首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of prostaglandin (PG) E1, E2, A1, F, F or D2 on the rat renal cortical, outer medullary and inner medullary adenylate cyclase-cyclic AM systems were examined. While high concentrations (8X10−4M) of each prostaglandin stimulated adenylate cyclase activity in each area of the kidney, PGE1 was the only prostaglandin to stimulate at 10−7M. PGA's were the only prostaglandins tested besides PGE's which stimulated adenylate cyclase at less than 10−4M. This effect of PGA's was limited to the outer medulla. PGD2 was the least stimulatory. Observations with renal slices yielded qualitatively results. The PGE's were the most potent in each area with PGA's only stimulatory in the outer medulla. O2 deprivation (5% O2) lowered the slice cyclic AMP content in each area of the kidney. In the cortex and outer medulla, prostaglandin mediated increases in cyclic AMP content were either lower or absent at 5% O2 compared to 95% O2. However, in the inner medulla PGE stimulation was observed only at 5% O2 and not 95% O2. No other prostaglandins were found to increase inner medullary cyclic AMP content at 95% or 5% O2. These results illustrate that the adenylate cyclase-cyclic AMP system responds uniquely to prostaglandins in each area of the kidney. Consideration of these results along with correlative observations suggests that inner medullary produced PGE's may act as local modulators of inner medullary adenylate cyclase.  相似文献   

2.
Regional localization of the exaggerated prostaglandin E2 (PGE2) synthesis caused by hydronephrosis was studied in unilateral ureteral ligated rabbits. The renal distribution of PGE2 production was compared in the hydronephrotic and contralateral kidneys. Basal and bradykinin-stimulated PGE2 synthesis were increased in cortical and medullary slices of the hydronephrotic kidneys. Contralateral (control) cortical slices produced very low levels of PGE2 and were insensitive to stimulation by bradykinin (BK). The hydronephrotic cortex produced 10 times more PGE2 than the contralateral cortex and responded to BK stimulation with increased PGE2 synthesis. Cortical slices from the hydronephrotic kidney exhibited a time-dependent increase in PGE2 release, presumably as a result of new protein synthesis. The division of the hydronephrotic cortex into outer and inner regions revealed that the inner cortex produced more PGE2 than the outer cortex. A similar division of the hydronephrotic medulla showed that the inner medulla produced slightly greater amounts of PGE2 than the outer medulla. The present study demonstrates that hydronephrosis causes increases in prostaglandin synthesis throughout the kidney. We suggest from these results and other studies that a possible explanation for this finding is the involvement of the collecting duct system in this response. The gradient of PGE2 production detected in the cortex may have a very significant role in the control of renal hemodynamics and could provide an explanation for the large decrease in blood flow to the inner cortex caused by indomethacin treatment.  相似文献   

3.
The effects of prostaglandin (PG) E1, E2, A1, F1alpha, F2alpha or D2 on the rat renal cortical, outer medullary and inner medullary adenylate cyclase-cyclic AMP systems were examined. While high concentrations (8X10-4M) of each prostaglandin stimulated adenylate cyclase activity in each area of the kidney, PGE1 was the only prostaglandin to stimulate at 10-7M. PGA's were the only prostaglandins tested besides PGE's which stimulated adenylate cyclase at less than 10-4M. This effect of PGA's was limited to the outer medulla. PGD2 was the least stimulatory. Observations with renal slices yielded qualitatively similar results. The PGE's were the most potent in each area with PGA's only stimulatory in the outer medulla. O2 deprivation (5% O2) lowered the slice cyclic AMP content in each area of the kidney. In the cortex and outer medulla, prostaglandin mediated increases in cyclic AMP content were either lower or absent at 5% O2 compared to 95% O2. However, in the inner medulla PGE stimulation was observed only at 5% O2 and not 95% O2. No other prostaglandins were found to increase inner medullary cyclic AMP content at 95% or 5% O2. These results illustrate that the adenylate cyclase-cyclic AMP system responds uniquely to prostaglandins in each area of the kidney. Consideration of these results along with correlative observations suggests that inner medullary produced PGE's may act as local modulators of inner medullary adenylate cyclase.  相似文献   

4.
Increasing oxygen from 5 to 95% has previously been shown to increase prostaglandin (PG) production in renal inner medullary slices. The possible role of oxidative phosphorylation in this process was investigated. The oxidative phosphorylation inhibitors, dinitrophenol (DNP), oligomycin, and cyanide were evaluated for their effects on PGE2 production and ATP levels. None of the inhibitors affected PGE2 synthesis, although they lowered ATP levels at the concentrations tested. In contrast, incubation of inner medullary tissue slices with 0% oxygen resulted in decreases both in PGE2 and ATP levels. This suggest that the effect of oxygen on prostaglandin synthesis may be due to substrate limiting effects rather an effect on oxidative phosphorylation.When 22 mM 2-deoxyglucose was added to the incubation medium or when glucose was ommitted, PGE2 levels increased. Sodium fluoride, presumably acting as a glycolytic inhibitor, increased PGE2 levels, with a maximal effect at 10mM. ATP levels were 37% of control values with 20 mM NaF. This indicates that glucose may inhibit prostaglandin synthesis.These results indicate that oxygen (substrate) availability can limit inner medullary PGE2. In view of the low pO2 in the inner medulla, especially during antidiuresis, oxygen can potentially regulate prostaglandin productin in this tissue.  相似文献   

5.
Endogenous noradrenaline and 3,4-dihydroxyphenylethylamine (dopamine) levels were measured in different zones of the dog kidney following chronic unilateral renal denervation. In outer and inner renal cortex, and in outer medulla, greater than 95% of the tissue content of both catecholamines was contributed by renal nerves, whereas in inner medulla only nonneuronal catecholamines were found. The amounts of neuronal dopamine present in outer renal cortex were greater than would be expected for a population of solely noradrenergic nerves.  相似文献   

6.
Regional distribution of angiotensin converting enzyme(ACE) in the rat kidney was studied. The ACE activities in the inner cortex and outer medulla were about 10 and 5 times those in the outer cortex, respectively. The activity in the inner medulla or papilla was much the same as that in the outer cortex. Immunofluorescence was greatest in the proximal tubules in the inner cortex, while the outer medulla and the inner medulla or papilla showed a weak fluorescence. The brush border membranes isolated from the inner cortex also possessed about 10 times the ACE activity seen in the outer cortex. The results indicate that the major source of renal ACE is not the proximal convoluted tubules in the outer cortex, but rather the brush border membranes of proximal tubules in the inner cortex. The contribution of ACE in the inner cortex would therefore be predominant.  相似文献   

7.
1 The determination of Na, Ca, Mg, and K concentrations was performed in four different regions of the dog kidney (cortex, outer medulla, inner medulla, and papilla) during antidiuresis and during an osmotic diuresis. 2 The results show a medullary concentration gradient for calcium. This gradient is much higher than that found for sodium. 3 An inverse concentration gradient from cortex to inner medulla for Mg and K is found. 4 An osmotic diuresis (hypertonic mannitol) decreases the corticomedullary gradient of Na, but does not alter significantly the intrarenal distribution of Ca, Mg and K. 5 These results consistent with an intracellular localization of Mg and K in the renal tissue. It is suggested that the medullary concentration gradient for Ca may be due either to a countercurrent multiplier system similar to that for Na, or to a higher tissular fixation of Ca in the inner medulla and papilla than in the outer medulla and cortex.  相似文献   

8.
Manometric measurements were made of oxygen uptake (Q OO2) and aerobic lactic acid output (QG) by slices of cerebral cortex and medulla oblongata of the cat in the presence of mixtures of 1, 5, and 20 volumes per cent of carbon dioxide in oxygen. The concentrations of NaHCO3 and NaCl in the medium were varied to maintain constant pH and sodium ion concentrations. The calcium ion concentration was 0.0002 M. At pH 7.5 under these conditions, an increase in carbon dioxide from 1 per cent to 5 per cent doubled the QG of both tissues but did not alter Q OO2; an increase from 5 per cent to 20 per cent carbon dioxide had no further effect on QG in either tissue or Q OO2 of cortex, but did depress the Q OO2 of medulla. At pH 8.1, an increase in carbon dioxide from 1 per cent to 5 per cent raised the Q OO2 and QG of cortex by about 60 per cent. Measurements at low oxygen tension carried out previously in phosphate medium were repeated in bicarbonate medium to obtain data for the combined output of lactic acid and carbon dioxide (QA). When the oxygen in the gas phase was decreased from 95 to 3 volumes per cent, the lactic acid output as measured colorimetrically increased by 114 mg./gm. in cortex and by 8 mg./gm. in medulla; QA increased from 12.3 to 13.5 in cortex and decreased from 5.1 to 3.8 in medulla.  相似文献   

9.
Prostacyclin (Prostaglandin I2) effects on the rat kidney adenylate cyclase-cyclic AMP system were examined. Prostaglandin I2 and prostaglandin E2, from 8 · 10?4 to 8 · ?7 M stimulated adenylate cyclase to a similar extent in cortex and outer medulla. In inner medulla, prostaglandin I2 was more effective than prostaglandin E2 at all concentrations tested. Both prostaglandin I2 and prostaglandin E2 were additive with antidiuretic hormone in outer and inner medulla. Prostaglandin I2 and prostaglandin E2 were not additive in any area of the kidney, indicating both were working by similar mechanisms. Prostaglandin I2 stimulation of adenylate cyclase correlated with its ability to increase renal slice cyclic AMP content. Prostaglandin I2 and prostaglandin E2 (1.5 · 10?4 M) elevated cyclic AMP content in cortex and outer medulla slices. In inner medulla, with Santoquin® (0.1 mM) present to suppress endogenous prostaglandin synthesis, prostaglandin I2 and prostaglandin E2 increased cyclic AMP content. 6-Ketoprostaglandin F, the stable metabolite of prostaglandin I2, did not increase adenylate cyclase activity or tissue cyclic AMP content. Thus, prostaglandin I2 activates renal adenylate cyclase. This suggests that the physiological actions of prostaglandin I2 may be mediated through the adenylate cyclase-cyclic AMP system.  相似文献   

10.
Urea production from arginine was studied in vitro in the kidney of normal rats in tubule suspensions of the four different renal zones (cortex, outer and inner stripe of outer medulla, and inner medulla), and in individual microdissected nephron segments. Tissue was incubated with L-[guanido-14C]-arginine to measure cellular arginase activity. Addition of urease to the incubate freed 14CO2 from the 14C-urea formed by arginase and released from the cells. CO2 was trapped in KOH and counted. These experiments revealed that significant amounts of urea are produced in the outer stripe and in the inner medulla. This intrarenal urea generation takes place mainly in the proximal straight tubule and in the collecting duct, with increasing activity in these two structures from superficial to deep regions of the kidney. Urea is known to play a critical role in the urinary concentrating process. The fact that some urea can be produced in the mammalian kidney, and that the two structures showing this capacity are straight portions of the renal tubular system descending along the corticopapillary axis suggest that this urea production might play a role in the formation and/or maintenance of the medullary urea concentration gradient.  相似文献   

11.
In vitro utilization or production of citrate by the cortex, outer medulla or inner medulla of dog kidney was measured. Our data show: 1. An in vitro citrate synthesis or utilization capacity of the cortex greater than that of the red medulla. 2. An effect of pH on citrate synthesis or utilization capacity of the cortex, an effect not seen with medullary slices. 3. An absence of citrate synthesis or utilization by white medulla slices. It would seem that the citrate found in the white medulla and the papilla of the dog kidney in vivo was not produced in situ.  相似文献   

12.
Increasing oxygen from 5 to 95% has previously been shown to increase prostaglandin (PG) production in renal inner medullary slices. The possible role of oxidative phosphorylation in this process was investigated. The oxidative phosphorylation inhibitors, dinitrophenol (DNP), oligomycin, and cyanide were evaluted for their effects on PGE2 production and ATP levels. None of the inhibitors affected PGE2 synthesis, although they lowered ATP levels at the concentrations tested. In contrast, incubation of inner medullary tissue slices with 0% oxygen resulted in decreases both in PGE2 and ATP levels. This suggests that the effect of oxygen on prostaglandin synthesis may be due to substrate limiting effects rather than an effect on oxidative phosphorylation. When 22 mM 2-deoxyglucose was added to the incubation medium or when glucose was omitted, PGE2 levels increased. Sodium fluoride, presumably acting as a glycolytic inhibitor, increased PGE2 levels, with a maximal effect at 10 mM. ATP levels were 37% of control values with 20 mM NaF. This indicates that glucose may inhibit prostaglandin synthesis. These results indicate that oxygen (substrate) availability can limit inner medullary PGE2 production. In view of the low pO2 in the inner medulla, especially during antidiuresis, oxygen can potentially regulate prostaglandin production in this tissue.  相似文献   

13.
The cytochrome P-450's of the microsomal mixed function oxidase systems from the rabbit renal cortex, outer medulla, inner medulla, and the liver were compared. Sodium dodecyl sulfate-(SDS) gel electrophoresis and electron paramagnetic resonance (EPR) studies detected cytochrome P-450 proteins in the liver, renal cortex, and outer medulla but not the inner medulla of normal animals. Two cytochrome P-450 peptides, which had molecular weights of 54,500 and 58,900 and which comigrated with known hepatic cytochrome P-450's on SDS gels, were identified in the cortex and outer medulla. Treatment of animals with 3-methylcholanthrene (MC) enhanced the 54,500 and 58,900 peptides in the liver and cortex but produced little change in outer medulla. MC treatment induced faint cytochrome P-450 bands in the inner medulla. The EPR studies detected low spin heme iron absorption lines at g = 2.42, 2.26, and 1.92 in liver, cortex, and outer medulla from untreated animals. The amplitude of the low spin absorption lines was increased by ethanol, a reverse type I compound, and reduced by chloroform, a type I compound, in these tissues. MC treatment increased the amplitude of the heme absorption lines in these tissues, and it induced a barely detectable heme spectrum in the inner medulla. Differences in exogenous substrate binding between hepatic and renal microsomes from MC-treated animals were detected by EPR and optical difference spectroscopy. Acetone, 1-butanol, and 2-propanol gave evidence of binding to the hepatic cytochrome P-450's but no evidence of binding to renal cortical microsomes. These results, along with previous enzymatic studies, suggest that the liver and each area of the kidney contain different substrate specificities and pathways for the metabolism of organic compounds.  相似文献   

14.
In anaesthetized rabbits electrical admittance (a reciprocal of impedance) of the kidney in situ was recorded using electrodes located in the cortex, outer medulla, inner medulla and papilla. Renal haemodynamics, clearances and Na+ concentration in tissue slices were also determined. Admittance changes in response to i.v. furosemide, 1.5 or 3 mg/kg body weight, and to 15% mannitol infusion, reflected changing interstitial electrolyte concentration and, indirectly, changes in tubular reabsorption of NaCl. The large dose of furosemide and mannitol infusion decreased admittance in all renal zones whereas the small dose affected only the inner medulla and papilla. The rapid onset of the fall in admittance of the inner medulla, even in absence of changes within the outer medulla, suggests that the drug's action is not confined to the thick ascending limb but includes the thin ascending segment.  相似文献   

15.
The Australian brush-tailed possum, Trichosurus vulpecula, is capable of producing a moderately concentrated urine, at least up to 1300 mOsm l(-1). Kidneys of adult animals fed in captivity on a normal diet with ready access to water were analysed. The inner medullary regions were found to have moderately high concentrations of sodium (outer medulla, 367+/-37; inner medulla 975+/-93 mmol kg(-1) dry wt.), chloride (outer medulla 240+/-21; inner medulla 701+/-23 mmol kg(-1) dry wt.) and urea (outer medulla, 252+/-62; inner medulla, 714+/-69 mmol kg(-1) protein). When the animals were fed on a 'wet diet', amounts of these substances in the outer medulla and cortex were reduced, although with the exception of urea these changes were not significant. There were highly significant changes in amounts of Na(+), Cl(-) and urea in the inner medulla (Na(+), 566+/-7; Cl(-), 422+/-9 mmol kg(-1) dry wt.; urea 393+/-84 mmol kg(-1) protein). Likewise, the inner medulla of animals fed a 'dry diet' with limited access to water showed highly significant increases in the same substances (Na(+), 1213+/-167; Cl(-), 974+/-137 mmol kg(-1) dry wt.; urea, 1672+/-98 mmol kg(-1) protein). Inositol was found in the outer medulla (224+/-90 mmol kg(-1) protein) and inner medulla (282 mmol kg(-1) protein) as was sorbitol (outer medulla, 62+/-20; inner medulla, 274+/-72 mmol kg(-1) protein). Both these polyols were reduced in amount in renal tissue from 'wet diet' animals, and increased in 'dry diet' animals, but the changes were not statistically significant. The methylamines, betaine and glycerophosphorylcholine (GPC), showed a similar pattern, but both were significantly elevated in the inner medulla of 'dry diet' animals (betaine 154+/-57 to 315+/-29 mmol kg(-1) protein; GPC 35+/-7 to 47+/-10 mmol kg(-1) protein). It was concluded that in this marsupial the concentrating mechanism probably functions in a similar way to that in higher mammals, and that the mechanism of osmoprotection of the medulla of the kidney involves the same osmolytes. However, the high ratio of betaine to GPC in the inner medulla resembles the situation in the avian kidney.  相似文献   

16.
We investigated the expression of P2X5, P2X7, P2Y1 and P2Y2 receptor subtypes in adult human anagen hair follicles and in relation to markers of proliferation [proliferating cell nuclear antigen (PCNA) and Ki-67], keratinocyte differentiation (involucrin) and apoptosis (anticaspase-3). Using immunohistochemistry, we showed that P2X5, P2Y1 and P2Y2 receptors were expressed in spatially distinct zones of the anagen hair follicle: P2Y1 receptors in the outer root sheath and bulb, P2X5 receptors in the inner and outer root sheaths and medulla and P2Y2 receptors in living cells at the edge of the cortex/medulla. P2X7 receptors were not expressed. Colocalisation experiments suggested different functional roles for these receptors: P2Y1 receptors were associated with bulb and outer root sheath keratinocyte proliferation, P2X5 receptors were associated with differentiation of cells of the medulla and inner root sheaths and P2Y2 receptors were associated with early differentiated cells in the cortex/medulla that contribute to the formation of the hair shaft. The therapeutic potential of purinergic agonists and antagonists for controlling hair growth is discussed.  相似文献   

17.
A multitude of evidence suggests that iodinated contrast material causes nephrotoxicity; however, there have been no previous studies that use arterial spin labeling (ASL) blood flow functional magnetic resonance imaging (fMRI) to investigate the alterations in effective renal plasma flow between normointensive and hypertensive rats following injection of contrast media. We hypothesized that FAIR-SSFSE arterial spin labeling MRI may enable noninvasive and quantitative assessment of regional renal blood flow abnormalities and correlate with disease severity as assessed by histological methods. Renal blood flow (RBF) values of the cortex and medulla of rat kidneys were obtained from ASL images postprocessed at ADW4.3 workstation 0.3, 24, 48, and 72 h before and after injection of iodinated contrast media (6 ml/kg). The H&E method for morphometric measurements was used to confirm the MRI findings. The RBF values of the outer medulla were lower than those of the cortex and the inner medulla as reported previously. Iodinated contrast media treatment resulted in decreases in RBF in the outer medulla and cortex in spontaneously hypertensive rats (SHR), but only in the outer medulla in normotensive rats. The iodinated contrast agent significantly decreased the RBF value in the outer medulla and the cortex in SHR compared with normotensive rats after injection of the iodinated contrast media. Histological observations of kidney morphology were also consistent with ASL perfusion changes. These results demonstrate that the RBF value can reflect changes of renal perfusion in the cortex and medulla. ASL-MRI is a feasible and accurate method for evaluating nephrotoxic drugs-induced kidney damage.  相似文献   

18.
Oxidative stress damages cells. NaCl and urea are high in renal medullary interstitial fluid, which is necessary to concentrate urine, but which causes oxidative stress by elevating reactive oxygen species (ROS). Here, we measured the antioxidant enzyme superoxide dismutases (SODs, MnSOD, and Cu/ZnSOD) and catalase in mouse kidney that might mitigate the oxidative stress. MnSOD protein increases progressively from the cortex to the inner medulla, following the gradient of increasing NaCl and urea. MnSOD activity increases proportionately, but MnSOD mRNA does not. Water restriction, which elevates renal medullary NaCl and urea, increases MnSOD protein, accompanied by a proportionate increase in MnSOD enzymatic activity in the inner medulla, but not in the cortex or the outer medulla. In contrast, Cu/ZnSOD and TNF-α (an important regulator of MnSOD) do not vary between the regions of the kidney, and expression of catalase protein actually decreases from the cortex to the inner medulla. Water restriction increases activity of mitochondrial enzymes that catalyze production of ROS in the inner medulla, but reduces NADPH oxidase activity there. We also examined the effect of high NaCl and urea on MnSOD in Madin-Darby canine kidney (MDCK) cells. High NaCl and high urea both increase MnSOD in MDCK cells. This increase in MnSOD protein apparently depends on the elevation of ROS since it is eliminated by the antioxidant N-acetylcysteine, and it occurs without raising osmolality when ROS are elevated by antimycin A or xanthine oxidase plus xanthine. We conclude that ROS, induced by high NaCl and urea, increase MnSOD activity in the renal inner medulla, which moderates oxidative stress.  相似文献   

19.
In the Cape Fynbos of South Africa, Psoralea pinnata (L.) plants occur naturally in both wetland and well-drained soils and yet effectively fix N2 under the two contrasting conditions. In this study, nodule structure and functioning in P. pinnata plants from the two habitats were evaluated using light and transmission electron microscopy (TEM), as well as the 15N natural abundance technique. The results showed that, structurally, fully developed P. pinnata nodules were spherical in shape with six components (namely, lenticels, periderm, outer cortex, middle cortex, inner cortex, and a central bacteria-infected medulla region). Morphometric analysis revealed 44 and 84 % increase in cell area and volume of wetland nodules compared to those from upland. The percentage area of nodules occupied by the middle cortex in wetland nodules was twice that of upland nodules. As a result, the size of the medulla region in wetland nodules was significantly reduced compared to upland nodules. Additionally, the average area of medulla occupied by intercellular air spaces in wetland nodules was about five times that of upland nodules (about 431 % increase in wetland over upland nodules). TEM data also showed more bacteroids in symbiosomes of upland nodules when compared to wetland nodules. However, isotopic analysis of above-ground plant parts revealed no differences in symbiotic parameters such as N concentration, ?15N and %Ndfa between wetland and upland P. pinnata plants. These results suggest that, under limiting O2 conditions especially in wetlands, nodules make structural and functional adjustments to meet the O2 demands of N2-fixing bacteroids.  相似文献   

20.
P A Craven  F R DeRubertis 《Biochemistry》1976,15(23):5131-5137
The properties of the guanylate cyclase systems of outer and inner medulla of rat kidney were examined and compared with those of the renal cortex. A gradation in steady-state cyclic guanosine 3',5'-monophosphate (cGMP) levels was observed in incubated slices of these tissues (inner medula greater than outer medulla greater than cortex). This correlated with the proportion of total guanyl cyclase activity in the 100 000 g particulate fraction of each tissue, but was discordant with the relative activities of guanylate cyclase (highest in cortex) and of cGMP-phosphodiesterase (lowest in cortex) in whole tissue homogenates. Soluble guanylate cyclase of cortex and inner medulla exhibited typical Michaelis-Menten kinetics with an apparent Km for MnGTP of 0.11 mM, while the particulate enzyme from inner medulla exhibited apparent positive cooperative behavior and a decreased dependence on Mn2+. Thus, the particulate enzyme could play a key role in regulating cGMP levels inthe intact cell where Mn2+ concentrations are low. The soluble and particulate enzymes from inner medulla were further distinguished by their responses to several test agents. The soluble enzyme was activated by Ca2+, NaN3, NaNo2 and phenylhydrazine, whereas particulate activity was inhibited by Ca2+ and was unresponsive to the latter agents. In the presence of NaNo2, Mn2+ requirement of the soluble enzyme was reduced and equivalent to that of the particulate preparation. Moreover, relative responsiveness of the sollble enzyme to NaNO2 was potentiated when Mg2+ replaced Mn2+ as the sole divalent cation. These changes in metal requirements may be involved in the action of NaNO2 to increase cGMP in intact kidney. Soluble guanylate cyclase of cortex was clearly more responsive to stimulation by NaN3, Nano2, and phenylhydrazine that was soluble activity from either medullary tissue. The effectiveness of the agonists on soluble activity from outer and inner medulla cound also be distinguished. Accordingly, regulation and properties of soluble guanylate cyclase, as well as subcellular enzyme distribution, and distinct in the three regions of the kidney.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号