首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A recombinant plasmid containing the complete lacZ gene downstream of the T7 promoter was used to transform Escherichia coli containing another plasmid which had the T7 RNA polymerase gene under the control of heat inducible lambda PL promoter. This recombinant E. coli containing the two plasmids was studied in order to enhance beta-galactosidase expression. The heat shock time which effectively regulates the T7 RNA polymerase was optimized and best expression of beta-galactosidase was obtained with 2 min heat shock. Substrate feeding increased the duration of log phase and allowed induction at a higher cell density without affecting the specific activity. A high cell density (7 g l-1) and high specific activity (approximately 20,000 U) were achieved which effectively increased the product concentration 18-fold.  相似文献   

2.
Calpain belongs to the superfamily of Ca(2+)-regulated cysteine proteases, which are indispensable to the regulation of various cellular functions. Of the 15 mammalian calpain isoforms, μ- and m-calpains are the best characterized. Both μ- and m-calpain are ubiquitously expressed and exist as heterodimers, containing a distinct 80-kDa catalytic subunit (CAPN1 and CAPN2, respectively) and the common, 30-kDa regulatory subunit (CAPNS1). To date, various expression systems have been developed for producing recombinant calpains for use in structural and physiological studies, however Escherichia coli systems have proven incompatible with large-scale preparation of calpain, with the exception of rat m-calpain. Here, we have established a highly efficient method to purify active recombinant human m-calpain using an E. coli expression system at low temperature (22°C). This was achieved by co-expressing CAPN2 with a C-terminal histidine-tag, and CAPNS1, lacking the first Gly-repeated region at the N-terminal. After three sequential passes through a chromatographic column, ~5 mg of human m-calpain was homogenously purified from 1 l of E. coli culture. Proteins were stable for several months. This is the first report of efficient, large-scale purification of recombinant human m-calpain using an E. coli expression system.  相似文献   

3.
Interleukin 6 (IL-6) is a cytokine involved in many aspects of the acute phase and immune responses. Cloning of rat IL-6 cDNA into the pET-21d expression plasmid under control of a bacteriophage T7 RNA polymerase promoter system allowed isopropylthio-galactopyranoside (IPTG)-inducible production of recombinant rat IL-6 in Escherichia coli. The cloning, expression and purification of rat IL-6 is described. In this expression system, rat IL-6 was produced in insoluble inclusion bodies. The protein was solubilized in 6 M guanidine hydrochloride and refolded in a glutathione redox system. Refolded rat IL-6 was purified to homogeneity using anion-exchange chromatography on SP-Trisacryl. The purified recombinant rat IL-6 had a molecular mass of 21 756.38+/-0.25 Da, which is within 0.01% of the predicted value, taking into account cleavage of the N-terminal methionine residue and the formation of two disulfide bridges. Recombinant rat IL-6 was 2-3-fold more bioactive than the human standard preparation in the B9 hybridoma bioassay. Purified rat IL-6 was used to raise polyclonal antibodies in sheep and these reagents were used to develop a novel rat IL-6 enzyme-linked immunosorbent assay (ELISA). The ELISA is sensitive to 10 pg/ml and has been shown to detect IL-6 in plasma from rats injected with lipopolysaccharide (LPS).  相似文献   

4.
The nifF gene coding for the flavodoxin from the nitrogen-fixing bacterium Azotobacter vinelandii (strain OP) was cloned into the plasmid vector pUC7 [Bennett, L. T., Jacobsen, M. R., & Dean, D. R. (1988) J. Biol. Chem. 263 1364-1369] and the resulting plasmid transformed and expressed in Escherichia coli strain DH5. Recombinant Azotobacter flavodoxin is expressed at levels 5-6-fold higher in E. coli than in comparable yields of Azotobacter cultures grown under nitrogen-fixing conditions. Even higher levels were observed with flavodoxin expressed in E. coli under control of a tac promoter. Electron spin resonance spectroscopy on whole cells and in cell-free extracts showed the flavodoxin to be largely in the semiquinone form. The flavodoxin purified from E. coli exhibited the same molecular weight, isoelectric point, flavin mononucleotide (FMN) content, N-terminal sequence, and carboxyl-terminal amino acids as for the wild-type Azotobacter protein. The recombinant flavodoxin differed from native flavodoxin in that it exhibited an increased antigenicity to flavodoxin antibody and did not contain a covalently bound phosphate. Small differences are also observed in circular dichroism spectral properties in the visible and ultraviolet spectral regions. The recombinant, dephospho flavodoxin exhibits an oxidized/semiquinone potential (pH 8.0) of -224 mV and a semiquinone/hydroquinone couple (pH 8.0) of -458 mV. This latter couple is 50-60 mV higher than that exhibited by the native flavodoxin. Resolution of recombinant dephospho flavodoxin resulted in an apoflavodoxin that was much less stable than that prepared from the native protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Chemerin is a novel chemokine that binds to the G protein-coupled receptor (GPCR) ChemR23, also known as chemokine-like receptor 1 (CMKLR1). It is secreted as a precursor and executes pro-inflammatory functions when the last six amino acids are removed from its C-terminus by serine proteases. After maturation, Chemerin attracts dendritic cells and macrophages through binding to ChemR23. We report a new method for expression and purification of mature recombinant human Chemerin (rhChemerin) using a prokaryotic system. After being expressed in bacteria, rhChemerin in inclusion bodies was denatured using 6 M guanidine chloride. Soluble rhChemerin was prepared by the protein-specific renaturation solution under defined conditions. It was subsequently purified using ion-exchange columns to more than 95% purity with endotoxin level <1.0 EU/μg. We further demonstrated its biological activities for attracting migration of human dendritic cells and murine macrophages in vitro using established chemotaxis assays.  相似文献   

6.
An Escherichia coli expression vector, pG408N containing a PL promoter and the upstream untranslated region of the N gene of bacteriophage lambda has been constructed. We have designed a PvuII site immediately behind the untranslated region. A DNA fragment starting with an initiation codon ATG could be inserted into this site for expression. This vector also contains 7 additional cloning sites downstream from the PvuII site. A gene could be cloned into one of these sites and the 5' sequence of this gene could be modified with synthetic oligonucleotides and ligated to the PvuII for the purpose of increasing gene expression. We have also cloned the lambda cl gene into a p15A plasmid. Cotransformation of this plasmid with the expression vector allows the cloning vector pG408N to be used in any E. coli strain. Using this system, we were able to express porcine growth hormone to approximately 35% of total proteins in E. coli DH5 alpha.  相似文献   

7.
Expression and purification of a recombinant LL-37 from Escherichia coli   总被引:2,自引:0,他引:2  
Human cathelicidin-derived LL-37 is a 37-residue cationic, amphipathic alpha-helical peptide. It is an active component of mammalian innate immunity. LL-37 has several biological functions including a broad spectrum of antimicrobial activities and LPS-neutralizing activity. In order to determine the high-resolution three-dimensional structure of LL-37 using NMR spectroscopy, it is important to obtain the peptide with isotopic labels such as (15)N, (13)C and/or (2)H. Since it is less expensive to obtain such a peptide biologically, in this study, we report for the first time a method to express in E. coli and purify LL-37 using Glutathione S-transferase (GST) fusion system. LL-37 gene was inserted into vector pGEX-4T3 and expressed as a GST-LL-37 fusion protein in BL21(DE3) strain. The recombinant GST-LL-37 protein was purified with a yield of 8 mg/l by affinity chromatography and analyzed its biochemical and spectroscopic properties. Factor Xa was used to cleave a 4.5-kDa LL-37 from the GST-LL-37 fusion protein and the peptide was purified using a reverse-phase HPLC on a Vydac C(18) column with a final yield of 0.3 mg/l. The protein purified using reverse-phase HPLC was confirmed to be LL-37 by the analyses of Western blot and MALDI-TOF-Mass spectrometry. E. coli cells harboring the expression vector pGEX-4T3-LL-37 were grown in the presence of the (15)N-labeled M9 minimal medium and culture conditions were optimized to obtain uniform (15)N enrichment in the constitutively expressed LL-37 peptide. These results suggest that our production method will be useful in obtaining a large quantity of recombinant LL-37 peptide for NMR studies.  相似文献   

8.
9.
10.
Stable, folded RNA are involved in many key cellular processes and can be used as tools for biological, pharmacological and/or molecular design studies. However, their widespread use has been somewhat limited by their fragile nature and by the difficulties associated with their production on a large scale, which were limited to in vitro methods. This work reviews the novel techniques recently developed that allow efficient expression of recombinant RNA in vivo in Escherichia coli. Based on the extensive data available on the genetic and metabolic mechanisms of this model organism, conditions for optimal production can be derived. Combined with a large repertoire of RNA motifs which can be assembled by recombinant DNA techniques, this opens the way to the modular design of RNA molecules with novel properties.  相似文献   

11.
The availability of target proteins in sufficient quantity is a limiting factor in crystallographic studies and therefore in rational drug design. Even after optimisation, expression of recombinant proteins may be low and the only way to produce enough protein is by large scale cell growth/purification. HIV-1 proteinase in Escherichia coli, which due to its toxicity is expressed as a soluble protein only at around 0.1% of total protein, is a paradigm for this. In this paper a detailed process for large scale expression and purification of HIV-1 proteinase which delivers material of suitable quantity (30 mg from 500 g of wet weight of cells) and quality for crystallographic studies is described.  相似文献   

12.
A pH-inducible promoter system was characterized and its potential applicability in recombinant protein production was evaluated using a plasmid construct, pSM552-545C(-), in which the promoter and activator coding sequences of the cad operon were inserted into the upstream region of a lacZ' reporter gene. Graded gene expression levels with respect to culture pH between 8.0 and 5.5 were observed and the induction range can be as high as 200-fold. The effects of several cultivation parameters, including pH, temperature, induction cell density, and inoculum size, were systematically examined. The practical application of this expression system to high level production of recombinant proteins was successfully demonstrated using a rich medium, superbroth. An extremely high recombinant protein productivity at a value of approximately 1.4 g/L with a specific expression level as high as 35% of total cellular protein can be obtained in a simple batch cultivation. The behavior of this expression system was further investigated using chemostat cultures. An uncommon relationship between the volumetric or specific recombinant protein activity and the dilution rate, with a maximal activity at a dilution rate of approximately 0.4 h(-1)was observed. (c) 1995 John Wiley & Sons, Inc.  相似文献   

13.
14.
Serine hydroxymethyltransferase from Escherichia coli was purified to homogeneity. The enzyme was a homodimer of identical subunits with a molecular weight of 95,000. The amino acid sequence of the amino and carboxy-terminal ends and the amino acid composition of cysteine-containing tryptic peptides were in agreement with the primary structure proposed for this enzyme from the structure of the glyA gene (M. Plamann, L. Stauffer, M. Urbanowski, and G. Stauffer, Nucleic Acids Res. 11:2065-2074, 1983). The enzyme contained no disulfide bonds but had one sulfhydryl group on the surface of the protein. Several sulfhydryl reagents reacted with this exposed group and inactivated the enzyme. Spectra of the enzyme in the presence of substrates and substrate analogs showed that the enzyme formed the same complexes and in similar relative concentrations as previously observed with the cytosolic and mitochondrial rabbit liver isoenzymes. Kinetic studies with substrates showed that the affinity and synergistic binding of the amino acid and folate substrates were similar to those obtained with the rabbit liver isoenzymes. The enzyme catalyzed the cleavage of threonine, allothreonine, and 3-phenylserine to glycine and the corresponding aldehyde in the absence of tetrahydrofolate. The enzyme was also inactivated by D-alanine caused by the transamination of the active site pyridoxal phosphate to pyridoxamine phosphate. This substrate specificity was also observed with the rabbit liver isoenzymes. We conclude that the reaction mechanism and the active site structure of E. coli serine hydroxymethyltransferase are very similar to the mechanism and structure of the rabbit liver isoenzymes.  相似文献   

15.
Glutamate dehydrogenase (L-glutamate:NADP+ oxidoreductase [deaminating], EC 1.4.1.4) has been purified from Escherichia coli B/r. The purity of the enzyme preparation has been established by polyacrylamide gel electrophoresis, ultracentrifugation, and gel filtration. A molecular weight of 300,000 +/- 20,000 has been calculated for the enzyme from sedimentation equilibrium measurements. Polyacrylamide gel electrophoresis in sodium dodecyl sulfate and sedimentation equilibrium measurements in guanidine hydrochloride have revealed that glutamate dehydrogenase consists of polypeptide chains with the identical molecular weight of 50,000 +/- 5,000. The results of molecular weight determination lead us to propose that glutamate dehydrogenase is a hexamer of subunits with identical molecular weight. We also have studied the stability and kinetics of purified glutamate dehydrogenase. The enzyme remains active when heat treated or when left at room temperature for several months but is inactivated by freezing. The Michaelis constants of glutamate dehydrogenase are 1,100,640, and 40 muM for ammonia, 2-oxoglutarate, and reduced nicotinamide adenine dinucleotide phosphate, respectively.  相似文献   

16.
L-Asparaginase (isozyme II) from Escherichia coli is an important therapeutic enzyme used in the treatment of leukemia. Extracellular expression of recombinant asparaginase was obtained by fusing the gene coding for asparaginase to an efficient pelB leader sequence and an N-terminal 6x histidine tag cloned under the T7lac promoter. Media composition and the induction strategy had a major influence on the specificity and efficiency of secretion of recombinant asparaginase. Induction of the cells with 0.1 mM IPTG at late log phase of growth in TB media resulted in fourfold higher extracellular activity in comparison to growing the cells in LB media followed by induction during the mid log phase. Using an optimized expression strategy a yield of 20,950 UI/L of recombinant asparaginase was obtained from the extracellular medium. The recombinant protein was purified from the culture supernatant in a single step using Ni-NTA affinity chromatography which gave an overall yield of 95 mg/L of purified protein, with a recovery of 86%. This is approximately 8-fold higher to the previously reported data in literature. The fluorescence spectra, analytical size exclusion chromatography, and the specific activity of the purified protein were observed to be similar to the native protein which demonstrated that the protein had folded properly and was present in its active tetramer form in the culture supernatant.  相似文献   

17.
18.
19.
Human prostate-specific antigen (PSA), a 33 kDa serine protease with comprehensive homology to glandular kallikrein, is secreted from prostatic tissue into the seminal fluid and enters into the circulation. The level of PSA increases in the serum of patients with prostatic cancer and hence is widely employed as a marker of the disease status. In particular, an enzymatically active PSA that is a form cleaved at the N-terminal seven-amino-acids prosequence, APLILSR, of proPSA may play an important roll in the progression of prostate cancer. Thus, the presence of the active form would selectively discriminate the cancer from benign prostatic hyperplasia. In this study, we developed a convenient purification method for the acquisition of active PSA and proPSA. Recombinant proPSA and active PSA were expressed directly in Escherichia coli, easily and efficiently isolated from inclusion bodies, refolded, and purified. Moreover, the enzymatic activity of the recombinant active PSA was confirmed as serine protease using chromogenic chymotrypsin substrate. This purified active PSA could be further applied to scrutinize the biological or conformational characteristics of the protein and to develop specific diagnostic and/or therapeutic agents against prostate cancer.  相似文献   

20.
An isozyme gene of proline 3-hydroxylase was cloned from Streptomyces sp. strain TH1 (Mori H, Shibasaki T, Yano K, Ozaki A, J. Bacteriol. 1997, 179: 5677–5683). The isozyme gene (870 bp) encodes a protein of molecular weight of 33,573. Both 3-hydroxylase genes are identical at 76.2% in amino acid sequence. His-motifs conserved in 2-oxoglutarate-dependent dioxygenases are conserved in both genes. Although characteristics of both recombinant 3-hydroxylases are similar, specific activities to l-proline and proline analogs are different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号