首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
MOTIVATION: Interpretation of bioinformatics data in terms of cellular function is a major challenge facing systems biology. This question is complicated by robust metabolic networks filled with structural features like parallel pathways and isozymes. Under conditions of nutrient sufficiency, metabolic networks are well known to be regulated for thermodynamic efficiency however; efficient biochemical pathways are anabolically expensive to construct. While parameters like thermodynamic efficiency have been extensively studied, a systems-based analysis of anabolic proteome synthesis 'costs' and the cellular function implications of these costs has not been reported. RESULTS: A cost-benefit analysis of an in silico Escherichia coli network revealed the relationship between metabolic pathway proteome synthesis requirements, DNA-coding sequence length, thermodynamic efficiency and substrate affinity. The results highlight basic metabolic network design principles. Pathway proteome synthesis requirements appear to have shaped biochemical network structure and regulation. Under conditions of nutrient scarcity and other general stresses, E. coli expresses pathways with relatively inexpensive proteome synthesis requirements instead of more efficient but also anabolically more expensive pathways. This evolutionary strategy provides a cellular function-based explanation for common network motifs like isozymes and parallel pathways and possibly explains 'overflow' metabolisms observed during nutrient scarcity. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

2.
Bernhard Palsson 《FEBS letters》2009,583(24):3900-3904
The first full genome sequences were established in the mid-1990s. Shortly thereafter, genome-scale metabolic network reconstructions appeared. Since that time, we have witnessed an exponential growth in their number and uses. Here I discuss, from a personal point of view, four topics: (1) the placement of metabolic systems biology in the context of broader scientific developments, (2) its foundational concepts, (3) some of its current uses, and (4) some of the expected future developments in the field.  相似文献   

3.
  1. Download : Download high-res image (119KB)
  2. Download : Download full-size image
Highlights► A powerful range of tools has been developed for metabolic network flux analysis. ► These tools yield insights that are used to aid microbial metabolic engineering. ► Plants present great opportunities and special challenges to applying these tools. ► Tool selection and knowledge of plant systems is key to practical success.  相似文献   

4.
5.
Biochemical and statistical network models for systems biology   总被引:2,自引:0,他引:2  
The normal and abnormal behavior of a living cell is governed by complex networks of interacting biomolecules. Models of these networks allow us to make predictions about cellular behavior under a variety of environmental cues. In this review, we focus on two broad classes of such models: biochemical network models and statistical inference models. In particular, we discuss a number of modeling approaches in the context of the assumptions that they entail, the types of data required for their inference, and the range of their applicability.  相似文献   

6.
Metabolic engineering of plants with enhanced crop yield and value-added compositional traits is particularly challenging as they probably exhibit the highest metabolic network complexity of all living organisms. Therefore, approaches of plant metabolic network analysis, which can provide systems-level understanding of plant physiology, appear valuable as guidance for plant metabolic engineers. Strongly supported by the sequencing of plant genomes, a number of different experimental and computational methods have emerged in recent years to study plant systems at various levels: from heterotrophic cell cultures to autotrophic entire plants. The present review presents a state-of-the-art toolbox for plant metabolic network analysis. Among the described approaches are different in silico modeling techniques, including flux balance analysis, elementary flux mode analysis and kinetic flux profiling, as well as different variants of experiments with plant systems which use radioactive and stable isotopes to determine in vivo plant metabolic fluxes. The fundamental principles of these techniques, the required data input and the obtained flux information are enriched by technical advices, specific to plants. In addition, pioneering and high-impacting findings of plant metabolic network analysis highlight the potential of the field.  相似文献   

7.
Microorganisms have been the main sources for the production of chemicals. Production of chemicals requires the development of low-cost and higher-yield processes. Towards this goal, microbial strains with higher levels of production should be first considered. Metabolic engineering has been used extensively over the past two to three decades to increase production of these chemicals. Advances in omics technology and computational simulation are allowing us to perform metabolic engineering at the systems level. By combining the results of omics analyses and computational simulation, systems biology allows us to understand cellular physiology and characteristics, which can subsequently be used for designing strategies. Here, we review the current status of metabolic engineering based on systems biology for chemical production and discuss future prospects.  相似文献   

8.
Microorganisms have been the main sources for the production of chemicals. Production of chemicals requires the development of low-cost and higher-yield processes. Towards this goal, microbial strains with higher levels of production should be first considered. Metabolic engineering has been used extensively over the past two to three decades to increase production of these chemicals. Advances in omics technology and computational simulation are allowing us to perform metabolic engineering at the systems level. By combining the results of omics analyses and computational simulation, systems biology allows us to understand cellular physiology and characteristics, which can subsequently be used for designing strategies. Here, we review the current status of metabolic engineering based on systems biology for chemical production and discuss future prospects.  相似文献   

9.
10.
《生物学杂志》2011,28(5):79-82,85
系统生物学是系统理论和实验生物技术、计算机数学模型等方法整合的生物系统研究,系统遗传学研究基因组的稳态与进化、功能基因组和生物性状等复杂系统的结构、动态与发生演变等。合成生物学是系统生物学的工程应用,采用工程学方法、基因工程和计算机辅助设计等研究人工生物系统的生物技术。系统与合成生物学的结构理论,序列标志片段显示分析与微流控生物芯片,广泛用于研究细胞代谢、繁殖和应激的自组织进化、生物体形态发生等细胞分子生物系统原理等。  相似文献   

11.
A linear sensitivity analysis of metabolic regulation in nonsteady states is described. This treatment considers the effects of enzymatic and nonenzymatic reactions and spontaneous rapid equilibria. Sensitivity coefficients summarizing the influence of metabolite concentrations on reaction rates and pathway net flux are defined, as are sensitivity coefficients summarizing the effects of enzymes on metabolite concentrations and net flux. The sensitivity analysis is implemented in an easily used set of computer programs. A four-enzyme test model was shown to be resistant to intuitive interpretation. Sensitivity analysis showed a shift of control from the end of the enzymic sequence to the beginning of the sequence with changing metabolic state. The homeostatic behavior of the test system was shown to depend on the nonenzymatic reactions as well as on the enzymes. Under certain conditions metabolic regulation is shared so intimately among enzymes and spontaneous reactions that separation of their effects is impossible.  相似文献   

12.
Metabolic syndrome (MetSyn) is a group of metabolic conditions that occur together and promote the development of cardiovascular disease (CVD) and diabetes. Recent genome-wide association studies have identified several novel susceptibility genes for MetSyn traits, and studies in rodent models have provided important molecular insights. However, as yet, only a small fraction of the genetic component is known. Systems-based approaches that integrate genomic, molecular and physiological data are complementing traditional genetic and biochemical approaches to more fully address the complexity of MetSyn.  相似文献   

13.
Systems biology is all about networks. A recent trend has been to associate systems biology exclusively with the study of gene regulatory or protein-interaction networks. However, systems biology approaches can be applied at many other scales, from the subatomic to the ecosystem scales. In this review, we describe studies at the sub-cellular, tissue, whole plant and crop scales and highlight how these studies can be related to systems biology. We discuss the properties of system approaches at each scale as well as their current limits, and pinpoint in each case advances unique to the considered scale but representing potential for the other scales. We conclude by examining plant models bridging different scales and considering the future prospects of plant systems biology.  相似文献   

14.
Xue Q  Miller-Jensen K 《BMB reports》2012,45(4):213-220
Viruses have evolved to manipulate the host cell machinery for virus propagation, in part by interfering with the host cellular signaling network. Molecular studies of individual pathways have uncovered many viral host-protein targets; however, it is difficult to predict how viral perturbations will affect the signaling network as a whole. Systems biology approaches rely on multivariate, context-dependent measurements and computational analysis to elucidate how viral infection alters host cell signaling at a network level. Here we describe recent advances in systems analyses of signaling networks in both viral and non-viral biological contexts. These approaches have the potential to uncover virus- mediated changes to host signaling networks, suggest new therapeutic strategies, and assess how cell-to-cell variability affects host responses to infection. We argue that systems approaches will both improve understanding of how individual virus-host protein interactions fit into the progression of viral pathogenesis and help to identify novel therapeutic targets.  相似文献   

15.
A report of the 4nd International Conference on Computational Systems Biology, 9-11 September 2010, Suzhou, China.  相似文献   

16.

Background  

A goal of systems biology is the quantitative modelling of biochemical networks. Yet for many biochemical systems, parameter values and even the existence of interactions between some chemical species are unknown. It is therefore important to be able to easily investigate the effects of adding or removing reactions and to easily perform a bifurcation analysis, which shows the qualitative dynamics of a model for a range of parameter values.  相似文献   

17.
18.
A report on the meeting 'Systems Biology: Global Regulation of Gene Expression' at Cold Spring Harbor, New York, USA, 23-26 March 2006.  相似文献   

19.
Metabolic footprinting and systems biology: the medium is the message   总被引:1,自引:0,他引:1  
One element of classical systems analysis treats a system as a black or grey box, the inner structure and behaviour of which can be analysed and modelled by varying an internal or external condition, probing it from outside and studying the effect of the variation on the external observables. The result is an understanding of the inner make-up and workings of the system. The equivalent of this in biology is to observe what a cell or system excretes under controlled conditions - the 'metabolic footprint' or exometabolome - as this is readily and accurately measurable. Here, we review the principles, experimental approaches and scientific outcomes that have been obtained with this useful and convenient strategy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号