首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Administration of replacement doses of testosterone to healthy hypogonadal men and supraphysiological doses to eugonadal men increases muscle size. To determine whether testosterone-induced increase in muscle size is due to muscle fiber hypertrophy, 61 healthy men, 18-35 yr of age, received monthly injections of a long-acting gonadotropin-releasing hormone (GnRH) agonist to suppress endogenous testosterone secretion and weekly injections of 25, 50, 125, 300, or 600 mg testosterone enanthate (TE) for 20 wk. Thigh muscle volume was measured by magnetic resonance imaging (MRI) scan, and muscle biopsies were obtained from vastus lateralis muscle in 39 men before and after 20 wk of combined treatment with GnRH agonist and testosterone. Administration of GnRH agonist plus TE resulted in mean nadir testosterone concentrations of 234, 289, 695, 1,344, and 2,435 ng/dl at the 25-, 50-, 125-, 300-, and 600-mg doses, respectively. Graded doses of testosterone administration were associated with testosterone dose and concentration-dependent increase in muscle volume measured by MRI (changes in vastus lateralis volume, -4, +7, +15, +32, and +48 ml at 25-, 50-, 125-, 300-, and 600-mg doses, respectively). Changes in cross-sectional areas of both type I and II fibers were dependent on testosterone dose and significantly correlated with total (r = 0.35, and 0.44, P < 0.0001 for type I and II fibers, respectively) and free (r = 0.34 and 0.35, P < 0.005) testosterone concentrations during treatment. The men receiving 300 and 600 mg of TE weekly experienced significant increases from baseline in areas of type I (baseline vs. 20 wk, 3,176 +/- 186 vs. 4,201 +/- 252 microm(2), P < 0.05 at 300-mg dose, and 3,347 +/- 253 vs. 4,984 +/- 374 microm(2), P = 0.006 at 600-mg dose) muscle fibers; the men in the 600-mg group also had significant increments in cross-sectional area of type II (4,060 +/- 401 vs. 5,526 +/- 544 microm(2), P = 0.03) fibers. The relative proportions of type I and type II fibers did not change significantly after treatment in any group. The myonuclear number per fiber increased significantly in men receiving the 300- and 600-mg doses of TE and was significantly correlated with testosterone concentration and muscle fiber cross-sectional area. In conclusion, the increases in muscle volume in healthy eugonadal men treated with graded doses of testosterone are associated with concentration-dependent increases in cross-sectional areas of both type I and type II muscle fibers and myonuclear number. We conclude that the testosterone induced increase in muscle volume is due to muscle fiber hypertrophy.  相似文献   

2.
The presence and potential physiological role of the erythropoietin receptor (Epo-R) were examined in human skeletal muscle. In this study we demonstrate that Epo-R is present in the endothelium, smooth muscle cells, and in fractions of the sarcolemma of skeletal muscle fibers. To study the potential effects of Epo in human skeletal muscle, two separate studies were conducted: one to study the acute effects of a single Epo injection on skeletal muscle gene expression and plasma hormones and another to study the effects of long-term (14 wk) Epo treatment on skeletal muscle structure. Subjects (n = 11) received a single Epo injection of 15,000 IU (double blinded, cross over, placebo). A single Epo injection reduced myoglobin and increased transferrin receptor and MRF-4 mRNA content within 10 h after injection. Plasma hormones remained unaltered. Capillarization and fiber hypertrophy was studied in subjects (n = 8) who received long-term Epo administration, and muscle biopsies were obtained before and after. Epo treatment did not alter mean fiber area (0.84 +/- 0.2 vs. 0.72 +/- 0.3 mm(2)), capillaries per fiber (4.3 +/- 0.5 vs. 4.4 +/- 1.3), or number of proliferating endothelial cells. In conclusion, the Epo-R is present in the vasculature and myocytes in human skeletal muscle, suggesting a role in both cell types. In accordance, a single injection of Epo regulates myoglobin, MRF-4, and transferrin receptor mRNA levels. However, in contrast to our hypothesis, prolonged Epo administration had no apparent effect on capillarization or muscle fiber hypertrophy.  相似文献   

3.
The purpose of this investigation was to determine whether heavy-resistance exercise training alters the skeletal muscle fiber composition of young rats. Ten male Long Evans rats (3 wk old) were trained to lift progressively heavier weights, which were secured to the rats' tails, while they ascended a 40-cm 90 degree mesh incline 20 times/day 5 days/wk for a food reward. After 8 wk of training, they lifted 406 +/- 19 (SD) g in addition to their body weight (261 +/- 9 g). Compared with 10 sedentary pair-fed rats, no hypertrophy of forelimb muscles (biceps brachii and brachialis) was observed, but rectus femoris wet and dry weights were greater (P less than 0.01) in the trained group. In the deep region of the rectus femoris, type I fiber area was similar between groups, but the trained rats had both a lower (P less than 0.05) percentage of type I fibers and a smaller (P less than 0.05) portion of the total area occupied by type I fibers. The percentage of type IIb fibers in the deep region of the rectus femoris was also similar between groups, but the portion of the deep area composed of type IIb fibers was greater (P less than 0.05) in the trained rats. In the superficial region of the rectus femoris, the trained rats' type IIb fibers were larger (P less than 0.01) and occupied a greater (P less than 0.05) portion of the superficial muscle area.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Twitch contractile and ultrastructural characteristics of the human triceps surae were determined in six male strength-trained athletes, six endurance-trained athletes, six active controls, and seven sedentary controls of similar height and age. Twitch contraction time in the triceps surae complex was 20% longer in strength-trained and sedentary groups than in endurance-trained or active control groups. In the 15 subjects peak twitch torque and one-half relation time in the triceps surae were 22.6 +/- 7.9 N.m and 91.1 +/- 18.3 ms, respectively. Mean fiber area in the gastrocnemius was approximately 1.6-, 1.7-, and 2.5-fold greater in the active control, endurance-trained, and strength-trained groups, respectively, relative to the sedentary group. Despite these large differences in fiber areas, the fiber fractional volume of the sarcoplasmic reticulum-transverse tubule network averaged 3.38 +/- 0.86% and 5.50 +/- 0.94% in type I and type II fibers, respectively, in all subjects. The fractional fiber volume of cytoplasm and lipid were similar for all four groups. However, mitochondrial volume was approximately 30% lower in both fiber types of the strength-trained group relative to the other groups. This implies that with exercise-induced hypertrophy, the sarcoplasmic reticulum, cytoplasm, and lipid components increase proportionately with contractile protein, whereas the mitochondrial fraction does not. The proportion of type I fibers in the soleus, medial gastrocnemius, and lateral gastrocnemius was 75.2 +/- 8.3, 58.5 +/- 6.1, and 52.4 +/- 4.2%, respectively, and was similar in all subject groups. The results demonstrate that twitch duration is prolonged in strength-trained athletes relative to endurance athletes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The relative contribution of increases in fiber area to stretch-induced muscle enlargement was evaluated in the slow tonic fibers of the anterior latissimus dorsi of adult Japanese quails. A weight corresponding to 10% of the bird's body mass was attached to one wing. Thirty days of stretch in 34 birds averaged 171.8 +/- 13.5% increase in muscle mass and 23.5 +/- 0.8% increase in muscle fiber length. The volume density of noncontractile tissue increased in middle and distal regions of stretch-enlarged muscles. Mean fiber cross-sectional area increased 56.7 +/- 12.3% in the midregion of stretched muscles. Further analysis indicated slow beta-fiber hypertrophy occurred in proximal, middle, and distal regions; however, fast alpha-type fiber hypertrophy was limited to middle regions of stretched muscles. Stretched muscles had a significant increase in the frequency of slow beta-fibers that were less than 500 microns 2 in all regions and fast alpha-type fibers in middle and distal regions. Total fiber number was determined after nitric acid digestion of connective tissue in 10 birds. Fiber number increased 51.8 +/- 19.4% in stretched muscle. These results are the first to clearly show that muscle fiber proliferation contributes substantially to adult skeletal muscle stretch-induced enlargement, although we do not know whether the responses of the slow tonic anterior latissimus dorsi might be similar or different from mammalian twitch muscle.  相似文献   

6.
去神经对快,慢肌纤维肌球蛋白ATPase影响的组织化学观察   总被引:2,自引:0,他引:2  
本文用组织化学方法观察了豚鼠比目鱼肌(SOL)和腓骨第三肌(PT)在去神经后其快、慢纤维肌球蛋白ATPase特性的变化。在正常肌肉中Ⅰ型(慢)纤维和Ⅱ型(快)纤维分别具有酸和碱稳定ATPase活性。慢纤维在去神经后出现了碱稳定ATPase活性,而快纤维则无明显变化。结果表明,只有慢纤维的肌球蛋白ATPase特性才与神经支配有关。  相似文献   

7.
Muscle hypertrophy response to resistance training in older women.   总被引:7,自引:0,他引:7  
We conducted a 12-wk resistance training program in elderly women [mean age 69 +/- 1.0 (SE) yr] to determine whether increases in muscle strength are associated with changes in cross-sectional fiber area of the vastus lateralis muscle. Twenty-seven healthy women were randomly assigned to either a control or exercise group. The program was satisfactorily completed and adequate biopsy material obtained from 6 controls and 13 exercisers. After initial testing of baseline maximal strength, exercisers began a training regimen consisting of seven exercises that stressed primary muscle groups of the lower extremities. No active intervention was prescribed for the controls. Increases in muscle strength of the exercising subjects were significant compared with baseline values (28-115%) in all muscle groups. No significant strength changes were observed in the controls. Cross-sectional area of type II muscle fibers significantly increased in the exercisers (20.1 +/- 6.8%, P = 0.02) compared with baseline. In contrast, no significant change in type II fiber area was observed in the controls. No significant changes in type I fiber area were found in either group. We conclude that a program of resistance exercise can be safely carried out by elderly women, such a program significantly increases muscle strength, and such gains are due, at least in part, to muscle hypertrophy.  相似文献   

8.
The purpose of this study was to examine single cell contractile mechanics of skeletal muscle before and after 12 wk of progressive resistance training (PRT) in older men (n = 7; age = 74 +/- 2 yr and weight = 75 +/- 5 kg). Knee extensor PRT was performed 3 days/wk at 80% of one-repetition maximum. Muscle biopsy samples were obtained from the vastus lateralis before and after PRT (pre- and post-PRT, respectively). For analysis, chemically skinned single muscle fibers were studied at 15 degrees C for peak tension [the maximal isometric force (P(o))], unloaded shortening velocity (V(o)), and force-velocity parameters. In this study, a total of 199 (89 pre- and 110 post-PRT) myosin heavy chain (MHC) I and 99 (55 pre- and 44 post-PRT) MHC IIa fibers were reported. Because of the minimal number of hybrid fibers identified post-PRT, direct comparisons were limited to MHC I and IIa fibers. Muscle fiber diameter increased 20% (83 +/- 1 to 100 +/- 1 microm) and 13% (86 +/- 1 to 97 +/- 2 microm) in MHC I and IIa fibers, respectively (P < 0.05). P(o) was higher (P < 0.05) in MHC I (0.58 +/- 0.02 to 0.90 +/- 0.02 mN) and IIa (0.68 +/- 0.02 to 0.85 +/- 0.03 mN) fibers. Muscle fiber V(o) was elevated 75% (MHC I) and 45% (MHC IIa) after PRT (P < 0.05). MHC I and IIa fiber power increased (P < 0.05) from 7.7 +/- 0.5 to 17.6 +/- 0.9 microN. fiber lengths. s(-1) and from 25.5 to 41.1 microN. fiber lengths. s(-1), respectively. These data indicate that PRT in elderly men increases muscle cell size, strength, contractile velocity, and power in both slow- and fast-twitch muscle fibers. However, it appears that these changes are more pronounced in the MHC I muscle fibers.  相似文献   

9.
Biopsies fro the vastus lateralis muscle of male weightlifters (WL; n=6; X +/- SE, age=27.0 +/- 2.1 years), and non-weight-trained men (CON; n=7; age=27.0 +/- 2.0 years) were compared for fiber types, myosin heavy chain (MHC) and titin content, and fiber type-specific capillary density. Differences (p<0.05) were observed for percent fiber types IIC (WL=0.4 +/- 0.2, CON=2.4 +/- 0.8); IIA (WL=50.5 +/- 3.2, CON=26.9 +/- 3.7); and IIB (WL=1.7 +/- 1.4, CON=21.0 +/- 5.3), as well as percent MHC IIa (WL=65.3 +/- 2.4, CON=52.1 +/- 4.2) and percent MHC IIB (WL=0.9 +/- 0.9; CON=18.2 +/- 6.1). All WL exhibited only the titin-1 isoform. Capillary density (caps.mm(-2)) for all fiber types combined was greater for the CON subjects (WL=192.7 +/- 17.3; CON=262.9 +/- 26.3), due primarily to a greater capillary density in the IIA fibers. Weightlifting performances and vertical jump power were correlated with type II fiber characteristics. These results suggest that successful weightlifting performance is not dependent on IIB fibers, and that weightlifters exhibit large percentages of type IIA muscle fibers and MHC IIa isoform content.  相似文献   

10.
The purpose of this study was to investigate whole muscle and single muscle fiber adaptations in very old men in response to progressive resistance training (PRT). Six healthy independently living old men (82 +/- 1 yr; range 80-86 yr, 74 +/- 4 kg) resistance-trained the knee extensors (3 sets, 10 repetitions) at approximately 70% one repetition maximum 3 days/wk for 12 wk. Whole thigh muscle cross-sectional area (CSA) was assessed before and after PRT using computed tomography (CT). Muscle biopsies were obtained from the vastus lateralis before and after the PRT program. Isolated myosin heavy chain (MHC) I and IIa single muscle fibers (n = 267; 142 pre; 125 post) were studied for diameter, peak tension, shortening velocity, and power. An additional set of isolated single muscle fibers (n = 2,215; 1,202 pre; 1,013 post) was used to identify MHC distribution. One repetition maximum knee extensor strength increased (P < 0.05) 23 +/- 4 kg (56 +/- 4 to 79 +/- 7 kg; 41%). Muscle CSA increased (P < 0.05) 3 +/- 1 cm2 (120 +/- 7 to 123 +/- 7 cm2; 2.5%). Single muscle fiber contractile function and MHC distribution were unaltered with PRT. These data indicate limited muscle plasticity at the single-muscle fiber level with a resistance-training program among the very old. The minor increases in whole muscle CSA coupled with the static nature of the myocellular profile indicate that the strength gains were primarily neurological. These data contrast typical muscle responses to resistance training in young ( approximately 20 yr) and old ( approximately 70 yr) humans and indicate that the physiological regulation of muscle remodeling is adversely modified in the oldest old.  相似文献   

11.
Contractile function of single muscle fibers after hindlimb suspension   总被引:1,自引:0,他引:1  
The purpose of this investigation was to determine how muscle atrophy produced by the hindlimb suspension (HS) model alters the contractile function of slow- and fast-twitch single muscle fibers. After 2 wk of HS, small bundles of fibers were isolated from the soleus and the deep and superficial regions of the lateral and medial heads of the gastrocnemius, respectively. The bundles were placed in skinning solution and stored at -20 degrees C until studied. Single fibers were isolated and suspended between a motor arm and force transducer, the functional properties were studied, and subsequently the fiber type was established by myosin heavy chain (MHC) analysis on 1-D sodium dodecyl sulfate polyacrylamide gel electrophoresis. After HS, slow-twitch fibers of the soleus showed a significant reduction in fiber diameter (68 +/- 2 vs. 41 +/- 1 micron) and peak tension (1.37 +/- 0.01 vs. 0.99 +/- 0.06 kg/cm2), whereas the maximal shortening speed (Vmax) increased [1.49 +/- 0.11 vs. 1.92 +/- 0.14 fiber lengths (FL)/s]. A histogram showed two populations of fibers: one with Vmax values identical to control slow-twitch fibers and a second with significantly elevated Vmax values. This latter group frequently contained both slow and fast MHC protein isoforms. The pCa-force relation of the soleus slow-twitch fibers was shifted to the right; consequently, the free Ca2+ required for the onset of tension and for 50% of peak tension was significantly higher after HS. Slow-twitch fibers isolated from the gastrocnemius after HS showed a significant reduction in diameter (67 +/- 4 vs. 44 +/- 3 microns) and peak tension (1.2 +/- 0.06 vs. 0.96 +/- 0.07 kg/cm2), but Vmax was unaltered (1.70 +/- 0.13 vs. 1.65 +/- 0.18 FL/s). Fast-twitch fibers from the red gastrocnemius showed a significant reduction in diameter (59 +/- 2 vs. 49 +/- 3 microns) but no change in peak tension or Vmax. Fast-twitch fibers from the white superficial region of the medial head of the gastrocnemius were unaffected by HS. Collectively, these data suggest that the effects of HS on fiber function depend on the fiber type and location. Both slow-twitch type I and fast-twitch type IIa fibers atrophied; however, only slow-twitch fibers showed a decline in peak tension, and the increase in Vmax was restricted to a subpopulation of slow-twitch soleus fibers.  相似文献   

12.
The cytochemical and ultrastructural features of lamellar bodies in human skeletal muscle fibers were studied using tannic acid-glutaraldehyde, ruthenium red-glutaraldehyde fixation methods, conventional electron microscopy and the freeze fracture technique. The lamellar bodies consisted of concentric lamellae with a regular spacing of 6.5 +/- 0.2 nm. These structures were found preferentially at the cell periphery closely associated with the plasma membrane, near the nuclear poles and in the space between muscle fiber and satellite cell. The cytochemical and ultrastructural features of the lamellar bodies suggest they are largely composed of phospholipid. It is possible that these structures are involved in muscle membrane maintenance.  相似文献   

13.
The purpose of this study was to test the hypothesis that muscle fiber type is related to obesity. Fiber type was compared 1) in lean and obese women, 2) in Caucasian (C) and African-American (AA) women, and 3) in obese individuals who lost weight after gastric bypass surgery. When lean (body mass index 24.0 +/- 0.9 kg/m(2), n = 28) and obese (34.8 +/- 0.9 kg/m(2), n = 25) women were compared, there were significant (P < 0.05) differences in muscle fiber type. The obese women possessed fewer type I (41.5 +/- 1.8 vs. 54.6 +/- 1.8%) and more type IIb (25.1 +/- 1.5 vs. 14.4 +/- 1.5%) fibers than the lean women. When ethnicity was accounted for, the percentage of type IIb fibers in obese AA was significantly higher than in obese C (31.0 +/- 2.4% vs. 19.2 +/- 1.9%); fewer type I fibers were also found in obese AA (34.5 +/- 2.8% vs. 48.6 +/- 2.2%). These data are consistent with the higher incidence of obesity and greater weight gain reported in AA women. With weight loss intervention, there was a positive relationship (r = 0.72, P < 0.005) between the percentage of excess weight loss and the percentage of type I fibers in morbidly obese patients. These findings indicate that there is a relationship between muscle fiber type and obesity.  相似文献   

14.
The purpose of this investigation was to examine the contractile properties of individual myofibers in response to periodized training periods throughout a collegiate cross-country season in male runners. Muscle biopsies of the gastrocnemius were taken after a summer base training phase (T1), an 8-wk intense training period (T2), and a 4-wk taper phase (T3). Five runners (n = 5; age = 20 +/- 1 yr; wt = 65 +/- 4 kg; ht = 178 +/- 3 cm) completed all three time points. A total of 328 individual muscle fibers [myosin heavy chain (MHC) I = 66%; MHC IIa = 33%; hybrids = 1%] were isolated and studied at 15 degrees C for their contractile properties. Diameter of MHC I fibers was 3% smaller (P < 0.05) at T2 compared with T1 and an additional 4% smaller (P < 0.05) after the taper. Cell size was unaltered in the MHC IIa fibers. MHC I and IIa fiber strength increased 18 and 11% (P < 0.05), respectively, from T1 to T2. MHC I fibers produced 9% less force (P < 0.05) after the taper, whereas MHC IIa fibers were 9% stronger (P < 0.05). Specific tension increased 38 and 26% (P < 0.05) for MHC I and IIa fibers, respectively, from T1 to T2 and was unchanged with the taper. Maximal shortening velocity (Vo) of the MHC I fibers decreased 23% (P < 0.05) from T1 to T2 and 17% (P < 0.05) from T2 to T3, whereas MHC IIa Vo was unchanged. MHC I peak power decreased 20% (P < 0.05) from T1 to T2 and 25% (P < 0.05) from T2 to T3, whereas MHC IIa peak power was unchanged. Power corrected for cell size decreased 15% (P < 0.05) from T2 to T3 and was 24% (P < 0.05) lower at T3 compared with T1 for the MHC I fibers only. These data suggest that changes in run training alter myocellular physiology via decreases in fiber size, Vo, and power of MHC I fibers and through increases in force per cross-sectional area of slow- and fast-twitch muscle fibers.  相似文献   

15.
Fiber composition and oxidative capacity of hamster skeletal muscle.   总被引:6,自引:0,他引:6  
The hamster is a valuable biological model for physiological investigation. Despite the obvious importance of the integration of cardiorespiratory and muscular system function, little information is available regarding hamster muscle fiber type and oxidative capacity, both of which are key determinants of muscle function. The purpose of this investigation was to measure immunohistochemically the relative composition and size of muscle fibers composed of types I, IIA, IIX, and IIB fibers in hamster skeletal muscle. The oxidative capacity of each muscle was also assessed by measuring citrate synthase activity. Twenty-eight hindlimb, respiratory, and facial muscles or muscle parts from adult (144-147 g bw) male Syrian golden hamsters (n=3) were dissected bilaterally, weighed, and frozen for immunohistochemical and biochemical analysis. Combining data from all 28 muscles analyzed, type I fibers made up 5% of the muscle mass, type IIA fibers 16%, type IIX fibers 39%, and type IIB fibers 40%. Mean fiber cross-sectional area across muscles was 1665 +/- 328 microm(2) for type I fibers, 1900 +/- 417 microm(2) for type IIA fibers, 3230 +/- 784 microm(2) for type IIX fibers, and 4171 +/- 864 microm(2) for type IIB fibers. Citrate synthase activity was most closely related to the population of type IIA fibers (r=0.68, p<0.0001) and was in the rank order of type IIA > I > IIX > IIB. These data demonstrate that hamster skeletal muscle is predominantly composed of type IIB and IIX fibers.  相似文献   

16.
Serial transverse paraffin sections of intrafusal muscle fibers of spindles from the extensor pollicis and the extensor digitorum communis of ducks show that only one type of intrafusal muscle fiber exists, based on the mid-equatorial nucleation pattern, diameter, and length. Although the overall range in fiber diameter at the mid-equatorial region is between 4.2-20.0 microns, the average caliber is 10.4 +/- 3.18 microns (S.D.) for spindles of the extensor pollicis and 9.3 +/- 2.11 microns (S.D.) for spindles of the extensor digitorum communis muscles. The range in spindle length for the extensor pollicis is 290-2,090 microns, average 1,120 +/- 569 microns (S.D.), and for the extensor digitorum communis 1,160-2,500 microns, average 1,745 +/- 367 microns (S.D.). The range in number of fibers per spindle for the extensor pollicis muscle is 5-12, average 8.2, and for the extensor digitorum muscle it is 1-11. In the extensor digitorum communis, there appear to be two groups, based on fiber number. Spindles of one group have a range of 5-11 fibers per spindle with an average of 7.2, whereas the second group has a range of 1-4 with an average of 2.7 fibers per spindle. The second group of spindles constitutes 52.5% of the 40 spindles studied, and of these 7.5% were monofibril spindles, 15.0% difibril, 17.5% trifibril, 12.5% quadrifibril spindles.  相似文献   

17.
Isometric force production and ATPase activity were determined simultaneously in single human skeletal muscle fibers (n = 97) from five healthy volunteers and nine patients with chronic heart failure (CHF) at 20 degrees C. The fibers were permeabilized by means of Triton X-100 (1% vol/vol). ATPase activity was determined by enzymatic coupling of ATP resynthesis to the oxidation of NADH. Calcium-activated actomyosin (AM) ATPase activity was obtained by subtracting the activity measured in relaxing (pCa = 9) solutions from that obtained in maximally activating (pCa = 4.4) solutions. Fiber type was determined on the basis of myosin heavy chain isoform composition by polyacrylamide SDS gel electrophoresis. AM ATPase activity per liter cell volume (+/-SE) in the control and patient group, respectively, amounted to 134 +/- 24 and 77 +/- 9 microM/s in type I fibers (n = 11 and 16), 248 +/- 17 and 188 +/- 13 microM/s in type IIA fibers (n = 14 and 32), 291 +/- 29 and 126 +/- 21 microM/s in type IIA/X fibers (n = 3 and 5), and 325 +/- 32 and 205 +/- 21 microM/s in type IIX fibers (n = 7 and 9). The maximal isometric force per cross-sectional area amounted to 64 +/- 7 and 43 +/- 5 kN/m(2) in type I fibers, 86 +/- 11 and 58 +/- 4 kN/m(2) in type IIA fibers, 85 +/- 6 and 42 +/- 9 kN/m(2) in type IIA/X fibers, and 90 +/- 5 and 59 +/- 5 kN/m(2) in type IIX fibers in the control and patient group, respectively. These results indicate that, in CHF patients, significant reductions occur in isometric force and AM ATPase activity but that tension cost for each fiber type remains the same. This suggests that, in skeletal muscle from CHF patients, a decline in density of contractile proteins takes place and/or a reduction in the rate of cross-bridge attachment of approximately 30%, which exacerbates skeletal muscle weakness due to muscle atrophy.  相似文献   

18.
The effect of lysine amino acid supplementation on the growth characteristics and morphological pattern of skeletal muscle tissue in Nile tilapia Oreochromis niloticus larvae was evaluated. There were four treatments (T) with increasing levels of lysine supplement (T1 = 0·0%; T2 = 1·1%; T3 = 1·7%; T4 = 4·0%) and one treatment with a commercial diet (T5). In all treatments, morphological and histochemical muscle tissue analyses were similar. Two distinct layers were identified: a superficial red layer, more developed in the lateral line region, formed by fibres with intense to moderate NADH‐TR reaction and strong acid‐stable mATPase activity, and a deep white one, most of the muscle mass, formed by fibres with weak NADH‐TR reaction and strong alkali‐stable mATPase activity. There was an intermediate layer between these two layers with fibres exhibiting either weak acid‐stable or acid‐labile mATPase activity. Body mass increase was significantly higher in T5 than in the lysine treatments (T1–T4). There was no difference in number and diameters of muscle fibres between lysine treatments. In T5, muscle fibre diameter and number were higher. The frequency of red fibres with diameters ≤8 μm was higher in the lysine treatments, and with diameters between 16 and 24 μm, was higher in T5. Most white fibre diameters in T5 were significantly larger than 24 μm and in T1–T4 were between 8 and 16 μm. Cell proliferation was higher in the lysine treatments and muscle growth in T5 was mainly by fibre hypertrophy.  相似文献   

19.
The aim of this study was to assess the relationships between human muscle fiber hypertrophy, protein isoform content, and maximal Ca(2+)-activated contractile function following a short-term period of resistance exercise training. Six male subjects (age 27 +/- 2 yr) participated in a 12-wk progressive resistance exercise training program that increased voluntary lower limb extension strength by >60%. Single chemically skinned fibers were prepared from pre- and posttraining vastus lateralis muscle biopsies. Training increased the cross-sectional area (CSA) and peak Ca(2+)-activated force (P(o)) of fibers containing type I, IIa, or IIa/IIx myosin heavy chain by 30-40% without affecting fiber-specific force (P(o)/CSA) or unloaded shortening velocity (V(o)). Absolute fiber peak power rose as a result of the increase in P(o), whereas power normalized to fiber volume was unchanged. At the level of the cross bridge, the effects of short-term resistance training were quantitative (fiber hypertrophy and proportional increases in fiber P(o) and absolute power) rather than qualitative (no change in P(o)/CSA, V(o), or power/fiber volume).  相似文献   

20.
A method is presented that can be used to perform histochemical and morphometric analyses on the same muscle fiber. Freshly dissected fibers from medial gastrocnemius muscle of adult guinea pig were kept at a resting length and rapidly frozen. Serial frozen cross-sections were cut and reacted for myofibrillar adenosine triphosphatase and succinic dehydrogenase. The adjacent section, while still frozen, was immersed into 20 degrees C glutaraldehyde fixative to which EGTA was added to minimize artifactious contraction. The fixed section was processed for electron microscopy and the section rotated before thin sectioning to give longitudinal sections enabling study of sarcomeres. Ultrastructure was well-preserved despite slight disorganization of the contractile filaments and some vesiculation of the sarcoplasmic reticulum. The Z line width was measured and the mitochondrial volume fraction estimated by point counting morphometry from 89 fibers. The fibers with dark myofibrillar adenosine triphosphatase staining have Z widths of 547 +/- 165 A (n=69) and thoshosphatase staining have Z widths of 547 +/- 165 A (n=69) and those with light stain have 1023 +/- 113 A (n=20). The density of the succinic dehydrogenase reaction product in the fibers was divided into dark and light and the mitochondrial volume fractions were foud to be 4.3 +/- 2.1% (n=52) and 1.0 +/- 1.1% (n=37), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号