首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genetic basis for species designations for African species of Biomphalaria has received little attention. Populations of B. choanomphala, B. sudanica and B. pfeifferi from Kenya were examined using starch gel electrophoresis. Analysis of population structure as measured using Wright's F -statistics for B. sudanica and B. choanomphala revealed that both species show substantial departures from expectations under random mating. Populations of B. choanomphala show the least evidence of inbreeding, and populations of A sudanica are intermediate between B. choanomphala and previously reported levels of inbreeding for B. pfeifferi. Syn topic populations of B. pfeifferi and B. sudanica were genetically distinct. Syntopic populations of B. choanomphala and B. sudanica also showed evidence of separate gene pools, although the evidence is not as conclusive as for B. pfeifferi and B. sudanica. Possible explanations for the failure to find clear differences between B. sudanica and B. choanomphala are considered.  相似文献   

2.
The compatibility between strains of Schistosoma mansoni from Egypt, Kenya, Sudan, Uganda, the West Indies, and Zaire (two strains which came from Katanga and from Kinshasa), and various species and strains of Biomphalaria, i.e. Biomphalaria pfeifferi, B. alexandrina, B. glabrata and B. camerunensis was investigated. Data as mortality, rate of infection of the surviving snails, duration of infection, cercarial production per day per positive snail, etc., were observed. The main emphasis was placed on determining the total cercarial production per 100 exposed snails for each snail population. It was possible to infect all the tested populations of B pfeifferi with the various strains of S. mansoni, but the observation as e.g. TCP/100 exposed snails varied greatly according to the population of snail and the strain of S. mansoni. The results for the remaining species of Biomphalaria varied greatly, depending on the combination, e.g. B. alexandrina was only susceptible to the local S. mansoni from Egypt. The highest TCP/100 exposed snails was more than 1 million for the strains of S. mansoni from Egypt, Kenya and the West Indies in B. alexandrina, B. pfeifferi and B. glabrata, respectively. The next group, with a TCP/100 exposed snails on 7--800 000 consists of S. mansoni from Sudan, Uganda and Zaire (Katanga) all in B. pfeifferi. The last tested strain of S. mansoni, Zaire (Kinshasa) yielded a cercarial production on 500 000 per 100 exposed snails in B. pfeifferi and B. camerunensis. The shortest prepatent period, 19 days, was observed for S. mansoni from Kinshasa, Zaire, in B. camerunensis, and the longest prepatent period, 25 days, was found for strains from Egypt and from the West Indies in B. alexandrina and B. glabrata, respectively. In general, a very long duration of infection, lasting up to 200 days, was observed.  相似文献   

3.
The distribution of Schistosoma genotypes among individuals in snail populations provides insights regarding the dynamics of transmission and compatibility between schistosome and snail hosts. A survey of Biomphalaria alexandrina from Damietta (Nile Delta, Egypt), an area subjected to persistent schistosomiasis control efforts, provided only 17 snails infected with Schistosoma mansoni (6.1% overall prevalence), each shown by microsatellite analysis to have a single genotype infection. By contrast, recent studies of uncontrolled S. mansoni transmission foci in Kenya revealed that 4.3% Biomphalaria pfeifferi and 20-25% Biomphalaria sudanica snails had multiple genotype infections. Compared with the 3 Kenyan populations, the Egyptian population of S. mansoni also showed a lesser degree of genetic variability and was genetically differentiated from them. We suggest that tracking of genotype diversity in infected snails could be further developed to serve as an additional and valuable independent indicator of efficacy of schistosomiasis control in Egypt and elsewhere.  相似文献   

4.
Lake Victoria is a known hot-spot for Schistosoma mansoni, which utilises freshwater snails of the genus Biomphalaria as intermediate hosts. Different species of Biomphalaria are associated with varying parasite compatibility, affecting local transmission. It is thought that two species, B. choanomphala and B. sudanica, inhabit Lake Victoria; despite their biomedical importance, the taxonomy of these species has not been thoroughly examined. This study combined analysis of morphological and molecular variables; the results demonstrated that molecular groupings were not consistent with morphological divisions. Habitat significantly predicted morphotype, suggesting that the different Lake Victorian forms of Biomphalaria are ecophentoypes of one species. The nomenclature should be revised accordingly; the names B. choanomphala choanomphala and B. c. sudanica are proposed. From a public health perspective, these findings can be utilised by policy-makers for better understanding of exposure risk, resulting in more effective and efficient control initiatives.  相似文献   

5.
To elucidate changes relative to compatibility with intermediate and definitive hosts affecting Schistosoma mansoni since it was introduced to the New World, the compatibility of S. mansoni from Africa (the Cameroons), from the Caribbean (Guadeloupe), and those resulting from experimental crosses with the gastropods Biomphalaria glabrata and B. pfeifferi has been studied. Results show that S. mansoni, regardless of its origin or its usual snail host, always infects B. pfeifferi more successfully than B. glabrata. The success rate with B. pfeifferi is 100% with 5 miracidia of S. mansoni from Guadeloupe and 97% with 5 miracidia from the Cameroons. On the other hand, in B. glabrata infection rate was 54% with 5 miracidia from Guadeloupe and 0% with 5 miracidia from the Cameroons (a rate of 19% is reached when using 10 miracidia). Hybrid miracidia infect B. pfeifferi and B. glabrata with a success rate of 60 and 86%, respectively, which are intermediate between those of the parent strains. Studies of S. mansoni development in Rattus rattus show that there is better infectivity and survival for the Caribbean strain than the Cameroon strain: the percentage worm recovery 4 weeks after exposure in 34% for S. mansoni from Guadeloupe, 14% for S. mansoni from the Cameroons, and 31% for the hybrids. The mortality rate between 4 and 12 weeks after exposure is 51% for S. mansoni from Guadeloupe, 87% for S. mansoni from the Cameroons, and 31% for the hybrids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Schistosoma mansoni , the blood fluke responsible for human intestinal schistosomiasis in the Neotropics, was imported repeatedly with African slaves during the period 1500–1800. This trematode, and its intermediate host snails of the genus Biomphalaria , are widely distributed across Africa and the disease is thought to have quickly become established in South America and the West Indies because of the presence of an endemic susceptible congener, B. glabrata. We compared B. glabrata with four other Neotropical and three African species of Biomphalaria using 20 allozyme loci and found that it is phenetically and phylogenetically more like the African species; both parasite and American host snail are apparently of historically or geologically recent African origin. Furthermore, genetic distances, cladistic analyses and fossil data suggest the African Biomphalaria species may themselves have evolved from Neotropical founders following an initial trans-Atlantic dispersal in the reverse direction 2.3–4.5 Mya. Interpretation of existing patterns remains problematic as few African snails have been characterized genetically and both B. glabrata and African B. pfeifferi appear to comprise several cryptic species.  相似文献   

7.
Schistosoma mansoni is an important human parasitic disease which is widespread throughout Africa. As Biomphalaria pfeifferi snails act as intermediate host, knowledge of their population ecology is an essential prerequisite towards understanding disease transmission. We conducted a field study and assessed the density and microhabitat preferences of B.pfeifferi in a natural habitat which was a residual pool of a river. Repeated removal collecting revealed a density of 26.6 [95% confidence interval (CI): 24.9-28.3] snails/m2. B. pfeifferi showed microhabitat preferences for shallow water (depths: 0-4cm). They were found most abundantly close to the shoreline (distances: 0-40cm), and preferred either plant detritus or bedrock as substratum. Lymnaea natalensis, a snail which may act as a host for human Fasciola gigantica, also occurred in this habitat with a density of 34.0 (95% CI: 24.7-43.3) snails/m2, and preferred significantly different microhabitats when compared to B.pfeifferi. Microhabitat selection by these snail species was also investigated in a man-made habitat nearby, which consisted of a flat layer of concrete fixed on the riverbed, covered by algae. Here, B.pfeifferi showed no preference for locations close to the shoreline, probably because the habitat had a uniform depth. We conclude that repeated removal collecting in shallow habitats provides reliable estimates of snail densities and that habitat changes through constructions may create favourable microhabitats and contribute to additional disease transmission.  相似文献   

8.
Molecular Biology Reports - The fresh water snail Biomphalaria pfeifferi is the intermediate host for Schistosoma mansoni, which causes human intestinal schistosomiasis in Zimbabwe. Despite the...  相似文献   

9.
A correspondence analysis of shell measurements taken from 521 widely dispersed specimens of the African aquatic pulmonate snail Biomphalaria pfeifferi suggests the existence of eight morphological groups. These groups appear to relate to either ecophysiological factors or to factors associated with the stability of the freshwater system rather than to aspects of geographic distribution and genetic isolation.  相似文献   

10.
A study was carried out in the Mlali river in south-central Tanzania with two aims. First, to determine microhabitat availability in two sites (A and B) with respect to water depth, water velocity and dominant substratum type. Second, to assess microhabitat use by Biomphalaria pfeifferi, the intermediate host snail of intestinal schistosomiasis and to investigate whether these snails show preferences for certain microhabitats. The two sites differed significantly with respect to width, water depth, water velocity and substratum composition. It is suggested that the absence of B. pfeifferi from site B is mainly associated with the high water velocities at that site, where 62% of the measurements exceeded30 cm s-1. In site A, the microhabitat use by 327 B. pfeifferi snails was assessed by means of direct observation. No significant relationships were found between snail size and the habitat variables investigated, indicating that snail size appeared to be of no importance in spatial microhabitat selection. B. pfeifferi snails showed statistically significant preferences for shallow water (depth: 2–7 cm) and the preferred water velocities ranged between 12 and 21 cm s-1 with an estimated optimum at13.3 cm s-1. No statistically significant preferences for substratum type were found. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Because of their role in causing schistosomiasis, flukes of the genus Schistosoma are the best known of all digeneans. The genus has traditionally been divided into four familiar species groups. Here we report on three poorly known species of Schistosoma, one of which, Schistosoma hippopotami, is known from the hippopotamus, one of which is provisionally identified as Schistosoma edwardiense, another hippo parasite, and a third that has not previously been described. All were collected from freshwater snails obtained from Lake Edward, western Uganda, the type locality for both known hippo schistosomes. The three different kinds of schistosome cercariae differ from one another in size, and all are readily differentiated by their long tail stems from the cercariae of human-infecting species. Furthermore, each was recovered from a different genus of snail host, Biomphalaria sudanica, Bulinus truncatus or Ceratophallus natalensis. Molecular analysis, based on 8350 bases of combined nuclear and mitochondrial DNA, groups these three long tail-stem cercariae into a well supported clade that does not associate with any of the recognised species groups. The placement of this clade, basal to all African species plus several Asian species, suggests that there has been an ancient association between Schistosoma and hippos. This new African Schistosoma clade advocates the need for further modification of the traditional species group-based classification. Two of the four species groups are paraphyletic. It also suggests that Schistosoma has been remarkably plastic with respect to adapting to snail hosts-three distantly related genera of planorbid snails have been exploited by worms within a single clade. Finally, it adds a new layer of complexity to deciphering the origins of Schistosoma, often considered to be African but recently challenged as being Asian. In the late Cenozoic the distribution of hippo species straddled both Africa and Asia and they may have provided a means for the introduction of blood flukes to Africa.  相似文献   

12.
In the present study, Biomphalaria snails collected from five Egyptian governorates (Giza, Fayoum, Kafr El-Sheikh, Ismailia and Damietta), as well as reference control Biomphalaria alexandrina snails from the Schistosome Biological Supply Center (SBSC) (Theodor Bilharz Research Institute, Egypt), were subjected to species-specific polymerase chain reaction (PCR) assays to identify the collected species. All of the collected snails were found to be B. alexandrina and there was no evidence of the presence of Biomphalaria glabrata. Randomly amplified polymorphic DNA (RAPD)-PCR assays showed different fingerprints with varying numbers of bands for the first generation (F?) of B. alexandrina snail populations (SBSC, Giza, Fayoum, Kafr El-Sheikh, Ismailia and Damietta). The primer OPA-1 produced the highest level of polymorphism and amplified the greatest number of specific bands. The estimated similarity coefficients among the B. alexandrina populations based on the RAPD-PCR profiles ranged from 0.56 (between SBSC and Ismailia snails) to 0.72 (between Ismailia and Kafr El-Sheikh snails). Experimental infection of the F? of progeny from the collected snails with Schistosoma mansoni (SBSC strain) showed variable susceptibility rates ranging from 15% in the Fayoum snail group to 50.3% in SBSC snails. A negative correlation was observed between the infection rates in the different snail groups and the distances separating their corresponding governorates from the parasite source. The infection rates of the snail groups and their similarity coefficients with SBSC B. alexandrina snails were positively correlated. The variations in the rates of infection of different B. alexandrina groups with S. mansoni, as well as the differences in the similarity coefficients among these snails, are dependent not only on the geographical distribution of the snails and the parasite, but also on the genetic variability of the snails. Introduction of this variability into endemic areas may reduce the ability of the parasite to infect local hosts and consequently reduce schistosomiasis epidemiology.  相似文献   

13.
Lectins/carbohydrate binding can be involved in the Schistosoma mansoni recognition and activation of the Biomphalaria hemocytes. Therefore, expression of lectin ligands on Biomphalaria hemocytes would be associated with snail resistance against S. mansoni infection. To test this hypothesis, circulating hemocytes were isolated from B. glabrata BH (snail strain highy susceptible to S. mansoni), B. tenagophila Cabo Frio (moderate susceptibility), and B. tenagophila Taim (completely resistant strains), labelled with FITC conjugated lectins (ConA, PNA, SBA, and WGA) and analyzed under fluorescence microscopy. The results demonstrated that although lectin-labelled hemocytes were detected in hemolymph of all snail species tested, circulating hemocytes from both strains of B. tenagophila showed a larger number of lectin-labelled cells than B. glabrata. Moreover, most of circulating hemocytes of B. tenagophila were intensively labelled by lectins PNA-FITC and WGA-FITC, while in B. glabrata small hemocytes were labeled mainly by ConA. Upon S. mansoni infection, lectin-labelled hemocytes almost disappeared from the hemolymph of Taim and accumulated in B. glabrata BH. The role of lectins/carbohydrate binding in resistance of B. tengophila infection to S. mansoni is still not fully understood, but the data suggest that there may be a correlation to its presence with susceptibility or resistance to the parasite.  相似文献   

14.
The pulmonate snails of the genus Biomphalaria are widely distributed in the tropics, and they are intermediate hosts of the digenean trematode Schistosoma mansoni that causes intestinal schistosomiasis in humans. Recent molecular evidence suggests that Biomphalaria originated in South America, and following a recent transatlantic migration colonized Africa, where it radiated into the currently recognized 12 species. In the present study we further investigate the internal phylogenetic relationships of African Biomphalaria with emphasis on the dispersal and speciation on the continent, especially in the Great Lakes in East Africa. Our results, based on 16S ribosomal DNA, cytochrome oxidase subunit I (COI), and ribosomal internal transcribed spacer I (ITS1), support the monophyly of an African clade with two separate lineages ( Biomphalaria pfeifferi / Biomphalaria camerunensis and the Nilotic species complex/ Biomphalaria angulosa ). Following the initial colonization of Africa, Biomphalaria spread towards the east where a later radiation occurred in the Lake Victoria basin and the Albertine Rift Valley Lakes. With further dispersal along the River Nile, additional speciation took place giving origin to the North-east African species Biomphalaria alexandrina . Our results present almost no support of the species groups of Mandahl-Barth (except for the pfeifferi group), which is in accordance with other molecular appraisals. Our results suggest that Biomphalaria stanleyi , which is endemic to Lake Albert, is not an ecophenotype of the continental B. pfeifferi as previously suggested by other molecular studies. B. angulosa is sequenced for the first time and it is inferred to have an important phylogenetic position as sister group to the Albertine Rift/Lake Victoria basin radiation.  © 2007 The Linnean Society of London, Zoological Journal of the Linnean Society , 2007, 151 , 337–349.  相似文献   

15.
Lectin-carbohydrate binding may be involved in the recognition of Schistosoma mansoni sporocysts by haemocytes of Biomphalaria; therefore, we tested if this interaction is associated with snail resistance against Schistosoma infection. In vitro data showed that most of the S. mansoni sporocysts cultured with haemocytes from Biomphalaria glabrata BH, a highly susceptible snail strain, had a low number of cells that adhered to their tegument and a low mortality rate. Moreover, the addition of N-acetyl-D-glucosamine (GlcNAc) did not alter this pattern of adherence and mortality. Using haemocytes and haemolymph of Biomphalaria tenagophila Cabo Frio, we observed a high percentage of sporocysts with adherent cells, but complete encapsulation was not detected. Low concentrations of GlcNAc increased haemocyte binding to the sporocysts and mortality, which returned to basal levels with high concentrations of the carbohydrate. In contrast, haemocytes plus haemolymph from B. tenagophila Taim encapsulated cellular adhesion index of level 3 and destroyed over 30% of the S. mansoni sporocysts in culture. Interestingly, the addition of GlcNAc, but not mannose, to the culture medium resulted in the significant inhibition of cellular adhesion to the parasite tegument and the reduction of parasite mortality, suggesting that GlcNAc carbohydrate moieties are important to the recognition of S. mansoni by B. tenagophila Taim.  相似文献   

16.
Experimental crosses between Schistosoma mansoni and S. rodhaini have shown that hybrid offspring are viable, yet, until now, no naturally occurring hybrid has been identified. A collection of freshwater snails from Nyamlebi-Ngoma, Ukerewe Island, Lake Victoria, Tanzania, yielded a mixed infection within a single Biomphalaria sudanica of S. mansoni females and S. mansoni-S. rodhaini hybrid males. The hybrids were identified using deoxyribonucleic acid (DNA) sequences. Mitochondrial DNA 16S and 12S sequences of the hybrids match those of S. mansoni, whereas their nuclear ribosomal DNA ITS1 and ITS2 sequences match those of S. rodhaini. The identification of hybrids in Tanzania highlights the possibility that the genetic identity of either parasite species might be modified by introgression.  相似文献   

17.
Resistant (Taim, RS) and susceptible albino (Joinville, SC) Biomphalaria tenagophila populations were kept together, at different proportions, throughout a 18-month-period. Some of the snail groups were submitted to Schistosoma mansoni infection. The targets of this study were (a) to analyze the populational dynamics among resistant and susceptible individuals to S. mansoni; (b) to study the resistance phenotype in descendants of cross-breeding; (c) to observe whether the parasite could exert any kind of selection in those snail populations. Throughout the experiment it could be observed that the susceptible B. tenagophila strain (Joinville) underwent a selective pressure of the parasite that was negative, since the individuals showed a high mortality rate. Although B. tenagophila (Taim) population presented a higher mortality rate without pressure of the parasite, this event was compensated by a reproductive capacity. B. tenagophila Taim was more fecund than B. tenagophila Joinville and was able to transmit the resistance character to their descendants. F1 generation obtained by cross-breeding between resistant and susceptible lineages was completely resistant to S. mansoni infection, irrespective of the Taim proportion. Moreover, less than 5% of F2 progeny were susceptible to S. mansoni infection.  相似文献   

18.
Random-amplified polymorphic DNA markers have been used to assess the amount and the distribution of the genetic diversity of Schistosoma mansoni within a natural population of Biomphalaria glabrata at a transmission site of the murine schistosomiasis focus of Guadeloupe. Despite high infection rate and heavy schistosome load within the definitive hosts (Ratus rattus), prevalences within intermediate snails ranged from 0.2 to 4.8%. Whatever the transmission season may be (rainy vs. dry), most of the infected snails were spatially aggregated and 88.4% of them harbored a single parasite genotype indicative of a monomiracidial infection; 4.7% had dual sex infections and a parasite intensity not exceeding 3 miracidia per snail. A substantial resistance level toward the parasite and recruitment regulatory process within snails may explain in part the observed low parasite prevalences and intensities. Considering such a distribution pattern of larval S. mansoni genetic diversity among B. glabrata, mobility of the definitive hosts, or rapid turnover of infected snails, or both, are required to maintain genetic heterogeneity within adult schistosome populations.  相似文献   

19.
Biomphalaria glabrata snails infected with Schistosoma mansoni were collected during consecutive seasons from a site in Brazil known to have a very high percentage of infected snails. Schistosoma mansoni cercariae from single snails were used to infect individual mice, and the recovered adult worms were genetically assessed using a mtVNTR marker. The number of unique parasite genotypes found per snail was compared to expected abundance values, based on the infection prevalence at the site, to determine the distribution of S. mansoni infections within the snail population. The observed distributions and those from previous studies were used to examine the relationship between schistosome prevalence and aggregation across a wide range of prevalence values. Our analysis showed that prevalence was inversely related to the degree of parasite overdispersion, and at high prevalence, S. mansoni infections were randomly distributed among snails.  相似文献   

20.
The wide geographic distribution of Schistosoma mansoni, a digenetic trematode and parasite of humans, is determined by the occurrence of its intermediate hosts, freshwater snails of the genus Biomphalaria (Preston 1910). We present phylogenetic analyses of 23 species of Biomphalaria, 16 Neotropical and seven African, including the most important schistosome hosts, using partial mitochondrial ribosomal 16S and complete nuclear ribosomal ITS1 and ITS2 nucleotide sequences. A dramatically better resolution was obtained by combining the data sets as opposed to analyzing each separately, indicating that there is additive congruent signal in each data set. Neotropical species are basal, and all African species are derived, suggesting an American origin for the genus. We confirm that a proto-Biomphalaria glabrata gave rise to all African species through a trans-Atlantic colonization of Africa. In addition, genetic distances among African species are smaller compared with those among Neotropical species, indicating a more recent origin. There are two species-rich clades, one African with B. glabrata as its base, and the other Neotropical. Within the African clade, a wide-ranging tropical savannah species, B. pfeifferi, and a Nilotic species complex, have both colonized Rift Valley lakes and produced endemic lacustrine forms. Within the Neotropical clade, two newly acquired natural hosts for S. mansoni (B. straminea and B. tenagophila) are not the closest relatives of each other, suggesting two separate acquisition events. Basal to these two species-rich clades are several Neotropical lineages with large genetic distances between them, indicating multiple lineages within the genus. Interesting patterns occur regarding schistosome susceptibility: (1) the most susceptible hosts belong to a single clade, comprising B. glabrata and the African species, (2) several susceptible Neotropical species are sister groups to apparently refractory species, and (3) some basal lineages are susceptible. These patterns suggest the existence of both inherent susceptibility and resistance, but also underscore the ability of S. mansoni to adapt to and acquire previously unsusceptible species as hosts. Biomphalaria schrammi appears to be distantly related to other Biomphalaria as well as to Helisoma, and may represent a separate or intermediate lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号