首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The natural history of diabetes mellitus-induced remodeling of the urinary bladder is poorly understood. In this study, we examined temporal remodeling of the bladder in diabetic and diuretic rats. Male Sprague-Dawley rats were divided into three groups: streptozotocin-induced diabetic, 5% sucrose-induced diuretic, and age-matched control. Micturition and morphometric characteristics were evaluated using metabolic cages and light-microscopic examination of the bladder 4 days and 1, 2, 3, and 9 wk after induction. Digital image analysis was used to quantify equatorial cross-sectional areas of bladder tissue and lumen, as well as relative content of the three primary tissue components: smooth muscle, urothelium, and collagen. Diabetes and diuresis caused significant increases in fluid intake, urine output, and bladder weight. In both groups, progressive increases were observed in lumen area from 4 days to 3 wk after induction and in wall area from 2 to 3 wk after induction. Wall thickness decreased within the first 2 wk in the diabetic and diuretic rats but returned to control at 3 and 9 wk. As a percentage of total cross-sectional area, smooth muscle area increased, urothelium area was unchanged, and collagen area decreased in diabetic and diuretic rats after 2-3 wk compared with control rats. In conclusion, diabetes and diuresis induced similar bladder remodeling. Diabetes-induced diuresis caused adaptive physical changes in rat bladder by 4 days after induction; remodeling was observed by 2-3 wk after induction and remained stable from 3 to 9 wk.  相似文献   

2.
BACKGROUNDDiabetes mellitus (DM) is a serious and growing global health burden. It is estimated that 80% of diabetic patients have micturition problems such as poor emptying, urinary incontinence, urgency, and urgency incontinence. Patients with diabetic bladder dysfunction are often resistant to currently available therapies. It is necessary to develop new and effective treatment methods.AIMTo examine the therapeutic effect of human amniotic fluid stem cells (hAFSCs) therapy on bladder dysfunction in a type 2 diabetic rat model.METHODSSixty female Sprague-Dawley rats were divided into five groups: Group 1, normal-diet control (control); group 2, high-fat diet (HFD); group 3, HFD plus streptozotocin-induced DM (DM); group 4, DM plus insulin treatment (DM + insulin); group 5, DM plus hAFSCs injection via tail vein (DM + hAFSCs). Conscious cystometric studies were done at 4 and 12 wk after insulin or hAFSCs treatment to measure peak voiding pressure, voided volume, intercontraction interval, bladder capacity, and residual volume. Immunoreactivities and/or mRNA expression of muscarinic receptors, nerve growth factor (NGF), and sensory nerve markers in the bladder and insulin, MafA, and pancreatic-duodenal homeobox-1 (PDX-1) in pancreatic beta cells were studied.RESULTSCompared with DM rats, insulin but not hAFSCs treatment could reduce the bladder weight and improve the voided volume, intercontraction interval, bladder capacity, and residual volume (P < 0.05). However, both insulin and hAFSCs treatment could help to regain the blood glucose and bladder functions to the levels near controls (P > 0.05). The immunoreactivities and mRNA expression of M2- and M3-muscarinic receptors (M2 and M3) were increased mainly at 4 wk (P < 0.05), while the number of beta cells in islets and the immunoreactivities and/or mRNA of NGF, calcitonin gene-related peptide (CGRP), substance P, insulin, MafA, and PDX-1 were decreased in DM rats (P < 0.05). However, insulin and hAFSCs treatment could help to regain the expression of M2, M3, NGF, CGRP, substance P, MafA, and PDX-1 to near the levels of controls at 4 and/or 12 wk (P > 0.05).CONCLUSIONInsulin but not hAFSCs therapy can recover the bladder dysfunction caused by DM; however, hAFSCs and insulin therapy can help to regain bladder function to near the levels of control.  相似文献   

3.
Studies in streptozotocin (STZ)-induced diabetic rats have demonstrated cardiovascular abnormalities such as depressed mean arterial blood pressure (MABP) and heart rate (HR), endothelial dysfunction, and attenuated pressor responses to vasoactive agents. We investigated whether these abnormalities are due to diabetes-associated activation of inducible nitric oxide synthase (iNOS). In addition, the effect of the duration of diabetes on these abnormalities was also evaluated. Diabetes was induced by administration of 60 mg/kg STZ via the tail vein. One, 3, 9, or 12 wk after STZ injection, MABP, HR, and endothelial function were measured in conscious unrestrained rats. Pressor response curves to bolus doses of methoxamine (MTX) and angiotensin II (ANG II) were constructed in the presence of N-[3(aminomethyl)benzyl]-acetamidine, dihydrochloride (1400W), a specific inhibitor of iNOS. Depressed MABP and HR and impairment of endothelial function were observed as early as 3 wk after induction of diabetes. Acute inhibition of iNOS with 1400W (3 mg/kg i.v.) restored the attenuated pressor responses to both MTX and ANG II without affecting the basal MABP and HR. Immunohistochemical and Western analysis blot studies in cardiovascular tissues revealed decreased expression of endothelial nitric oxide synthase (eNOS) concomitant with increased expression of iNOS and nitrotyrosine with the progression of diabetes. Our findings suggest that induction of iNOS in cardiovascular tissues is dependent on the duration of diabetes and contributes significantly to the depressed pressor responses to vasoactive agents and potentially to endothelial dysfunction.  相似文献   

4.
Diabetes mellitus (DM) is characterized by alterations in fluid balance and blood volume homeostasis. Renal interstitial hydrostatic pressure (RIHP) has been shown to play a critical role in mediating sodium and water excretion under various conditions. The objective of this study was to determine the effects of immediate and delayed initiation of insulin treatment on the restoration of the relationship between RIHP, natriuretic, and diuretic responses to acute saline volume expansion (VE) in diabetic rats. Diabetes was induced by an intraperitoneal injection of streptozotocin (STZ; 65 mg/kg body wt). Four groups of female Sprague-Dawley rats were studied: normal control group (C), untreated diabetic group (D), immediate insulin-treated diabetic group (DI; treatment with insulin for 2 wk was initiated immediately when diabetes was confirmed, which was 2 days after STZ injection), and delayed insulin-treated diabetic group (DDI; treatment with insulin for 2 wk was initiated 2 wk after STZ injection). RIHP and sodium and water excretions were measured before and during VE (5% body wt/30 min) in the four groups of anesthetized rats. VE significantly increased RIHP, fractional excretion of sodium (FE(Na)), and urine flow rate (V) in all groups of rats. Basal RIHP, RIHP response to VE (Delta RIHP), and FE(Na) and V responses to VE (Delta FE(Na) and Delta V) were significantly lower in the D group compared with the C group of rats. Delta RIHP was significantly higher in both DI and DDI groups compared with D group but was similar to that of the C group of rats. While in the DI group the Delta FE(Na) response to VE was restored, Delta FE(Na) was significantly increased in DDI compared with D group, but it remained lower than that of the C group. In conclusion, insulin treatment initiated immediately after the onset of diabetes restores basal RIHP and RIHP, natriuretic, and diuretic responses to VE; however, delayed insulin treatment restores the basal RIHP and RIHP response to VE but does not fully restore the natriuretic response to VE.  相似文献   

5.
Devaraj S  Tobias P  Jialal I 《Cytokine》2011,55(3):441-445
Type 1 diabetes (T1DM) is associated with increased vascular complications and is a pro-inflammatory state. Recent findings have shown increased TLR2 and 4 expression, signaling, ligands, and functional activation in T1DM subjects compared to controls and further accentuated in T1DM with microvascular complications. Thus, the aim of this study was to examine if genetic deficiency of TLR4 attenuates the increased inflammation associated with T1DM using the streptozotocin-induced diabetic mouse model. C57BL/6 and TLR4(-/-) mice were obtained and studied in the native state and following induction of diabetes using streptozotocin. Diabetic (WT+STZ) mice had increased expression of both TLR2 and TLR4, while TLR4(-/-) STZ mice had increased expression only of TLR2, but not TLR4 compared to the non-diabetic mice TLR2 expression was significantly increased with STZ-induced diabetes and was unaffected by knockout of TLR4. Also, levels of MyD88, IRAK-1 protein phosphorylation, Trif, IRF3, and NF-κB activity were significantly reduced in TLR4(-/-) +STZ mice compared to the WT+STZ mice. WT+STZ mice exhibited significantly increased levels of serum and macrophage IL-1β, IL-6, KC/IL-8, IP-10, MCP-1, IFN beta and TNF-α compared to WT mice and this was significantly attenuated in TLR4(-/-) +STZ mice (P<0.01). Thus, TLR4 contributes to the pro-inflammatory state and TLR4KO attenuates inflammation in diabetes.  相似文献   

6.
Clinical study has demonstrated that patients with type 2 diabetes with attenuated arterial baroreflex have higher mortality rate compared with those without arterial baroreflex dysfunction. As a final pathway for the neural control of the cardiac function, functional changes of intracardiac ganglion (ICG) neurons might be involved in the attenuated arterial baroreflex in the type 2 diabetes mellitus (T2DM). Therefore, we measured the ICG neuron excitability and Ca(2+) channels in the sham and T2DM rats. T2DM was induced by a combination of both high-fat diet and low-dose streptozotocin (STZ, 30 mg/kg ip) injection. After 12-14 wk of the above treatment, the T2DM rats presented hyperglycemia, hyperlipidemia, and insulin resistance but no hyperinsulinemia, which closely mimicked the clinical features of the patients with T2DM. Data from immunofluorescence staining showed that L, N, P/Q, and R types of Ca(2+) channels were expressed in the ICG neurons, but only protein expression of N-type Ca(2+) channels was decreased in the ICG neurons from T2DM rats. Using whole cell patch-clamp technique, we found that T2DM significantly reduced the Ca(2+) currents and cell excitability in the ICG neurons. ω-Conotoxin GVIA (a specific N-type Ca(2+) channel blocker, 1 μM) lowered the Ca(2+) currents and cell excitability toward the same level in sham and T2DM rats. These results indicate that the decreased N-type Ca(2+) channels contribute to the suppressed ICG neuron excitability in T2DM rats. From this study, we think high-fat diet/STZ injection-induced T2DM might be an appropriate animal model to test the cellular and molecular mechanisms of cardiovascular autonomic dysfunction.  相似文献   

7.
Vascular diseases are a major complication of diabetes mellitus (DM), although their etiology is poorly understood. NADPH oxidase-derived reactive oxygen species (ROS) production and inflammation are potential mediators of DM-associated vascular diseases. Using db/db mice as a Type 2 diabetes model, we examined the relationship between NADPH oxidase-derived ROS and vascular inflammation. When compared with control m+/+ mice, aortas from 4- and 12-wk-old db/db mice had higher NADPH oxidase activity and increased superoxide levels, leading to NADPH oxidase-dependent impaired vasodilation at 12 wk. Diabetes progression from 4 to 12 wk led to increased Nox1, Nox4, and p22(phox) subunit mRNAs and induced the expression of a group of matrix remodeling-related cytokines: connective tissue growth factor (CTGF), bone morphogenetic protein 4 (BMP-4), and osteopontin (OPN). After 8 wk of treatment with the superoxide scavenger Tempol, 12-wk-old db/db mice had lower superoxide production, reduced plasma glucose and lipids, and lower BMP-4 and OPN protein expression when compared with nontreated mice. No changes were observed with Tempol in CTGF or m+/+ mice. The ability of Tempol to reverse ROS production as well as OPN and BMP-4, but not CTGF, induction suggests that DM-induced vascular inflammation involves both ROS-sensitive and -insensitive pathways.  相似文献   

8.
Diabetes is induced in mice by using streptozotocin (STZ), a compound that has a preferential toxicity toward pancreatic β cells. We evaluated nude male mice from various sources for their sensitivity to a single high dose (160 to 240 mg/kg) of STZ. Diabetes was induced in male mice (age: median, 12 wk; interquartile range, 11 to 14 wk; body weight, about 30 g) from Taconic Farms (TAC), Jackson Laboratories (JAX), and Charles River Laboratories (CRL). Mice were monitored for 30 d for adverse side effects, blood glucose, and insulin requirements. In CRL mice given 240 mg/kg STZ, more than 95% developed diabetes within 4 to 5 d, and loss of body weight was relatively low (mean, 0.4 g). In comparison, both TAC and JAX mice were more sensitive to STZ, as evidenced by faster development of diabetes (even at a lower STZ dose), greater need for insulin after STZ, greater body weight loss (mean: TAC, 3.5 g; JAX, 3.7 g), and greater mortality. We recommend conducting exploratory safety assessments when selecting a nude mouse source, with the aim of limiting morbidity and mortality to less than 10%.  相似文献   

9.
Diabetes mellitus (DM) is a metabolic disorder with numerous symptoms categorized via serves hyperglycemia effect along with altered fat, protein and carbohydrate metabolism mainly resultant from defects in insulin action/secretion or both. The aim of the current experimental study was to comfort the neuroprotective effect of ganoderic acid against the streptozotocin (STZ)-induced type I diabetes mellitus in mice and explore the underlying mechanism. Differentiation of 3T3-L1 preadipocytes effect; hepatic and glucose consumption effect of ganoderic acid was estimated on HepG2 cell lines and peroxisome proliferator-activated receptor (PPAR). FFA content was estimated in adipose and hepatic tissues. Ganoderic acid induced the 3T3-L1 preadipocytes differentiation. The mRNA expression of PPAR was increased in the high glucose-treated group in HepG2 and ganoderic acid treatment down-regulated the mRNA expression of PPAR. Ganoderic acid exhibited the inhibitory effect of α-glucosidase and α-amylase. Ganoderic acid demonstrated the reduced blood glucose and increase insulin level and also reduced the free fatty in hepatic and adipose tissue. Histopathological study showed the enhancement of β-cells in ganoderic acid-treated mice. Finally, their prebiotic effects on gut microbiota were illustrated via enhancing the population of diabetes resistant bacteria and also reducing the quantity of diabetes sensitive bacteria. Ganoderic acid attenuated STZ induced T1DM in mice via inflammatory pathways.  相似文献   

10.
Animal studies on diabetic gastroparesis are limited by inability to follow gastric emptying changes in the same mouse. The study aim was to validate a nonlethal gastric emptying method in nonobese diabetic (NOD) LtJ mice, a model of type 1 diabetes, and study sequential changes with age and early diabetic status. The reliability and responsiveness of a [(13)C]octanoic acid breath test in NOD LtJ mice was tested, and the test was used to measure solid gastric emptying in NOD LtJ mice and nonobese diabetes resistant (NOR) LtJ mice. The (13)C breath test produced results similar to postmortem recovery of a meal. Bethanechol accelerated gastric emptying [control: 92 +/- 9 min; bethanechol: 53 +/- 3 min, mean half emptying time (T(1/2)) +/- SE], and atropine slowed gastric emptying (control: 92 +/- 9 min; atropine: 184 +/- 31 min, mean T(1/2) +/- SE). Normal gastric emptying (T(1/2)) in nondiabetic NOD LtJ mice (8-12 wk) was 91 +/- 2 min. Aging had differing effects on gastric emptying in NOD LtJ and NOR LtJ mice. Onset of diabetes was accompanied by accelerated gastric emptying during weeks 1-2 of diabetes. Gastric emptying returned to normal by weeks 3-5 with no delay. The [(13)C]octanoic acid breath test accurately measures gastric emptying in NOD LtJ mice, is useful to study the time course of changes in gastric emptying in diabetic NOD LtJ mice, and is able to detect acceleration in gastric emptying early in diabetes. Opposing changes in gastric emptying between NOD LtJ and NOR LtJ mice suggest that NOR LtJ mice are not good controls for the study of gastric emptying in NOD LtJ mice.  相似文献   

11.
Resveratrol (RSV) has a beneficial role in the prevention of diabetes and alleviates some diabetic complications, such as cardiomyopathy. We investigated cyclooxygenase-1 (COX-1), COX-2, nuclear factor κB (NF-κB), matrix metalloproteinase-9 (MMP-9), and sirtuin 1 (SIRT1) mRNA expression levels in heart tissue after RSV treatment in streptozotocin (STZ)-induced diabetic rats. After induction of chronic diabetes with STZ, 10 mg RSV/kg per day was administered to DM and DM+RSV groups for four weeks. At the end of the experiment, all rats were sacrificed and heart tissues were stored at -80°C; mRNA expression levels of COX-1, COX-2, NF-κB, MMP-9, and SIRT1 genes were analyzed with quantitative real-time PCR. We did not find any significant effect of RSV on MMP-9, COX-1, COX-2, or NF-κB mRNA levels among the groups. However, SIRT1 mRNA levels decreased in the DM group compared to controls and increased in the DM+RSV group when compared to the DM group. SIRT1 is activated by RSV treatment in diabetic heart tissue. Activation of SIRT1 by RSV may lead to a new therapeutic approach for diabetic heart tissue. We conclude that RSV treatment can alleviate heart dysfunction by inhibiton of inflammatory gene expression such as SIRT1.  相似文献   

12.
Splenocytes from prediabetic female NOD mice can transfer diabetes to NOD-SCID mice. Whereas the kinetics of disease transfer was shown to be a function of the age of donor splenocytes, information is scarce as to how the stage of autoimmune disease, as evaluated by pancreatic insulin content, is related to the diabetogenic potency of splenic T-cells. We therefore determined individual diabetes transfer times after an i. v. injection of splenocytes from prediabetic NOD mice of different ages into female NOD-SCID mice in relation to the diabetes incidence in NOD donor mice and their pancreatic insulin contents. Three groups (n = 8) of NOD mice aged 5, 11, and 17 weeks (wk) underwent splenectomy and hemipancreatectomy. After that, 10x10 (6) splenocytes either pooled from all donor NOD mice of the different age groups or individually from single donor mice were transferred to groups of four 6-week-old NOD-SCID mice, respectively, in two sets of experiments. Insulin was extracted from the resected hemipancreas, and the insulin content was determined by a RIA. Diabetes in the NOD-SCID cohort occurred after a mean time of 126 days after transfer of pooled splenocytes from 5-week-old NODs, after 68 days (transfer from 11-week-old NODs), and after a mean time of 43 days (transfer from 17-week-old NODs, 5 vs. 11 wk: p < 0.02, 11 vs. 17 wk: p < 0.001). Individual time to diabetes positively correlated with diabetes transfer times in NOD-SCID recipients (p < 0.0001) in the 17-week-old NOD mice, confirming previous diabetes transfer studies in hemi-pancreatectomized NOD mice. Furthermore, individual insulin concentrations in 17-week-old NOD mice also positively correlated to diabetes transfer times in recipient mice (p < 0.0001). No such correlations for these parameters were seen for the 5 and 11-week-old NOD mice (time to diabetes: 11 wk, p = 0.14, 5 wk, p = 0.75; insulin content: 11 wk, p = 0.81, 5 wk, p = 0.14). These data suggest that destructive T-cell activity increases during the course of islet autoimmunity. The immune response seems to be programmed for beta-cell destruction just before diabetes onset. This is the only time that pancreatic insulin content predicts the impending onset of diabetes.  相似文献   

13.
目的高脂饮食加低剂量链脲霉素(Streptozotocin,STZ)建立小鼠2型糖尿病模型。方法5周的雄性C57BL/6J小鼠,随机分为正常饲料组、正常饲料加STZ组、高脂饲料组和高脂饲料加STZ组。相应饲料喂养5周后,按照100 mg/Kg的剂量腹腔注射STZ,然后继续喂养4周。在第5周和第9周末测定小鼠的体重、收缩压、血糖、血胰岛素、血甘油三脂和胆固醇水平。结果STZ注射前各组小鼠的体重、血压、血糖、血胰岛素、血脂和血甘油三脂无明显差异(P〉0.05)。STZ注射后4周时,高脂饲料加STZ组小鼠的体重、血糖、血胰岛素、血压和血脂水平明显升高(P〈0.05);而其他三组的这些指标无明显改变或仅部分升高。结论高脂饮食加低剂量链脲霉素可建立小鼠2型糖尿病模型,该模型具有人2型糖尿病的主要表型特征和相似的发病过程。  相似文献   

14.
Streptozotocin (STZ)-induced diabetes mellitus (DM) offers a very cost-effective and expeditious technique that can be used in most strains of rodents, opening the field of DM research to an array of genotypic and phenotypic options that would otherwise be inaccessible. Despite widespread use of STZ in small animal models, the data available concerning drug preparation, dosing and administration, time to onset and severity of DM, and any resulting moribundity and mortality are often limited and inconsistent. Because of this, investigators inexperienced with STZ-induced diabetes may find it difficult to precisely design new studies with this potentially toxic chemical and account for the severity of DM it is capable of inducing. Until a better option becomes available, attempts need to be made to address shortcomings with current STZ-induced DM models. In this paper we review the literature and provide data from our pancreatic islet transplantation experiments using single high-dose STZ-induced DM in NCr athymic nude mice with hopes of providing clarification for study design, suggesting refinements to the process, and developing a more humane process of chemical diabetes induction.  相似文献   

15.
Interactions between manganese (Mn) deficiency and streptozotocin (STZ)-diabetes with respect to tissue antioxidant status were investigated in male, Sprague-Dawley rats. All rats were fed either a Mn-deficient (1 ppm) or a Mn-sufficient (45 ppm) diet for 8 wk. Diabetes was then induced by tail-vein injection of STZ (60 mg/kg body weight), after which the rats were kept for an additional 4 or 8 wk. The control groups comprised rats not injected with STZ and fed either Mn-deficient or Mn-sufficient diets for a total of 12 wk. The Mn-deficient diet decreased the activities of manganese superoxide dismutase (MnSOD) in kidney and heart, and of copperzinc superoxide dismutase (CuZnSOD) in kidney, in the non-diabetic animals. In the diabetic rats, the Mn-deficient diet induced more pronounced decreases in activities of these same enzymes, and also increased liver MnSOD activity. Plasma and hepatic vitamin E levels increased progressively with the duration of diabetes, independent of dietary Mn intake. Lipid peroxidation, as measured by H2O2-induced production of thiobarbituric acid reactive substances in erythrocytes, also increased, concomitant with decreased liver and kidney glutathione (GSH) levels. These findings demonstrate for the first time an interactive effective between Mn deficiency and STZ-diabetes, resulting in amplification of tissue antioxidant changes seen with either Mn deficiency or STZ-diabetes alone. This effect of Mn deprivation in experimental diabetes suggests a physiological role for Mn as an antioxidant nutrient.  相似文献   

16.
Background aimsDamage to smooth muscle has been the primary cause of dysfunction in diabetic bladders. Major changes in the filling phase of the bladder result in the loss of compliance and incomplete emptying in patients.MethodsCell-based therapies in the lower urinary tract have shown promising results. We argue that because diabetic bladder dysfunction is primarily a problem arising out of altered smooth muscle cells (SMCs), it would be an interesting approach to introduce healthy SMCs into the bladder wall.ResultsFurthering this hypothesis, in this experiment, we were successful in introducing syngeneic, healthy SMCs into diabetic bladders. We attempted a method wherein bladder function can be improved in streptozocin-induced diabetes mellitus. Ex vivo–cultured healthy SMCs were introduced into the diabetic bladders of syngeneic Sprague-Dawley rats during the hypercontractile phase after induction of diabetes. Cystometry, metabolic cage evaluation, organ bath studies and histological analyses were performed on the healthy control, the diabetic and the diabetic group transplanted with SMCs.ConclusionsDuring the 2-week follow-up period after transplantation, we noticed an increase in contractile response of the bladder correlating to a decrease in residual urine. Cell survival studies revealed a cell survival rate close to 1.5%.  相似文献   

17.
Diabetes Mellitus (DM) is a metabolic disease characterized by hyperglycemia. Chronic hyperglycemia is associated with long-term dysfunction such as retinopathy, nephropathy, neuropathy and cardiovascular diseases. These complications increase rates of death and disability worldwide. Due to the negative effects of DM on the quality of life, the mechanism and treatments of the disease should be investigated in more detail. Most of the research in diabetes is performed in experimental animals. Experimental animal models contributed to the advancement of clinical research, the development of new therapeutic approaches, the discovery of insulin and the purification of insulin. There are many animal models of DM in the literature. But there are a few DM model studies created with chick embryos. In these studies, it was seen that there were differences in STZ doses and STZ administration techniques. The objective of this study was to create a more acceptable and easier DM model. 180 specific pathogen free (SPF) fertilized chicken eggs (White Leghorn chicken) were used in this study. STZ was administered to 160 SPF eggs for an induced DM model. The remaining 20 SPF eggs were separated as a control group. We used two different DM models (Air sack model (ASM) and Chorioallantoic membrane model (CAMM)) and blood sampling technique in our study. 160 SPF eggs were divided into two groups with 80 eggs in each group, according to the model in which STZ was administered. When the relationship between blood glucose and blood insulin levels were examined, it was determined that there was a significantly strong negative correlation in the control group and ASM 1 group; and a significantly very strong negative correlation was found in the ASM 2 group and ASM 3 group. Our data indicate that the optimal STZ dose to create a DM model was 0.45 mg/egg and the best DM model was ASM. The second technique to be the best blood sampling technique for determining blood glucose levels. We believe that ASM can be used in DM studies and anti-DM drug studies in terms of its easebly, applicability, reproducibility and low cost.  相似文献   

18.
We evaluated heat shock protein 70 (HSP70) changes in diabetes mellitus (DM) in a nonhuman primate model. To this end, two studies were conducted in DM vervet monkeys. 1) Normal control and streptozotocin-induced DM monkeys (Stz-DM) that were differentiated into moderately or poorly controlled DM by judicious insulin administration were evaluated. Liver was collected at 4, 8, 12, 16, and 20 wk after streptozotocin, exposed to ex vivo heat shock at 42°C, and immunoblotted for heat shock factor 1 (HSF1), HSP70, and phosphorylated HSF1. 2) Spontaneous DM monkeys that were not pharmacologically induced were included in a crossover study of the HSP70-inducing drug geranylgeranylacetone (GGA). GGA at 20 mg/kg was given for 14 days with a 6-wk washout period. Glucose tolerance testing and plasma and muscle HSP70 were the primary outcome measurements. In Stz-DM, hyperglycemia reduced hepatic HSP70 in a dose-dependent fashion. HSF1 was increased in livers of monkeys with Stz-DM, but responses to ex vivo heat shock were impaired vs. normal monkeys. Activation of HSF1 appears to be important, because the phosphorylation change with heat stress was nearly perfectly correlated with HSP70 increases. Impaired HSF1 activation was also seen in Stz-DM after chronic hyperglycemia (>12 wk). In naturally occurring DM, increased circulating HSP70 resulted in significantly improved glucose tolerance and significant, positive trends in other measurements of insulin resistance. No change in muscle HSP70 content was observed. We conclude that increasing HSP70, potentially through targeting hyperglycemia-related deficits in HSF1 induction and activation in the liver, is a potent and viable strategy to improve glucose tolerance.  相似文献   

19.
Type 1 diabetes mellitus (T1DM) is characterized by an impairment of the insulin-secreting beta cells with an immunologic base. Inflammatory cytokines such as tumor necrosis factor (TNF)-α and interleukin (IL)-1β, and free radicals are believed to play key roles in destruction of pancreatic β cells. The present study was designed to investigate the effect of Silybum marianum seed extract (silymarin), a combination of several flavonolignans with immunomodulatory, anti-oxidant, and anti-inflammatory potential on streptozotocin (STZ)-induced T1DM in mouse. Experimental T1DM was induced in male albino mice by IV injection of multiplelow- doses of STZ for 5 days. Seventy-two male mice in separate groups received various doses of silymarin (20, 40, and 80 mg/kg) concomitant or after induction of diabetes for 21 days. Blood glucose and pancreatic biomarkers of inflammation and toxic stress (IL-1β, TNF-α, myeloperoxidase, lipid peroxidation, protein oxidation, thiol molecules, and total antioxidant capacity) were determined. Silymarin treatment reduced levels of inflammatory cytokines such as TNF-α and IL-1β and oxidative stress mediators like myeloperoxidase activity, lipid peroxidation, carbonyl and thiol content of pancreatic tissue in an almost dose dependent manner. No marked difference between the prevention of T1DM and the reversion of this disease by silymarin was found. Use of silymarin seems to be helpful in T1DM when used as pretreatment or treatment. Benefit of silymarin in human T1DM remains to be elucidated by clinical trials.  相似文献   

20.
This study intended to demonstrate that the thyroid hormone T3 counteracts the onset of a Streptozotocin (STZ) induced diabetes in wild type mice. To test our hypothesis diabetes has been induced in Balb/c male mice by multiple low dose Streptozotocin injection; and a group of mice was contemporaneously injected with T3. After 48 h mice were tested for glucose tolerance test, insulin serum levels and then sacrificed. Whole pancreata were utilized for morphological and biochemical analyses, while protein extracts and RNA were utilized for expression analyses of specific molecules. The results showed that islets from T3 treated mice were comparable to age- and sex-matched control, untreated mice in number, shape, dimension, consistency, ultrastructure, insulin and glucagon levels, Tunel positivity and caspases activation, while all the cited parameters and molecules were altered by STZ alone. The T3-induced pro survival effect was associated with a strong increase in phosphorylated Akt. Moreover, T3 administration prevented the STZ-dependent alterations in glucose blood level, both during fasting and after glucose challenge, as well as in insulin serum level. In conclusion we demonstrated that T3 could act as a protective factor against STZ induced diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号