 8 (7.4-fold increase) and annexin 2A (7.7-fold increase). PA in primary IEC from IBD patients revealed significant expression changes of proteins that are associated with signal transduction, stress response as well as energy metabolism. The induction of Rho GDI alpha expression may be associated with the destruction of IEC homeostasis under condition of chronic intestinal inflammation.  相似文献   

15.
16.
Lipoxin biosynthesis in inflammatory bowel disease   总被引:1,自引:0,他引:1  
BACKGROUND AND AIMS: Lipoxins are anti-inflammatory lipid mediators that are produced in gut mucosa, which serve to limit and resolve persistent inflammation. The purpose of this study was to evaluate colonic lipoxin biosynthesis in patients with ulcerative colitis (UC) to establish a possible biochemical basis for persistent inflammation in UC. METHODS: Colonic mucosa from patients with UC or organ donors (controls) was placed into tissue culture for 90 min. The conditioned media was assayed (ELISA) for lipoxin A4 (LXA) and the biologically active isomer 15-epi-LXA4 (aspirin triggered lipoxin, ATL). Mucosal tissue 15-lipoxygenase protein was determined by Western blot. RESULTS: Patient colonic mucosa produced significantly lower (12-fold) amounts of LXA, relative to organ donors. This occurred irregardless of patient steroid treatment. However, patient tissue responded to in vitro aspirin by synthesizing biologically active ATL. For the first time, human colonic mucosa was found to synthesize 15-lipoxygenase-2, an epithelial-derived isoenzyme used for lipoxin synthesis. These levels were significantly lower in UC patients compared to the control tissue. Finally, mice chronically treated with a putative selective 15-lipoxygenase inhibitor (PD 146176) experienced significantly worse intestinal function during experimental colitis, relative to untreated mice. CONCLUSION: Colonic mucosa from UC patients demonstrated defective lipoxin biosynthesis, which may contribute to the inability of these patients to resolve persistent colonic inflammation.  相似文献   

17.
First publishedSeptember 5, 2001; 10.1152/ajpcell. 00048.2001.Intestinalstrictures are frequent in Crohn's disease but not ulcerative colitis.We investigated the expression of transforming growth factor (TGF)-isoforms by isolated and cultured primary human intestinalmyofibroblasts and the responsiveness of these cells and intestinalepithelial cells to TGF- isoforms. Normal intestinal myofibroblastsreleased predominantly TGF-3 and ulcerative colitismyofibroblasts expressed both TGF-1 andTGF-3, whereas in myofibroblast cultures from fibroticCrohn's disease tissue, there was significantly lower expression ofTGF-3 but enhanced release of TGF-2.These distinctive patterns of TGF- isoform release were sustainedthrough several myofibroblast passages. Proliferation of Crohn'sdisease myofibroblasts was significantly greater than that ofmyofibroblasts derived from normal and ulcerative colitis tissue. Incontrast to cells from normal and ulcerative colitis tissue,neutralization of the three TGF- isoforms did not affect theproliferation of Crohn's disease intestinal myofibroblasts. Studies onthe effect of recombinant TGF- isoforms on epithelial restitutionand proliferation suggest that TGF-2 may be the least effective of the three isoforms in intestinal wound repair. In conclusion, the enhanced release of TGF-2 but reducedexpression of TGF-3 by Crohn's disease intestinalmyofibroblasts, together with their enhanced proliferative capacity,may lead to the development of intestinal strictures.

  相似文献   

18.
《Cell metabolism》2022,34(1):125-139.e8
  1. Download : Download high-res image (141KB)
  2. Download : Download full-size image
  相似文献   

19.
Microvascular endothelial cells play a key role in inflammation by undergoing activation and recruiting circulating immune cells into tissues and foci of inflammation, an early and rate-limiting step in the inflammatory process. We have previously [Binion et al., Gastroenterology112:1898-1907, 1997] shown that human intestinal microvascular endothelial cells (HIMEC) isolated from surgically resected inflammatory bowel disease (IBD) patient tissue demonstrate significantly increased leukocyte binding in vitro compared to normal HIMEC. Our studies [Binion et al., Am. J. Physiol.275 (Gastrointest. Liver Physiol. 38):G592-G603, 1998] have also demonstrated that nitric oxide (NO) production by inducible nitric oxide synthase (iNOS) normally plays a key role in downregulating HIMEC activation and leukocyte adhesion. Using primary cultures of HIMEC derived from normal and IBD patient tissues, we sought to determine whether alterations in iNOS-derived NO production underlies leukocyte hyperadhesion in IBD. Both nonselective (N(G)-monomethyl-L-arginine) and specific (N-Iminoethyl-L-lysine) inhibitors of iNOS significantly increased leukocyte binding by normal HIMEC activated with cytokines and lipopolysaccharide (LPS), but had no effect on leukocyte adhesion by similarly activated IBD HIMEC. When compared to normal HIMEC, IBD endothelial cells had significantly decreased levels of iNOS mRNA, protein, and NO production following activation. Addition of exogenous NO by co-culture with normal HIMEC or by pharmacologic delivery with the long-acting NO donor detaNONOate restored a normal leukocyte binding pattern in the IBD HIMEC. These data suggest that loss of iNOS expression is a feature of chronically inflamed microvascular endothelial cells, which leads to enhanced leukocyte binding, potentially contributing to chronic, destructive inflammation in IBD.  相似文献   

20.
Inflammatory bowel disease (IBD) is a general term to describe inflammatory diseases of the gastrointestinal tract such as Crohn's disease and ulcerative colitis. IBD affects approximately 1 in 200 individuals and exerts a significant health and quality of life burden on patients. Surgical intervention can be curative in ulcerative colitis but there is currently no cure for Crohn's disease. Since this is the case, and the fact that patients are often diagnosed at a young age, IBD exerts a significant financial burden on the health care system, and society as a whole.The underlying pathology of IBD is complex and involves a combination of genetic, environmental and microbial factors. Regardless of the underlying causes of the condition, this disease is universally characterized by disruption to the protective epithelial barrier separating the intestinal lumen above from the mucosal immune system below. Once this barrier becomes compromised a sequence of events ensues, that can occur in repetitive cycles to ensure long-term and serious damage to the gut.The role of hypoxia and hypoxia-dependent signalling pathways are increasingly appreciated to play a role in the physiology and pathophysiology of the intestine. The intestinal epithelium normally exists in a state of physiological hypoxia, with additional tissue hypoxia a feature of active inflammatory disease. Furthermore, recent pre-clinical animal studies have clearly supported the rationale for pharmacologically manipulating the oxygen-sensitive hypoxia-inducible factor (HIF) pathway in models of IBD. Thus, this review will discuss the contribution of hypoxia sensitive pathways in the pathology of IBD. Finally we will discuss the emerging evidence for manipulation of hypoxia-sensitive pathways in the treatment of IBD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号