首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Expression of the Polyoma Middle T (PyMT) antigen in endothelial cells results in single-step transformation to hemangioma producing malignant cells. To study the mechanism of PyMT transformation, we used the PyMT induced mouse brain endothelial cell line, bEND.3, expressing constitutively active and dominant negative mutants of the small GTPase Rac. The bEND.3 cell phenotype of tumorigenesis, loss of normal growth control and formation of cysts rather than capillary tubes in fibrin gels was reversed by expression of dominant negative Rac. The mechanism of N17 Rac action in blocking the endothelial cell transformant, PyMT, did not involve effects of Rac on the actin cytoskeleton since this component of the bEND.3 cell phenotype was not affected. Furthermore, the PyMT induced activation of the plasminogen activator (PA)/plasmin system was not affected by Rac inhibition. Inhibition of the downstream effectors of Rac, phosphatidylinositol 3-kinase (PI3-K) and p70S6k, which are known to be constitutively activated by PyMT transformation, inhibited bEND.3 cell proliferation and cyst formation in fibrin gels even in cells expressing V12 constitutively active Rac, but they did not restore capillary tube formation. These results demonstrate that middle T antigen induced endothelial cell transformation requires signal transduction by Rac. The downstream Rac effectors, P13-K and p70S6k, mediate PyMT/Rac effects on cell proliferation and cyst formation, but other unknown effectors of PyMT are required for the cytoskeletal changes and activation of the PA/plasmin system.  相似文献   

2.
Expression of the Polyoma Middle T (PyMT) antigen in endothelial cells results in single-step transformation to hemangioma producing malignant cells. To study the mechanism of PyMT transformation, we used the PyMT induced mouse brain endothelial cell line, bEND.3, expressing constitutively active and dominant negative mutants of the small GTPase Rac. The bEND.3 cell phenotype of tumorigenesis, loss of normal growth control and formation of cysts rather than capillary tubes in fibrin gels was reversed by expression of dominant negative Rac. The mechanism of N17 Rac action in blocking the endothelial cell transformant, PyMT, did not involve effects of Rac on the actin cytoskeleton since this component of the bEND.3 cell phenotype was not affected. Furthermore, the PyMT induced activation of the plasminogen activator (PA)/plasmin system was not affected by Rac inhibition. Inhibition of the downstream effectors of Rae, phosphatidylinositol 3-kinase (P13-K) and p70S6k, which are known to be constitutively activated by PyMT transformation, inhibited bEND. cell proliferation and cyst formation in fibrin gels even in cells expressing V12 constitutively active Rac, but they did not restore capillary tube formation. These results demonstrate that middle T antigen induced endothelial cell transformation requires signal transduction by Rac. The downstream Rac effectors, P13-K and p70S6k, mediate PyMT/Rac effects on cell proliferation and cyst formation, but other unknown effectors of PyMT are required for the cytoskeletal changes and activation of the PA/plasmin system.  相似文献   

3.
Blood vessel formation requires endothelial cell interactions with the extracellular matrix through cell surface receptors, and signaling events that control endothelial cell adhesion, migration, and lumen formation. Laminin-8 (alpha4beta1gamma1) is present in all basement membranes of blood vessels in fetal and adult tissues, but despite its importance in vessel formation, its role in endothelial cell adhesion and migration remains undefined. We examined adhesion and migration of HMEC-1 human microvascular endothelial cells on laminin-8 with an emphasis on the integrin-mediated signaling events, as compared with those on laminin-10/11 and fibronectin. We found that laminin-8 was less potent in HMEC-1 cell adhesion than laminin-1, laminin-10/11, and fibronectin, and mediated cell adhesion through alpha6beta1 integrin. Despite its weak cell-adhesive activity, laminin-8 was as potent as laminin-10/11 in promoting cell migration. Cells adhering to laminin-8 displayed streaks of thin actin filaments and formed lamellipodia at the leading edge of the cells, as observed with cells adhering to laminin-10/11, while cells on fibronectin showed thick actin stress fibers and large focal adhesions. Pull-down assays of GTP-loaded Rho, Rac, and Cdc42 demonstrated that Rac, but not Rho or Cdc42, was preferentially activated on laminin-8 and laminin-10/11, when compared with fibronectin. Furthermore, a dominant-negative mutant of Rac suppressed cell spreading, lamellipodial formation, and migration on laminin-8, but not on fibronectin. These results, taken together, indicate that Rac is activated during endothelial cell adhesion to laminin-8, and is pivotal for alpha6beta1 integrin-mediated cell spreading and migration on laminin-8.  相似文献   

4.
The migration of tissue cells requires interplay between the microtubule and actin cytoskeletal systems. Recent reports suggest that interactions of microtubules with actin dynamics creates a polarization of microtubule assembly behavior in cells, such that microtubule growth occurs at the leading edge and microtubule shortening occurs at the cell body and rear. Microtubule growth and shortening may activate Rac1 and RhoA signaling, respectively, to control actin dynamics. Thus, an actin-dependent gradient in microtubule dynamic-instability parameters in cells may feed back through the activation of specific signalling pathways to perpetuate the polarized actin-assembly dynamics required for cell motility.  相似文献   

5.
The GTP-binding proteins, Rho, Rac and Cdc42 are known to regulate actin organisation. Rho induces the assembly of contractile actin-based microfilaments such as stress fibres, Rac regulates the formation of membrane ruffles and lamellipodia, and Cdc42 activation is necessary for the formation of filopodia. In addition, all three proteins can also regulate the assembly of integrin-containing focal adhesion complexes. The orchestration of these distinct cytoskeletal changes is thought to form the basis of the co-ordination of cell motility and we have investigated the roles of Rho family proteins in migration using a model system. We have found that in the macrophage cell line Bacl, the cytokine CSF-1 rapidly induces actin reorganisation: it stimulates the formation of filopodia, lamellipodia and membrane ruffles, as well as the appearance of fine actin cables within the cell. We have shown that Cdc42, Rac and Rho regulate the CSF-1 induced formation of these distinct actin filament-based structures. Using a cell tracking procedure we found that both Rho and Rac were required for CSF-1 stimulated cell translocation. In contrast, inhibition of Cdc42 does not prevent macrophages migrating in response to CSF-1, but does prevent recognition of a CSF-1 concentration gradient, so that cells now migrate randomly rather than up the gradient of this chemotactic cytokine. This implies that Cdc42, and thus probably filopodia, are required for gradient sensing and cell polarisation in macrophages.  相似文献   

6.
Wound keratinocytes form long cellular extensions that facilitate their migration from the wound edge into provisional matrix. We have previously shown that similar extensions can be induced by a long-term exposure to EGF or rapidly by staurosporine in cultured cells. This morphological change depends on the activity of glycogen synthase kinase-3 (GSK-3). Here, we have characterized the cytoskeletal changes involved in formation of these extended lamellipodia (E-lam) in human HaCaT keratinocytes. E-lams contained actin filaments, stable microtubules and keratin intermediate filaments. E-lam formation was prevented by cytochalasin D, colchicine and low concentrations of taxol and nocodazole, suggesting that actin and microtubule organization and dynamics are essential for E-lam formation. Staurosporine induced recruitment of filamentous actin (F-actin), cortactin, filamin, Arp2/3 complex, Rac1 GTPase and phospholipase C-gamma1 (PLC-gamma1) to lamellipodia. Treatment of cells with the GSK-3 inhibitors SB-415286 and LiCl(2) inhibited E-lam formation and prevented the accumulation of Rac1 and Arp2/3 complex at lamellipodia. The formation of E-lams was dependent on fibronectin-binding integrins and normally regulated Rac1, and expression of either dominant-negative or constitutively active forms of Rac1 prevented E-lam formation. Overexpression of either RhoA or Cdc42 GTPases suppressed E-lam formation. We conclude that extended lamellipodia formation in keratinocytes requires actin and tubulin assembly at the leading edge, and this process is regulated by Rac1 downstream of GSK-3.  相似文献   

7.
Angiogenesis involved numerous interactions between extracellular matrix and endothelial cells which may exhibit changes in actin filament distribution. Using an in vitro model, capillary endothelial cells were grown in fibrin matrix containing fibronectin or hyaluronic acid. Actin filament distribution, nucleus localization and cell morphology were observed. Preliminary study showed the formation of tube-, branche- and capillary-like structures within fibrin. In the presence of both fibrin and fibronectin, cells with actin filament stress fibers were more spreading than those in fibrin. In the presence of hyaluronic acid, tubes were limited in extension into the fibrin. In addition, the study of co-localization of nucleus and actin filaments showed different cell behaviours. Migratory cells seem to arrange in parallel to each other and a capillary-like structure may be formed at the proximal extremity of this cell pattern.  相似文献   

8.
During the dental pulp repair process, dental pulp cells (DPCs) migrate to the site of injury and differentiate into odontoblasts or odontoblast-like cells. Although migration of DPCs is an important reparative process, the underlying mechanism remains unknown. The objective of this study was to determine the roles of lysophosphatidic acid (LPA) and the Rho-associated kinase (ROCK) pathway in the migration and morphology of dental pulp cells and alpha smooth muscle actin expression in vitro. We demonstrated that both LPA and ROCK inhibition enhanced cell motility and that their combined effects significantly increased migration rate. LPA induced fine cytoskeleton assembly and increased the level of alpha smooth muscle actin (α-SMA). ROCK inhibition by Y-27632 and ROCK-(1+2) small interfering RNA (siRNA) resulted in less actin cytoskeleton formation, a lower α-SMA level, a star-like cellular morphology and membrane ruffling. LPA and ROCK inhibition induced activation of another Rho GTPase, Rac, which may explain how LPA and ROCK inhibition increases cellmigration and lamellipodium formation.  相似文献   

9.
Dynamic actin rearrangements are initiated and maintained by actin filament nucleators, including the Arp2/3-complex. This protein assembly is activated in vitro by distinct nucleation-promoting factors such as Wiskott-Aldrich syndrome protein/Scar family proteins or cortactin, but the relative in vivo functions of each of them remain controversial. Here, we report the conditional genetic disruption of murine cortactin, implicated previously in dynamic actin reorganizations driving lamellipodium protrusion and endocytosis. Unexpectedly, cortactin-deficient cells showed little changes in overall cell morphology and growth. Ultrastructural analyses and live-cell imaging studies revealed unimpaired lamellipodial architecture, Rac-induced protrusion, and actin network turnover, although actin assembly rates in the lamellipodium were modestly increased. In contrast, platelet-derived growth factor-induced actin reorganization and Rac activation were impaired in cortactin null cells. In addition, cortactin deficiency caused reduction of Cdc42 activity and defects in random and directed cell migration. Reduced migration of cortactin null cells could be restored, at least in part, by active Rac and Cdc42 variants. Finally, cortactin removal did not affect the efficiency of receptor-mediated endocytosis. Together, we conclude that cortactin is fully dispensable for Arp2/3-complex activation during lamellipodia protrusion or clathrin pit endocytosis. Furthermore, we propose that cortactin promotes cell migration indirectly, through contributing to activation of selected Rho-GTPases.  相似文献   

10.
The intermediate filament protein vimentin is involved in the regulation of cell behavior, morphology, and mechanical properties. Previous studies using cells cultured on glass or plastic substrates showed that vimentin is largely insoluble. Although substrate stiffness was shown to alter many aspects of cell behavior, changes in vimentin organization were not reported. Our results show for the first time that mesenchymal stem cells (hMSCs), endothelial cells, and fibroblasts cultured on different-stiffness substrates exhibit biphasic changes in vimentin detergent solubility, which increases from nearly 0 to 67% in hMSCs coincident with increases in cell spreading and membrane ruffling. When imaged, the detergent-soluble vimentin appears to consist of small fragments the length of one or several unit-length filaments. Vimentin detergent solubility decreases when these cells are subjected to serum starvation, allowed to form cell–cell contacts, after microtubule disruption, or inhibition of Rac1, Rho-activated kinase, or p21-activated kinase. Inhibiting myosin or actin assembly increases vimentin solubility on rigid substrates. These data suggest that in the mechanical environment in vivo, vimentin is more dynamic than previously reported and its assembly state is sensitive to stimuli that alter cellular tension and morphology.  相似文献   

11.
Cell migration and wound contraction requires assembly of actin into a functional myosin motor unit capable of generating force. However, cell migration also involves formation of actin-containing membrane ruffles. Evidence is provided that actin-myosin assembly and membrane ruffling are regulated by distinct signaling pathways in the migratory cell. Interaction of cells with extracellular matrix proteins or cytokines promote cell migration through activation of the MAP kinases ERK1 and ERK2 as well as the molecular coupling of the adaptor proteins p130CAS and c-CrkII. ERK signaling is independent of CAS/Crk coupling and regulates myosin light chain phosphorylation leading to actin-myosin assembly during cell migration and cell-mediated contraction of a collagen matrix. In contrast, membrane ruffling, but not cell contraction, requires Rac GTPase activity and the formation of a CAS/Crk complex that functions in the context of the Rac activating protein DOCK180. Thus, during cell migration ERK and CAS/Crk coupling operate as components of distinct signaling pathways that control actin assembly into myosin motors and membrane ruffles, respectively.  相似文献   

12.
Rho family GTPases, particularly Rac1 and Cdc42, are key regulators of cell polarization and directional migration. Adenomatous polyposis coli (APC) is also thought to play a pivotal role in polarized cell migration. We have found that IQGAP1, an effector of Rac1 and Cdc42, interacts directly with APC. IQGAP1 and APC localize interdependently to the leading edge in migrating Vero cells, and activated Rac1/Cdc42 form a ternary complex with IQGAP1 and APC. Depletion of either IQGAP1 or APC inhibits actin meshwork formation and polarized migration. Depletion of IQGAP1 or APC also disrupts localization of CLIP-170, a microtubule-stabilizing protein that interacts with IQGAP1. Taken together, these results suggest a model in which activation of Rac1 and Cdc42 in response to migration signals leads to recruitment of IQGAP1 and APC which, together with CLIP-170, form a complex that links the actin cytoskeleton and microtubule dynamics during cell polarization and directional migration.  相似文献   

13.
Cyclic AMP (cAMP) is a pleiotropic second messenger that regulates numerous cellular processes. In vascular smooth muscle cells (VSMCs), these include cell proliferation, migration, and contractility. Here we show that cAMP-elevating agents induce dramatic morphological changes in VSMCs, characterized by cell rounding and formation of long branching processes. The stellate morphology is associated with disassembly of actin stress fibers and lamellipodia, loss of focal adhesions, and the formation of small F-actin rings. Because of the importance of Rho family GTPases in regulating actin dynamics, we analyzed their individual roles in the cAMP phenotype. We found that pharmacological or genetic inhibition of Rac mimics cAMP effect in inducing a stellate morphology of VSMCs. Expression of activated Rac1 prevents forskolin-induced cAMP stellation, suggesting that cAMP affects cell morphology by inhibiting Rac function. Consistent with this, treatment with forskolin inhibits agonist-stimulated Rac activation in VSMCs. We further show that activated Rac1 containing the F37A effector loop substitution fails to rescue the cAMP phenotype. Our results suggest that cAMP modulates the morphology of VSMCs by inhibiting a Rac-dependent signaling pathway.  相似文献   

14.
15.
Over the past several years, it has become clear that the Rho family of GTPases plays an important role in various aspects of neuronal development including cytoskeleton dynamics and cell adhesion processes. We have analysed the role of MEGAP, a GTPase-activating protein that acts towards Rac1 and Cdc42 in vitro and in vivo, with respect to its putative regulation of cytoskeleton dynamics and cell migration. To investigate the effects of MEGAP on these cellular processes, we have established an inducible cell culture model consisting of a stably transfected neuroblastoma SHSY-5Y cell line that endogenously expresses MEGAP albeit at low levels. We can show that the induced expression of MEGAP leads to the loss of filopodia and lamellipodia protrusions, whereas constitutively activated Rac1 and Cdc42 can rescue the formation of these structures. We have also established quantitative assays for evaluating actin dynamics and cellular migration. By time-lapse microscopy, we show that induced MEGAP expression reduces cell migration by 3.8-fold and protrusion formation by 9-fold. MEGAP expressing cells also showed impeded microtubule dynamics as demonstrated in the TC-7 3x-GFP epithelial kidney cells. In contrast to the wild type, overexpression of MEGAP harbouring an artificially introduced missense mutation R542I within the functionally important GAP domain did not exert a visible effect on actin and microtubule cytoskeleton remodelling. These data suggest that MEGAP negatively regulates cell migration by perturbing the actin and microtubule cytoskeleton and by hindering the formation of focal complexes.  相似文献   

16.
Rho GTPases regulate multiple signal transduction pathways that influence many aspects of cell behaviour, including migration, morphology, polarity and cell cycle. Through their ability to control the assembly and organization of the actin and microtubule cytoskeletons, Rho and Cdc42 make several key contributions during the mitotic phase of the cell cycle, including spindle assembly, spindle positioning, cleavage furrow contraction and abscission. We now report that PRK2/PKN2, a Ser/Thr kinase and Rho/Rac effector protein, is an essential regulator of both entry into mitosis and exit from cytokinesis in HeLa S3 cells. PRK2 is required for abscission of the midbody at the end of the cell division cycle and for phosphorylation and activation of Cdc25B, the phosphatase required for activation of mitotic cyclin/Cdk1 complexes at the G2/M transition. This reveals an additional step in the mammalian cell cycle controlled by Rho GTPases.  相似文献   

17.
Most animal cells use a combination of actin-myosin–based contraction and actin polymerization– based protrusion to control their shape and motility. The small GTPase Rho triggers the formation of contractile stress fibers and focal adhesion complexes (Ridley, A.J., and A. Hall. 1992. Cell. 70:389–399) while a close relative, Rac, induces lamellipodial protrusions and focal complexes in the lamellipodium (Nobes, C.D., and A. Hall. 1995. Cell. 81:53–62; Ridley, A.J., H.F. Paterson, C.L. Johnston, D. Diekmann, and A. Hall. 1992. Cell. 70:401–410); the Rho family of small GTPases may thus play an important role in regulating cell movement. Here we explore the roles of actin polymerization and extracellular matrix in Rho- and Rac-stimulated cytoskeletal changes. To examine the underlying mechanisms through which these GTPases control F-actin assembly, fluorescently labeled monomeric actin, Cy3-actin, was introduced into serum-starved Swiss 3T3 fibroblasts. Incorporation of Cy3- actin into lamellipodial protrusions is concomitant with F-actin assembly after activation of Rac, but Cy3-actin is not incorporated into stress fibers formed immediately after Rho activation. We conclude that Rac induces rapid actin polymerization in ruffles near the plasma membrane, whereas Rho induces stress fiber assembly primarily by the bundling of actin filaments. Activation of Rho or Rac also leads to the formation of integrin adhesion complexes. Integrin clustering is not required for the Rho-induced assembly of actin-myosin filament bundles, or for vinculin association with actin bundles, but is required for stress fiber formation. Integrin-dependent focal complex assembly is not required for the Rac-induced formation of lamellipodia or membrane ruffles. It appears, therefore, that the assembly of large integrin complexes is not required for most of the actin reorganization or cell morphology changes induced by Rac or Rho activation in Swiss 3T3 fibroblasts.  相似文献   

18.
Rab5 is a regulatory GTPase of vesicle docking and fusion that is involved in receptor-mediated endocytosis and pinocytosis. Introduction of active Rab5 in cells stimulates the rate of endocytosis and vesicle fusion, resulting in the formation of large endocytic vesicles, whereas dominant negative Rab5 inhibits vesicle fusion. Here we show that introduction of active Rab5 in fibroblasts also induced reorganization of the actin cytoskeleton but not of microtubule filaments, resulting in prominent lamellipodia formation. The Rab5-induced lamellipodia formation did not require activation of PI3-K or the GTPases Ras, Rac, Cdc42, or Rho, which are all strongly implicated in cytoskeletal reorganization. Furthermore, lamellipodia formation by insulin, Ras, or Rac was not affected by expression of dominant negative Rab5. In addition, cells expressing active Rab5 displayed a dramatic stimulation of cell migration, with the lamellipodia serving as the leading edge. Both lamellipodia formation and cell migration were dependent on actin polymerization but not on microtubules. These results demonstrate that Rab5 induces lamellipodia formation and cell migration and that the Rab5-induced lamellipodia formation occurs by a novel mechanism independent of, and distinct from, PI3-K, Ras, or Rho-family GTPases. Thus, Rab5 can control not only endocytosis but also actin cytoskeleton reorganization and cell migration, which provides strong support for an intricate relationship between these processes.  相似文献   

19.
Cell adhesion to extracellular matrix is an important physiological stimulus for organization of the actin-based cytoskeleton. Adhesion to the matrix glycoprotein thrombospondin-1 (TSP-1) triggers the sustained formation of F-actin microspikes that contain the actin-bundling protein fascin. These structures are also implicated in cell migration, which may be an important function of TSP-1 in tissue remodelling and wound repair. To further understand the function of fascin microspikes, we examined whether their assembly is regulated by Rho family GTPases. We report that expression of constitutively active mutants of Rac or Cdc42 triggered localization of fascin to lamellipodia, filopodia, and cell edges in fibroblasts or myoblasts. Biochemical assays demonstrated prolonged activation of Rac and Cdc42 in C2C12 cells adherent to TSP-1 and activation of the downstream kinase p21-activated kinase (PAK). Expression of dominant-negative Rac or Cdc42 in C2C12 myoblasts blocked spreading and formation of fascin spikes on TSP-1. Spreading and spike assembly were also blocked by pharmacological inhibition of F-actin turnover. Shear-loading of monospecific anti-fascin immunoglobulins, which block the binding of fascin to actin into cytoplasm, strongly inhibited spreading, actin cytoskeletal organization and migration on TSP-1 and also affected the motility of cells on fibronectin. We conclude that fascin is a critical component downstream of Rac and Cdc42 that is needed for actin cytoskeletal organization and cell migration responses to thrombospondin-1.  相似文献   

20.
In fibroblasts and keratocytes, motility is actin dependent, while microtubules play a secondary role, providing directional guidance. We demonstrate here that the motility of glioblastoma cells is exceptional, in that it occurs in cells depleted of assembled actin. Cells display persistent motility in the presence of actin inhibitors at concentrations sufficient to fully disassemble actin. Such actin independent motility is characterized by the extension of cell protrusions containing abundant microtubule polymers. Strikingly, glioblastoma cells exhibit no motility in the presence of microtubule inhibitors, at concentrations that disassemble labile microtubule polymers. In accord with an unconventional mode of motility, glioblastoma cells have some unusual requirements for the Rho GTPases. While Rac1 is required for lamellipodial protrusions in fibroblasts, expression of dominant negative Rac1 does not suppress glioblastoma migration. Other GTPase mutants are largely without unique effect, except dominant positive Rac1-Q61L, and rapidly cycling Rac1-F28L, which substantially suppress glioblastoma motility. We conclude that glioblastoma cells display an unprecedented mode of intrinsic motility that can occur in the absence of actin polymer, and that appears to require polymerized microtubules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号