首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The initial formation and further development of the intraneural blood vessel network in the tectum opticum of the chick from the 4th to the 14th incubation day have been analyzed and some quantitative data morphometrically recorded. Vessels have been filled by intracardial injection of India ink in vivo. As inferred from our previous investigations on the vasculogenesis of several districts of the central and peripheral nervous system in the chick embryo, also in the developing optic tectum growth and distribution pattern of the vessels seem to unfold step by step under the local influence of earlier occurring morpho-histogenetic processes of the corresponding neural substratum.  相似文献   

2.
3.
Glutamate was coupled via glutaraldehyde to bovine serum albumin. The conjugate was used for raising specific anti-glutamate antibodies. The purified antibody was used for immunostaining of chick cerebellum and optic tectum. Staining was intense in the molecular layer and in cell bodies of the granule cell layer. In the optic tectum a diffuse staining was detected in the superficial layers of stratum griseum fibrosum superficiale and in cell bodies especially in the layers a and e. Large cell bodies located in the stratum griseum centrale were also stained.  相似文献   

4.
5.
Thin section and freeze-fracture electron microscopy have been used to characterize the changes in membrane morphology of reaggregating cultures of chick optic tectum. The cells are rounded and freely dispersed at 0 hr after dissociation. Between 2 and 6 hr the cells become closely apposed on all sides by other cells and form small aggregates. At this time punta adhaerentia junctions and focal densities are seen along the membranes of neighboring cells. Between 1 and 5 days in vitro (DIV) neurites containing growth cone regions are present. At 5 DIV the first synaptic contacts are observed. Between 7 and 14 DIV, the number of synaptic contacts increase and fewer growth cone regions are observed. As early as 7 DIV profiles are observed which strongly resemble both astrocytic and oligodendroglial cell somata and processes. Freeze-fracture analysis of aggregates at 0–4 hr reveals a sparse particle distribution on the P and E faces of apposed cells. By 1 DIV small clusters of loosely packed, large sized particles are seen on the P face of apposed cell membranes which may represent junctional contacts. Apparent coated vesicle fusion sites are common on the P face at 1–2 DIV. By 7 DIV, E face particle arrays are seen on cell bodies and neurites which correspond to specializations characteristic of excitatory synaptic junctions. By 8–10 DIV particle arrays are seen on the P face of post-synaptic membrane which may represent inhibitory synaptic contacts. Other types of particle specializations seen in freeze-fracture replicas include: specializations characteristic of gap junctions between cells and orthogonal assemblies of particles thought to be characteristic of astrocytes.  相似文献   

6.
Immunocytochemical staining of the glial fibrillary acidic protein (GFAP) was utilized to characterize the processes of the astrocytes enveloping the vessel wall in the central nervous system. The study was carried out in the mesencephalic lobes of 18 and 20 incubation-day chick embryos and of 20 day chickens. A perivascular GFAP positivity was mainly detectable in the vessel portions running within the tectum white layers, while it was scarce, or absent, in the grey ones. The perivascular GFAP negativity in the tectum cellular layers was not considered result of the absence of astrocytic endfeet since our previous electronmicroscopical studies evidenced an almost complete perivascular astrocytic ring throughout the tectum layers at hatching time. Present data rather suggest that the expression of the GFAP-made intermediate filaments in developing astrocytes might be controlled by the surrounding microenvironment.  相似文献   

7.
The optic nerve, as a part of the central nervous system (CNS), has been used to study axonal transport for decades. The present study has concentrated on the axonal transport of synaptic vesicle proteins in the optic nerve, using the “stop-flow/nerve crush” method. After blocking fast axonal transport, distinct accumulations of synaptic vesicle proteins developed during the first hour after crush-operation and marked increases were observed up to 8 h postoperative. Semiquantitative analysis, using cytofluorimetric scanning (CFS) of immunoincubated sections, revealed that the ratio between distal accumulations (organelles in retrograde transport) and proximal accumulations (organelles in anterograde transport) was much higher (up to 80–90%) for the transmembrane proteins than that for surface adsorbed proteins (only 10–20%). The pattern of axonal transport in the optic nerve was comparable to that in the sciatic nerve. However, clathrin and Rab3a immunoreactivities were accumulated in much lower amounts than that in the sciatic nerve. Most synaptic vesicle proteins were colocalized in the axons proximal to the crush. A differential distribution of synaptobrevin I and II, however, was observed in the optic nerve axons; synaptobrevin I was present in large-sized axons, while synaptobrevin II immunoreactivity was present in most axons, including the large ones. The two isoforms were, thus, partially colocalized. The results demonstrate that (1) cytofluorimetric scanning techniques could be successfully used to study axonal transport not only in peripheral nerves, but also in the CNS; (2) synaptic vesicles are transported with fast axonal transport in this nerve; and (3) some differences were noted compared with the sciatic nerve, especially for Rab3a and clathrin. © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 237–250, 1997.  相似文献   

8.
We determined the cellular localization of an endogenous lectin at various times during the development of a well-characterized region of chick brain, the optic tectum. This lectin is a carbohydrate-binding protein that interacts with lactose and other saccharides, undergoes striking changes in specific activity with development, and has previously been purified by affinity chromatography from extracts of embryonic chick brain and muscle. Cellular localization in the tectum was done by indirect immunofluoresecent staining, using immunoglobulin G derived from an antiserum raised against pure lectin. No lectin was detectable in the optic tectum examined at 5 days of embryonic development. From approximately 7 days of development, neuronal cell bodies and fibers were labeled by the antibody; and extracts of tectum contained hemagglutination activity that could be inhibited by lactose or by the antiserum. Lectin remained present in many tectal neuronal layers after hatching; but in 2-month-old chicks it was sparse or absent in most of the tectum except for prominent labeling of fibers in the stratum album centrale. The initial appearance of lectin in the optic tectum was not dependent on innervation by optic nerve fibers since bilateral enucleation during embryogenesis did not affect it. Lectin was detectable on the surface of embryonic optic tectal neurons dissociated with a buffer containing EDTA.  相似文献   

9.
1. Axoplasmic proteins were fractionated by means of Sephadex G-200 chromatography followed by isoelectric focusing. Nine groups of proteins were separated. 2. The binding of colchicine to these groups of proteins was examined and it appeared to associate most strongly with one protein group, of pI value 4.9-5.0, which is the major (14)C-labelled component of slow-transport protein. 3. Other fractions also bind colchicine. It is not clear whether these are separate proteins or subunits of the major colchicine-binding fraction.  相似文献   

10.
The developmental profiles of acetylcholinesterase and choline acetyltransferase in chick optic tectum and retina cell aggregates, over a 30-day period, have been determined and compared with the corresponding developmental curves obtained in vivo. Both acetylcholinesterase and choline acetyltransferase activities in retina cell aggregates and the acetylcholinesterase activity in optic tectum cell aggregates usually lie between 40 and 90% of the values measured in vivo for the same cell (tissue) type and developmental age. However, the choline acetyltransferase activity in tectum aggregates increases only during the first 7 days of culture, and then decreases to reach a low value of 8% of that measured in vivo, by day 24. This fact, which is associated with widespread degeneration and cell death, could be attributed to the condition of natural deafferentiation occurring in a tectum cell aggregate. A parallel has been drawn between this behavior of a tectum cell aggregate and the effect of early embryonic eye removal on the development of the contralateral optic tectum in vivo. Thus, the tectum may have a biphasic pattern of development, with an autonomous period of growth of about 2 wk, followed by an afference-dependent phase, while the retina behaves, from a cholinergic point of view, as a relatively self-sufficient structure.Abbreviations AChE acetylcholinesterase - ChAT choline acetyltransferase - ACh acetylcholine - BW284 C51 dibromide 1,5-bis(4-allyldimethylammoniumphenyl)pentan-3-one dibromide  相似文献   

11.
Potentials in the tectum of large (12--20 cm) goldfish, evoked by stimulation of the optic nerve, were recorded extracellularly with double-barrelled electrodes (d.c., saline and a.c., Woods metal--Pt). Four fibre groups (E, M1, M2, M3) were recorded at latencies of approximately 2, 3, 5 and 8 ms after stimulation (conduction velocities of approximately 7, 5, 3 and 2 m/s). The same four groups were recorded from the optic nerve when the tectum was stimulated. The fastest fibre groups (E) did not give rise to a postsynaptic wave. Fibre groups M1, M2 and M3 gave rise to postsynaptic potentials which, following computation of their second spatial derivatives with depth, were found to have current sinks at depths of approximately 100-150 micrometers, 150--200 micrometers and 250--350 micrometers respectively. Thus the fastest conducting retinotectal fibres make their synapses most superficially, the opposite of the arrangement in the frog tectum. These postsynaptic waves fatigued at repetitive stimulus rates of 20--50 per second, and in twin pulses at interstimulus intervals of 10--15 ms; and they were reversibly blocked by topical application of pentobarbitol. The fibre potentials, however, were virtually undecremented under these conditions. To compare these electrophysiological findings with the anatomy, the cobalt procedure was used to visualize the profiles of the optic fibres in the various tectal laminae. A thick dense projection filled the superficial grey and white (s.g.w.) layer, and there was a thin satellite band just superficial to it. In addition, there were two deeper bands of sparse innervation, in the middle of the central grey zone (c.g.) and in the deep white (d.w.) layer. These bands were associated with the field potential sinks through lesions made with recording electrodes. The two deep bands correspond to the M3 fibre group. The dense s.g.w. innervation contains both the M1 and M2 fibre groups, the M1 just superficial to the M2. The fastest fibre group, E, which had no postsynaptic wave associated with it, persisted at least six weeks after retinal removal, and probably represents efferent cells with fibres projecting back through the optic nerve to the retina. Filled cell profiles could not be positively identified with the cobalt technique, but could be seen with the HRP technique, when the optic afferents were first allowed to degenerate. The filled cells were the pyramidals of the s.g.w. layer.  相似文献   

12.
Developmental changes in the phosphorylation state of neurofilament proteins (NFPs) in the chick embryonic optic nerve were histochemically and biochemically studied using monoclonal antibody (MAb) 82E10 specific to the highly phosphorylated components of high (180K)- and middle (160K)-molecular-weight subunits of neurofilament (NF) in the chicken. Cross sections of developing embryonic optic nerve were studied by enzyme immunohistochemistry using this MAb. The staining pattern showed marked changes with the developmental stage. In 6-day embryos (E6) the entire cross section was stained, whereas in E10 only about a ventroposterior half of the cross section was stained. In E14 nearly the entire area of the cross section became unstained. Thereafter, the immunoreactivity reappeared and gradually increased, such that in E20 the entire cross section became immunopositive again. Electrophoretic and immunoblot analyses were made on optic nerves dissected out of embryos of various stages. The 82E10 immunoreactivity at the position of NF-M underwent a transient loss in E14 in parallel with the time course of histochemical change. Two-dimensional gels stained for protein further showed that the highly phosphorylated form of NF-M is transiently lost from embryonic optic nerve in E14, while the less phosphorylated form persists throughout the embryonic developmental stages. In order to understand the orderly loss of the 82E10 immunoreactivity in relation to retinotopic and chronotopic organizations of the fibers in the embryonic optic nerve, retinal injection of a fluorescent dye DiI as an anterograde tracing marker for selected fibers was utilized. An ordered arrangement of the fibers was present within the embryonic optic pathway, suggesting that the orderly loss of the 82E10 immunoreactivity in the embryonic optic nerve reflects the chronological order of the optic axons. These changes in the phosphorylation state of NFPs in the embryonic optic nerve presumably reflect dynamic changes of the neuronal cytoskeleton at certain stages during development.  相似文献   

13.
14.
15.
16.
The uptake and anterograde axonal transport of 125I-wheat germ agglutinin (WGA) has been investigated in the visual system of the chick. In order to obtain a marker with specific and homogeneous binding properties, the iodinated lectin was affinity purified by passage over an N-acetylglucosamine (NAcGlu)-Sepharose column after iodination. 22 h after vitreal injection of the purified 125I-WGA, radioactive label was found accumulated in the retinoreceptive layers of the contralateral optic tectum. Gel electrophoresis of tectal homogenates revealed that greater than 80% of the retrieved label ran in a band which comigrated with native WGA. In chicks injected with the fraction of the iodinated preparation that failed to bind to the affinity column, there was no evidence of tectal labeling. These findings support the hypothesis that WGA is selectively taken up by chick retinal ganglion cells and transported intact in an anterograde direction to their axon terminals in the contralateral optic tectum. This raises the possibility that constituents of perikaryal membrane, i.e., lectin receptors, are transported in an anterograde direction by chick retinal ganglion cells.  相似文献   

17.
The distribution of axo-axonal and axo-dendritic synapses, nerve endings, and bodies of neurons by depth in the optic tectum ofRana temporaria L. was investigated under normal conditions and 6–9, 60, and 134 days after removal of the contralateral eye. Counting was carried out on long oriented sections examined in the electron microscope. In outer plexiform layer 9 the density of synapses was greatest near the surface of the tectum and decreased in the direction away from it; no inner sublayers with differing density of synapses could be distinguished. In the outer zone of layer 9 (to a depth of about 30 ) many axo-axonal synpases were discovered. Endings of myelinated optic fibers of large diameter ("dark" terminal degeneration) were widely distributed in the same layer. The density of axo-dendritic synapses in deep plexiform layer 5 was similar to that in layer 9. Many nerve endings containing granular vesicles as well as pale synaptic vesicles were found in layer 5 and neighboring zones.A. N. Severtsov Institute of Evolutionary Morphology and Ecology of Animals, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 11, No. 2, pp. 130–136, March–April, 1979.  相似文献   

18.
Spatiotemporal changes in membrane constituents of cells from the optic tectum of the chick embryo were analyzed during the period of maximum differentiation and synaptogenesis. Each tectum from 6-, 8-, 10-, and 12-day embryos was cut into three subregions along the topological gradient of differentiation. Electrophoretic analysis of proteins revealed an already complex population by Day 6 which remained relatively unchanged through later stages, with little if any topological variations. In contrast, chromatographic analysis of gangliosides showed an increasingly complex pattern as differentiation proceeded, with a growing preponderance of multisialogangliosides. Total membrane protein increased symmetrically with tissue mass in each subregion. However, hexose concentration and sialic acid/hexose ratios showed strikingly asymmetrical topological distributions as early as Day 8, and tended to fluctuate reversibly within brief (1 day or less) time periods. These results suggest that during the period of maximal differentiation and retino-tectal synaptogenesis in the optic tectum of the chick, the membrane protein population remains relatively stable and topologically invariant, whereas the polysaccharide chains of membrane macromolecules fluctuate according to topological position and developmental state in a complex, relatively rapid, and apparently oscillatory fashion.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号