首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endotoxin from Gram-negative bacteria bound to CD14 signals through Toll-like receptor (TLR) 4, while components of Gram-positive bacteria, fungi, and Mycobacterium tuberculosis (M.tb.) preferentially use TLR2 signaling. We asked whether TLR4 plays any role in host resistance to M.tb. infection in vivo. Therefore, we infected the TLR4 mutant C3H/HeJ mice and their controls, C3H/HeN mice, with M.tb. by aerosol. TLR4 mutant mice had a reduced capacity to eliminate mycobacteria from the lungs, spread the infection to spleen and liver, with 10-100 times higher CFU organ levels than the wild-type mice and succumbed within 5-7 mo, whereas most of the wild-type mice controlled infection and survived the duration of the experiment. The lungs of TLR4 mutant mice showed chronic pneumonia with increased neutrophil infiltration, reduced macrophages recruitment, and abundant acid-fast bacilli. Furthermore, the pulmonary expression of TNF-alpha, IL-12p40, and monocyte chemoattractant protein 1 was significantly lower in C3H/HeJ mice when compared with the wild-type controls. C3H/HeJ-derived macrophages infected in vitro with M.tb. produced lower levels of TNF-alpha. Finally, the purified mycobacterial glycolipid, phosphatidylinositol mannosides, induced signaling in both a TLR2- and TLR4-dependent manner, thus suggesting that recognition of phosphatidylinositol mannosides in vivo may influence the development of protective immunity. In summary, macrophage recruitment and the proinflammatory response to M.tb. are impaired in TLR4 mutant mice, resulting in chronic infection with impaired elimination of mycobacteria. Therefore, TLR4 signaling is required to mount a protective response during chronic M.tb. infection.  相似文献   

2.
Toll-like receptor 4 (TLR4), a proximal signalling receptor in innate immune responses to lipopolysaccharide of gram-negative pathogens, is expressed in the heart. Accumulating evidence have consolidated the notion that TLR4 plays an essential role in the pathogenesis of cardiac dysfunction. However, the molecular mechanisms of TLR4 responsible for ischemia-induced cardiac dysfunction remain unclear. To address the signalling mechanisms of TLR4-deficiency cardioprotection against ischemic injury, in vivo regional ischemia was induced by occlusion of the left anterior descending coronary artery in wild-type (WT) C3H/HeN and TLR4-mutated C3H/HeJ mice. The results demonstrated that blunted ischemic activation of p38 mitogen-activated protein kinase and JNK signalling occurred in C3H/HeJ hearts versus C3H/HeN hearts, while ERK and AMP-activated protein kinase (AMPK) signalling pathways were augmented during ischemia in C3H/HeJ hearts versus C3H/HeN hearts. Intriguingly, ischemia-stimulated endoplasmic reticulum stress was higher in C3H/HeN hearts than that in C3H/HeJ as demonstrated by up-regulation of Grp78/BiP, Gadd153/CHOP and IRE-1α. Myocardial infarct, caspase-3 activity and terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) staining demonstrated that C3H/HeN hearts suffered more damage than those of C3H/HeJ hearts during ischemia. Moreover, isolated cardiomyocytes from C3H/HeJ hearts showed resistance to hypoxia-induced contractile dysfunction compared to those from C3H/HeN hearts, which are associated with greater hypoxic activation of AMPK and ERK signalling, better intracellular Ca2+ handling in C3H/HeJ versus C3H/HeN cardiomyocytes. These findings suggest that the cardioprotective effects against ischemic injury of hearts with deficiency in TLR4 signalling may be mediated through modulating AMPK and ERK signalling pathway during ischemia.  相似文献   

3.

Introduction

Endotoxin tolerance improves outcomes from gram negative sepsis but the underlying mechanism is not known. We determined if endotoxin tolerance before or after pneumococcal sepsis improved survival and the role of lymphocytes in this protection.

Methods

Mice received lipopolysaccharide (LPS) or vehicle before or after a lethal dose of Streptococcus pneumoniae. Survival, quantitative bacteriology, liver function, and cytokine concentrations were measured. We confirmed the necessity of Toll-like receptor 4 (TLR4) for endotoxin tolerance using C3H/HeN (TLR4 replete) and C3H/HeJ (TLR4 deficient) mice. The role of complement was investigated through A/J mice deficient in C5 complement. CBA/CaHN-Btkxid//J mice with dysfunctional B cells and Rag-1 knockout (KO) mice deficient in T and B cells delineated the role of lymphocytes.

Results

Endotoxin tolerance improved survival from pneumococcal sepsis in mice with TLR4 that received LPS pretreatment or posttreatment. Survival was associated with reduced bacterial burden and serum cytokine concentrations. Death was associated with abnormal liver function and blood glucose concentrations. Endotoxin tolerance improved survival in A/J and CBA/CaHN-Btkxid//J mice but not Rag-1 KO mice.

Conclusions

TLR4 stimulation before or after S. pneumoniae infection improved survival and was dependent on T-cells but did not require an intact complement cascade or functional B cells.  相似文献   

4.
Peritoneal macrophage ganglioside patterns and ganglioside sialic acid content were compared for two congenic strains of mice having differing responses to bacterial lipopolysaccharide. Resident macrophage ganglioside patterns from C3H/HeJ mice (endotoxin hyporesponsive) and C3H/HeN mice (endotoxin responsive) were similar. Macrophages elicited with phenol-extracted or butanol-extracted endotoxin showed distinctly more complex ganglioside patterns in C3H/HeN mice. C3H/HeJ macrophages showed distinct, but less complex changes when elicited with butanol-extracted endotoxin. As expected, there were minimal alterations induced by phenol-extracted endotoxin in the C3H/HeJ patterns. When injected with whole killed E. coli, both strains of mice exhibited complex ganglioside patterns; however, there were relative differences in the quantities of multiple gangliosides. Differences in ganglioside patterns were mirrored in the relative ratios of N-acetyl- to N-glycolylneuraminic acid. When macrophages were activated by administration of either endotoxin preparation, macrophage gangliosides from C3H/HeN mice always contained a higher proportion of N-acetylneuraminic acid compared with C3H/HeJ macrophage gangliosides. Oxidative metabolism of the macrophage populations was assessed by PMA-induced H2O2 release. This indicated that endotoxin activation produced an increase in PMA-induced H2O2 release as well as a shift of sialic acid class from the N-glycolyl type to the N-acetyl type. However, no direct correlation could be made between ganglioside composition, sialic acid content, and macrophage function. These data indicate that both ganglioside composition and sialic acid composition of macrophages are profoundly altered with endotoxin activation. The data further indicate that under conditions which C3H/HeJ mice respond to Gram-negative bacteria, their macrophage ganglioside patterns still differ from normal mice.  相似文献   

5.
Due to a gene defect (Lps(d)), C3H/HeJ mice are known to be hyporesponsive to the immunobiological potential of lipopolysaccharide (LPS). We studied dose requirements for LPS, IFN-gamma, and cytokines TNF-alpha and IL-10 to produce nitric oxide (NO) in peritoneal macrophages (Mphi) from these animals. In contrast to the Lps(n) C3H/HeN mice, high concentrations of LPS (up to 5 microg/mL) or IFN-gamma (up to 5 ng/mL) by themselves were unable to activate NO production in C3H/HeJ Mphi. The failure to produce NO could not be overcome by addition of L-arginine or tetrahydropterin. The high-output NO biosynthesis was dose-dependently stimulated by combined administration of varying concentrations of IFN-gamma (50-5000 pg/mL) and LPS (approximately 1 ng/mL) or to a lesser extent by IFN-gamma plus TNF-alpha or TNF-alpha/IL-10. Formation of NO in C3H/HeJ MCO triggered by high concentration of LPS (approximately 1 microg/mL) given together with IFN-gamma (0.2-5 ng/mL) reached the values typical for Lps(n) C3H/HeN mice. While Mphi from C3H/HeN mice secreted TNF-alpha, IL-10, and IL-10 upon contact with a low dose of LPS (1 ng/mL), C3H/HeJ Mphi required high concentration of LPS (5 microg/mL) to enhance the secretion of the cytokines. Yet, this dose remained ineffective to stimulate IFN-gamma in Mphi from C3H/HeJ mice. It can be presumed that one of the important factors influencing their deficient ability to form NO is a failure of Mphi to produce IFN-gamma upon LPS contact.  相似文献   

6.
TLRs are highly conserved pathogen recognition receptors. As a result, TLR4-deficient C3H/HeJ mice are highly susceptible to Gram-negative sepsis. We have previously demonstrated that tolerance induced by bacterial lipoprotein (BLP) protects wild-type mice against polymicrobial sepsis-induced lethality. In this study, we assessed whether pretreatment of C3H/HeJ mice with BLP could induce resistance to a subsequent Gram-negative Salmonella typhimurium infection. Pretreatment with BLP resulted in a significant survival benefit in TLR4-deficient C3H/HeJ mice (p < 0.0002 vs control C3H/HeJ) after challenge with live S. typhimurium (0.25 x 10(6) CFU/mouse). This survival benefit was associated with enhanced bacterial clearance from the circulation and in the visceral organs (p < 0.05 vs control C3H/HeJ). Furthermore, pretreatment with BLP resulted in significant increases in complement receptor type 3 (CR3) and FcgammaIII/IIR expression on polymorphonuclear neutrophils (PMNs) and macrophages (p < 0.05 vs control C3H/HeJ). There was impaired bacterial recognition and phagocytosis in TLR4-deficient mice compared with wild-type mice. However, a significant augmented uptake, ingestion, and intracellular killing of S. typhimurium by PMNs and peritoneal macrophages was evident in BLP-pretreated C3H/HeJ mice (p < 0.05 vs control C3H/HeJ). An up-regulation of inducible NO synthase and increased production of intracellular NO were observed in peritoneal macrophages from BLP-pretreated C3H/HeJ mice (p < 0.05 vs control C3H/HeJ). Depletion of PMNs did not diminish the beneficial effects of BLP with regard to both animal survival and bacterial clearance. These results indicate that BLP, a TLR2 ligand, protects highly susceptible TLR4-deficient mice from Gram-negative sepsis via enhanced bacterial clearance.  相似文献   

7.
We recently reported that the number of gamma delta T cells was increased after infection with Escherichia coli in C3H/HeN mice. We here showed that an i.p. injection with native lipid A derived from E. coli induced an increase of gamma delta T cells in the peritoneal cavity of LPS-responsive C3H/HeN mice and, albeit to a lesser degree, also in LPS-hyporesponsive C3H/HeJ mice. The purified gamma delta T cells from C3H/HeN and C3H/HeJ mice expressed a canonical TCR repertoire encoded by V gamma 6-J gamma 1/V delta 1-D delta 2-J delta 2 gene segments and proliferated in response to the native lipid A derived from E. coli in a TCR-independent manner. The lipid A-reactive gamma delta T cells bearing canonical V gamma 6/V delta 1 expressed Toll-like receptor (TLR) 2 mRNA, while TLR4 mRNA was undetectable. Treatment with a TLR2 anti-sense oligonucleotide resulted in hyporesponsiveness of the gamma delta T cells to the native lipid A. TLR2-deficient mice showed an impaired increase of the gamma delta T cells following injection of native lipid A. These results suggest that TLR2 is involved in the activation of canonical V gamma 6/V delta 1 T cells by native E. coli lipid A.  相似文献   

8.
Previously, we reported that the oral administration of high molecular mass poly-γ-glutamate (γ-PGA) induced antitumor immunity but the mechanism underlying this antitumor activity was not understood. In the present study, we found that application of high molecular mass γ-PGA induced secretion of tumor necrosis factor (TNF)-α from the bone-marrow-derived macrophages of wild type (C57BL/6 and C3H/HeN) and Toll-like receptor 2 knockout (TLR2−/−) mice, but not those of myeloid differentiation factor 88 knockout (MyD88−/−) and TLR4-defective mice (C3H/HeJ). Production of interferon (IFN)-γ-inducible protein 10 (IP-10) in response to treatment with γ-PGA was almost abolished in C3H/HeJ mice. In contrast to LPS, γ-PGA induced productions of TNF-α and IP-10 could not be blocked by polymyxin B. Furthermore, γ-PGA-induced interleukin-12 production was also impaired in immature dendritic cells (iDCs) from MyD88−/− and C3H/HeJ mice. Downregulation of MyD88 and TLR4 expression using small interfering RNA (siRNA) significantly inhibited γ-PGA-induced TNF-α secretion from the RAW264.7 cells. γ-PGA-mediated intracellular signaling was markedly inhibited in C3H/HeJ cells. The antitumor effect of γ-PGA was completely abrogated in C3H/HeJ mice compared with control mice (C3H/HeN) but significant antitumor effect was generated by the intratumoral administration of C3H/HeN mice-derived iDCs followed by 2,000 kDa γ-PGA in C3H/HeJ. These findings strongly suggest that the antitumor activity of γ-PGA is mediated by TLR4. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Obese adipose tissue is characterized by increased infiltration of macrophages, suggesting that they might represent an important source of inflammation. We have provided in vitro evidence that saturated fatty acids, which are released from hypertrophied adipocytes via the macrophage-induced adipocyte lipolysis, serve as a naturally occurring ligand for Toll-like receptor 4 (TLR4) to induce the inflammatory changes in macrophages. Here we show the attenuation of adipose tissue inflammation in C3H/HeJ mice carrying a functional mutation in the TLR4 gene relative to control C3H/HeN mice during a 16-week high-fat diet. We also find that adiponectin mRNA expression is significantly reduced by co-culture of hypertrophied 3T3-L1 adipocytes and C3H/HeN peritoneal macrophages, which is reversed, when co-cultured with C3H/HeJ peritoneal macrophages. This study provides in vivo evidence that TLR4 plays a role in obesity-related adipose tissue inflammation and thus helps to identify the therapeutic targets that may reduce obesity-induced inflammation and the metabolic syndrome.  相似文献   

10.
Severe burns induce a state of immunosuppression, and the inflammatory response after burn injury may play a role in this phenomenon. This study examined the effect of the inflammatory response to endotoxin on burn-induced immunosuppression and oxidative stress. An endotoxin-resistant mouse strain (C3H/HeJ) and a normally responding mouse strain (C3H/HeN) were compared. The mice were separated into three groups of five animals for each experimental day: (1) saline, (2) buprenorphine, and (3) buprenorphine and 20% total body surface area burn. All animals were fed ad libitum. The inflammatory response was studied at 1, 4, 7, 10, and 14 days postburn. Proliferation of activated splenocytes in burn mice was significantly lower on days 7, 10, and 14 for the C3H/HeJ strain and on days 4 and 10 for the C3H/HeN strain. Globally, C3H/HeJ presented stronger immune suppression than C3H/HeN. Oxidative stress parameters (liver malonaldehyde, spleen metabolic activity, and thiol concentrations) were higher in endotoxin-resistant mice than in the control strain. Impairment of the inflammatory response was more pronounced and oxidative stress was greater in endotoxin-resistant burn mice than in normal burn controls. Buprenorphine administration was not related to depression of these immune parameters. The inflammatory response following burn injury may be beneficial to the immune system.  相似文献   

11.
We investigated the effect of Toll-like receptor 4 (TLR4) on the progression of murine Pneumocystis pneumonia. TLR4-mutant C3H/HeJ and wild-type C3H/HeN mice were infected with Pneumocystis after depletion of CD4 T cells. Mutant mice lost body weight more quickly and showed exacerbated pulmonary injury even though there was no difference in Pneumocystis organism burden in the lung. Mutant mice showed reduced levels of IL-10, IL-12p40 and MIP-2 accompanied by elevated levels of TNF-alpha and IL-6 in the bronchoalveolar lavage fluid compared with those of wild-type mice 8 weeks after the infection. In response to stimulation with Pneumocystis antigen, the production of IL-10, IL-12p40 and MIP-2 by alveolar macrophages was partially impaired in mutant mice, while that in wild-type mice was suppressed by the anti-TLR4/MD-2 mAb, MTS510. Unlike the response to lipopolysaccharide stimulation, TLR4-reconstituted HEK293 cells showed no elevated NF-kappaB activation after stimulation with Pneumocystis antigen. Taken together, these findings suggest that recognition of Pneumocystis by TLR4 helps to regulate the host inflammatory responses through cytokine and chemokine production by alveolar macrophages.  相似文献   

12.
Activation of Toll-like receptor 4 (TLR4) triggers the innate immune response and leads to the induction of adaptive immunity. TLR4 agonists are known to function as immunostimulants and exhibit promising therapeutic potential for cancer immunotherapy. We have previously developed a synthetic serine-based glycolipid (designated as CCL-34) that can activate TLR4-dependent signaling pathways. In this study, the anticancer immunity of CCL-34 was further demonstrated. CCL-34-activated macrophages induced cancer cell death via the apoptotic pathway, and this cytotoxicity was significantly inhibited by NG-monomethyl-L-arginine (an inducible NOS inhibitor). Notably, conditioned medium collected from CCL-34-treated splenocytes also induced cytotoxicity toward cancer cells. Furthermore, CCL-34 treatment suppressed tumor growth and increased the survival rate in TLR4-functional C3H/HeN mice but not in TLR4-defective C3H/HeJ mice. Increased apoptosis, the induction of cytokines (IFN-γ and IL-12) and chemokines (CXCL9 and CXCL10), and the elevation of leukocyte markers (CD11b, CD11c, CD4, and CD8) were detected at tumor sites in C3H/HeN mice but not in C3H/HeJ mice. Structure-and-activity relationship analysis of CCL-34 and its structural analogs revealed that a sugar moiety is essential for its activity. However, the substitution of the galactose in CCL-34 with glucose or fucose did not reduce its activity. Altogether, this study reveals the anticancer activity of a new synthetic TLR4 agonist and broadens the molecular basis of TLR4-activating glycolipids.  相似文献   

13.
LPS preparations cause a variety of body temperature (T(b)) responses: monophasic fever, different phases of polyphasic fever, and hypothermia. Conventional (c) LPS preparations contain highly active lipoprotein contaminants (endotoxin proteins). Whereas LPS signals predominantly via the Toll-like receptor (TLR) 4, endotoxin proteins signal via TLR2. Several TLR2-dependent responses of immunocytes to cLPS in vitro are triggered by endotoxin proteins and not by LPS itself. We tested whether any T(b) response to cLPS from Escherichia coli 055:B5 is triggered by non-TLR4-signaling contaminants. A decontaminated (d) LPS preparation (free of endotoxin proteins) was produced by subjecting cLPS to phenol-water reextraction. The presence of non-TLR4-signaling contaminants in cLPS (and their absence in dLPS) was confirmed by showing that cLPS (but not dLPS) induced IL-1beta expression in the spleen and increased serum levels of TNF-alpha and IL-1beta of C3H/HeJ mice; these mice bear a nonfunctional TLR4. Yet, both cLPS and dLPS caused cytokine responses in C3H/HeOuJ mice; these mice bear a fully functional TLR4. We then studied the T(b) responses to cLPS and dLPS in Wistar rats preimplanted with jugular catheters. At a neutral ambient temperature (30 degrees C), a low (0.1 microg/kg iv) dose of cLPS caused a monophasic fever, whereas a moderate (10 microg/kg iv) dose produced a polyphasic fever. In the cold (20 degrees C), a high (500 microg/kg iv) dose of cLPS caused hypothermia. All T(b) responses to dLPS were identical to those of cLPS. We conclude that all known T(b) responses to LPS preparations are triggered by LPS per se and not by non-TLR4-signaling contaminants of such preparations.  相似文献   

14.
The human homologue of Drosophila Toll (hToll), also called Toll-like receptor 4 (TLR4), is a recently cloned receptor of the IL-1/Toll receptor family. Interestingly, the TLR4 gene has been localized to the same region to which the Lps locus (endotoxin unresponsive gene locus) is mapped. To examine the role of TLR4 in LPS responsiveness, we have generated mice lacking TLR4. Macrophages and B cells from TLR4-deficient mice did not respond to LPS. All these manifestations were quite similar to those of LPS-hyporesponsive C3H/HeJ mice. Furthermore, C3H/HeJ mice have, in the cytoplasmic portion of TLR4, a single point mutation of the amino acid that is highly conserved among the IL-1/Toll receptor family. Overexpression of wild-type TLR4 but not the mutant TLR4 from C3H/HeJ mice activated NF-kappaB. Taken together, the present study demonstrates that TLR4 is the gene product that regulates LPS response.  相似文献   

15.
Endotoxin depresses cytochrome P450 levels when injected into animals. The purpose of this study was to determine whether endotoxin itself, or monokine(s) released in response to endotoxin administration are responsible for this effect. Cytochrome P450 levels and drug metabolizing activities were measured in endotoxin resistant C3H/HeJ mice 24h after single intraperitoneal injections of either lipopolysaccharide (LPS), a semipurified murine monokine preparation containing interleukin-1 (IL-1), or murine recombinant IL-1. In endotoxin sensitive C3H/HeN mice, LPS (0.5 mg/Kg) decreased total cytochrome P450 levels, benzphetamine demethylase activities, and ethoxyresorufin-0-deethylase activities. This dose of LPS did not alter cytochrome P450 levels or activities in the C3H/HeJ mice. However, after injection of the semipurified monokine preparation or the recombinant IL-1, there were significant decreases in cytochrome P450 levels and activities similar to the decreases observed with LPS in the C3H/HeN mice. These findings suggest that the alterations in hepatic cytochrome P450 seen with endotoxin injection are mediated, at least in part, by IL-1.  相似文献   

16.
The Toll-like receptor 4 (TLR4)-signaling pathway is crucial for activating both innate and adaptive immunity. TLR4 is a promising molecular target for immune-modulating drugs, and TLR4 agonists are of therapeutic potential for treating immune diseases and cancers. Several medicinal herb-derived components have recently been reported to act via TLR4-dependent pathways, suggesting that medicinal plants are potential resources for identifying TLR4 activators. We have applied a screening procedure to systematically identify herbal constituents that activate TLR4. To exclude possible LPS contamination in these plant-derived components, a LPS inhibitor, polymyxin B, was added during screening. One of the plant components we identified from the screening was dioscorin, the glycoprotein isolated from Dioscorea alata. It induced TLR4-downstream cytokine expression in bone marrow cells isolated from TLR4-functional C3H/HeN mice but not from TLR4-defective C3H/HeJ mice. Dioscorin also stimulated multiple signaling molecules (NF-kappaB, ERK, JNK, and p38) and induced the expression of cytokines (TNF-alpha, IL-1beta, and IL-6) in murine RAW 264.7 macrophages. Furthermore, the ERK, p38, JNK, and NF-kappaB-mediated pathways are all involved in dioscorin-mediated TNF-alpha production. In summary, our results demonstrate that dioscorin is a novel TLR4 activator and induces macrophage activation via typical TLR4-signaling pathways.  相似文献   

17.
Signaling through Toll-like receptors (TLR) activates dendritic cell (DC) maturation and IL-12 production, which directs the induction of Th1 cells. We found that the production of IL-10, in addition to inflammatory cytokines and chemokines, was significantly reduced in DCs from TLR4-defective C3H/HeJ mice in response to Bordetella pertussis. TLR4 was also required for B. pertussis LPS-induced maturation of DCs, but other B. pertussis components stimulated DC maturation independently of TLR4. The course of B. pertussis infection was more severe in C3H/HeJ than in C3H/HeN mice. Surprisingly, Ab- and Ag-specific IFN-gamma responses were enhanced at the peak of infection, whereas Ag-specific IL-10-producing T cells were significantly reduced in C3H/HeJ mice. This was associated with enhanced inflammatory cytokine production, cellular infiltration, and severe pathological changes in the lungs of TLR4-defective mice. Our findings suggest that TLR-4 signaling activates innate IL-10 production in response to B. pertussis, which both directly, and by promoting the induction of IL-10-secreting type 1 regulatory T cells, may inhibit Th1 responses and limit inflammatory pathology in the lungs during infection with B. pertussis.  相似文献   

18.
This study is the first to report that Spirulina complex polysaccharides (CPS) suppress glioma growth by down‐regulating angiogenesis via a Toll‐like receptor 4 signal. Murine RSV‐M glioma cells were implanted s.c. into C3H/HeN mice and TLR4 mutant C3H/HeJ mice. Treatment with either Spirulina CPS or Escherichia coli (E. coli) lipopolysaccharides (LPS) strongly suppressed RSV‐M glioma cell growth in C3H/HeN, but not C3H/HeJ, mice. Glioma cells stimulated production of interleukin (IL)‐17 in both C3H/HeN and C3H/HeJ tumor‐bearing mice. Treatment with E. coli LPS induced much greater IL‐17 production in tumor‐bearing C3H/HeN mice than in tumor‐bearing C3H/HeJ mice. In C3H/HeN mice, treatment with Spirulina CPS suppressed growth of re‐transplanted glioma; however, treatment with E. coli LPS did not, suggesting that Spirulina CPS enhance the immune response. Administration of anti‐cluster of differentiation (CD)8, anti‐CD4, anti‐CD8 antibodies, and anti‐asialo GM1 antibodies enhanced tumor growth, suggesting that T cells and natural killer cells or macrophages are involved in suppression of tumor growth by Spirulina CPS. Although anti‐interferon‐γ antibodies had no effect on glioma cell growth, anti‐IL‐17 antibodies administered four days after tumor transplantation suppressed growth similarly to treatment with Spirulina CPS. Less angiogenesis was observed in gliomas from Spirulina CPS‐treated mice than in those from saline‐ or E. coli LPS‐treated mice. These findings suggest that, in C3H/HeN mice, Spirulina CPS antagonize glioma cell growth by down‐regulating angiogenesis, and that this down‐regulation is mediated in part by regulating IL‐17 production.  相似文献   

19.
Toll-like receptor (TLR) activation has been implicated in acetaminophen (APAP)-induced hepatotoxicity. Herein, we hypothesize that TLR3 activation significantly contributed to APAP-induced liver injury. In fasted wildtype (WT) mice, APAP caused significant cellular necrosis, edema, and inflammation in the liver, and the de novo expression and activation of TLR3 was found to be necessary for APAP-induced liver failure. Specifically, liver tissues from similarly fasted TLR3-deficient (tlr3−/−) mice exhibited significantly less histological and biochemical evidence of injury after APAP challenge. Similar protective effects were observed in WT mice in which TLR3 was targeted through immunoneutralization at 3 h post-APAP challenge. Among three important death ligands (i.e. TNFα, TRAIL, and FASL) known to promote hepatocyte death after APAP challenge, TNFα was the only ligand that was significantly reduced in APAP-challenged tlr3−/− mice compared with APAP-challenged WT controls. In vivo studies demonstrated that TLR3 activation contributed to TNFα production in the liver presumably via F4/80+ and CD11c+ immune cells. In vitro studies indicated that there was cooperation between TNFα and TLR3 in the activation of JNK signaling in isolated and cultured liver epithelial cells (i.e. nMuLi). Moreover, TLR3 activation enhanced the expression of phosphorylated JNK in APAP injured livers. Thus, the current study demonstrates that TLR3 activation contributes to APAP-induced hepatotoxicity.  相似文献   

20.
The present study deals with whether lipopolysaccharide (LPS)-induced intra-uterine fetal death (IUFD) is related to LPS-susceptibility of either mother or fetus and how LPS or LPS-induced TNF causes IUFD. LPS-susceptible C3H/HeN or -hypo-susceptible C3H/HeJ pregnant mice and the mice mated reciprocally with these mice were used on days 14 to 16 of gestation for experiments. All of fetuses in pregnant C3H/HeN mice mated with either C3H/HeN males [HeN(HeN)] or C3H/HeJ males [HeN(HeJ)] were killed within 24 hr when injected intravenously (i.v.) with 50 or 100 microg of LPS. On the other hand, the majority of fetuses in C3H/HeJ females mated with either C3H/HeJ males [HeJ(HeJ)] or C3H/HeN males [HeJ(HeN)] survived when injected i.v. with even 400 microg of LPS. These findings indicate that LPS-induced IUFD depends on the maternal LPS-responsiveness. LPS injected into mothers could pass through placenta to fetuses, since an injection with 125I-labeled LPS or IgG into pregnant mice resulted in considerable levels of radioactivity in fetuses as well as placenta. Cultured peritoneal macrophages derived from F1 mice of HeJ(HeN) or HeN(HeJ) mice, produced nitric oxide (NO) and tumor necrosis factor (TNF) in response to LPS, although the levels of NO and TNF were lower in comparison with those of C3H/HeN macrophage cultures, suggesting a possibility that the fetus as well as F1 cells might be responsible to LPS. LPS-induced IUFD was not blocked by treatment with anti-TNF antibody which inhibited LPS-induced TNF production in pregnant females, although an injection of recombinant TNFalpha instead of LPS could induce IUFD, suggesting that the cause of IUFD cannot be attributed to mother-derived TNF alone. The roles of LPS passed through placenta and LPS-induced mediators on IUFD were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号