首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
X-linked hydrocephalus (HSAS) is the most frequent genetic form of hydrocephalus. Clinical symptoms of HSAS include hydrocephalus, mental retardation, clasped thumbs, and spastic paraparesis. Recently we have assigned the HSAS gene to Xq28 by linkage analysis. In the present study we used a panel of 18 Xq27-q28 marker loci to further localize the HSAS gene in 13 HSAS families of different ethnic origins. Among the Xq27-q28 marker loci used, DXS52, DXS15, and F8C gave the highest combined lod scores, of 14.64, 6.53 and 6.33, respectively, at recombination fractions of .04, 0, and .05, respectively. Multipoint linkage analysis localizes the HSAS gene in the telomeric part of the Xq28 region, with a maximal lod score of 20.91 at 0.5 cM distal to DXS52. Several recombinations between the HSAS gene and the Xq28 markers DXS455, DXS304, DXS305, and DXS52 confirm that the HSAS locus is distal to DXS52. One crossover between HSAS and F8C suggests that HSAS gene to be proximal to F8C. Therefore, data from multipoint linkage analysis and the localization of key crossovers indicate that the HSAS gene is most likely located between DXS52 and F8C. This high-resolution genetic mapping places the HSAS locus within a region of less than 2 Mb in length, which is now amenable to positional cloning.  相似文献   

2.
The genomic sequences recognized by the anonymous probe 767 (DXS115) are localized to two sites within Xq28. One site lies within intron 22 of the factor VIII gene (FBC). Physical mapping suggests that the second site lies within 1.2 megabases of the F8C gene. The RFLPs detected by 767 are located within the second site. Genetic data suggest that F8C and DXS115 are tightly linked (theta max = .04; Zmax = 8.30). Recombination events in meioses informative for DXS52 (St14), DXS115, and F8C suggest that DXS115 and F8C lie distal to DXS52.  相似文献   

3.
Summary The oto-palado-digital syndrome (OPD) is a rare X-linked disease with diagnostic skeletal features, conduction deafness, cleft palate and mild mental retardation. Differences in clinical presentation between families have led investigators to classify OPD into two subtypes: type I and type II. A linkage study performed in one family segregating for OPD I has recently suggested linkage to three marker loci: DXS15, DXS52 at Xq28, and DXS86 at Xq26. We have investigated an additional OPD I family for linkage by using distal chromosome Xq DNA probes. The linkage data and the analysis of recombination events that have occurred in this family excluded, definitively, the Xq26 region for OPD I, and provide further support for mapping the mutant gene close to the cluster of tightly linked markers DXS15, DXS52 and DXS305 at Xq28.  相似文献   

4.
Genomic DNA segments for the coagulation factor VIIIc gene (F8C), which exhibits only limited restriction length polymorphism, map to the proximal region of band Xq28 by somatic cell hybridization analysis and in situ hybridization. Using somatic cell hybrids, we have obtained data which place probes DX13 (used to detect locus DXS15) and St14 (used to detect DXS52) distal to F8C, within band Xq28. Previous studies have mapped the factor IX gene (F9) and probe 52A (used to detect DXS51) proximal to F8C, in Xq26----q27 and Xq27, respectively (Camerino et al., 1984; Drayna et al., 1984; Mattei et al., 1985). Thus, the relative order of genetic marker loci in the Xq27----qter region is most likely cen-F9-DXS51-F8C-(DXS15, DXS52)-Xqter. The collection of these molecular probes is thus potentially useful in three-factor crosses of factor VIII gene segregation.  相似文献   

5.
Nephrogenic diabetes insipidus (NDI; designated 304800 in Mendelian Inheritance in Man) is an X-linked disorder with abnormal renal and extrarenal V2 vasopressin receptor responses. The mutant gene has been mapped to Xq28 by analysis of RFLPs, and tight linkage between DXS52 and NDI has been reported. In 1969, Bode and Crawford proposed, under the term "the Hopewell hypothesis," that most cases in North America could be traced to descendants of Ulster Scots who arrived in Nova Scotia in 1761 on the ship Hopewell. They also suggested a link between this family and a large Mormon pedigree. DNA samples obtained from 13 independent affected families, including 42 members of the Hopewell and Mormon pedigrees, were analyzed with probes in the Xq28 region. Genealogical reconstructions were performed. Linkage between NDI and DXS304 (probe U6:2.spl), DXS305 (St35-691), DXS52 (St14-1), DXS15 (DX13), and F8C (F814) showed no recombination in 12 families, with a maximum lod score of 13.5 for DXS52. A recombinant between NDI and DXS304, DXS305, was identified in one family. The haplotype segregating with the disease in the Hopewell pedigree was not shared by other North American families. PCR analysis of the St14 VNTR allowed the distinction of two alleles that were not distinguishable by Southern analysis. Carrier status was predicted in 24 of 26 at-risk females. The Hopewell hypothesis cannot explain the origin of NDI in many of the North American families, since they have no apparent relationship with the Hopewell early settlers, either by haplotype or by genealogical analysis. We confirm the locus homogeneity of the disease by linkage analysis in ethnically diverse families. PCR analysis of the DXS52 VNTR in NDI families is very useful for carrier testing and presymptomatic diagnosis, which can prevent the first manifestations of dehydration.  相似文献   

6.
Assignment of the gene for dyskeratosis congenita to Xq28   总被引:16,自引:0,他引:16  
Summary Dyskeratosis congenita is an X-linked recessive disorder with diagnostic dermatological features, bone marrow hypofunction, and a predisposition to neoplasia in early adult life. Linkage analysis was undertaken in an extensive family with the condition using the Xg blood group and 17 cloned X chromosomal DNA sequences which recognise restriction fragment length polymorphisms (RFLPs). No recombination was observed between the locus for dyskeratosis congenita (DKC) and the RFLPs identified by DXS52 (St 14-1) (Zmax=3.33 at max=0 with 95% confidence limits of 0 to 14 cM). Similarly no recombination was observed for the disease locus and F8 (Zmax=1.23 at max=0) nor for DXS15 (Zmax=1.62 at max=0), but both of these markers were only informative in part of the family whereas DXS52 was fully informative. DXS52, DXS15, and F8 are known to be tightly linked and have previously been assigned to Xq28. Thus the gene for dyskeratosis congenita can be assigned to Xq28. These DNA sequence polymorphisms will be of clinical value for carrier detection and prenatal diagnosis.  相似文献   

7.
We are using pulsed-field gel electrophoresis (PFGE) to establish a physical map of the human Xq28 region. We have identified a new probe 35.239 (DXYS64), localized in Xq28 by somatic hybrid mapping and belonging to a region of greater than 99% homology between the X and the Y chromosomes. PFGE data show that probes 35.239 and the polymorphic locus DXS115 (probe 767) map within a common 300-kb BssHII fragment. Both probes, in addition, hybridize to 575-kb BssHII and 590-kb ClaI fragments that contain the gene coding for coagulation factor VIII (F8C). The order F8C-DXS115-DXYS64 could be determined. Our results also provide evidence for linkage between the red/green color vision locus (RCP,GCP) and probes MD13 and T1.7 (GdX, DXS254) within a 750-kb ClaI fragment. Although the latter two probes are located within 50 kb of the 3' end of the G6PD gene, a G6PD cDNA probe did not hybridize to this fragment. G6PD, on the other hand, could be linked to F8C on a 290-kb BssHII fragment. All these data allow us to propose the order (RCP,GCP)-MD13-GdX-G6PD-F8C-DXS115-DXYS 64. We also linked probes St14 (DXS52), MN12 (DXS33), and DX13 (DXS15) to a member of a small family of X-linked dispersed sequences (DNF22S3) within a 575-kb BssHII fragment. The preliminary physical map presented here should be useful for further fine mapping of disease genes in the Xq28 region and should be helpful in orientating efforts toward the cloning of sequences close to the fragile X syndrome.  相似文献   

8.
Emery-Dreifuss muscular dystrophy (EDMD) is an X-linked humeroperoneal dystrophy associated with cardiomyopathy that is distinct from the Duchenne and Becker forms of X-linked muscular dystrophy. Linkage analysis has assigned EDMD to the terminal region of the human X chromosome long arm. We report here further linkage analysis in two multigenerational EDMD families using seven Xq28 marker loci. Cumulative lod scores suggest that EDMD is approximately 2 cM from DXS52 (lod = 15.67) and very close to the factor VIII (F8C) and the red/green color pigment (R/GCP) loci, with respective lod scores of 9.62 and 10.77, without a single recombinant. Several recombinations between EDMD and three proximal Xq28 markers suggest that the EDMD gene is located in distal Xq28. Multipoint linkage analysis indicates that the odds are 2,000:1 that EDMD lies distal to DXS305. These data substantially refine the ability to perform accurate carrier detection, prenatal diagnosis, and the presymptomatic diagnosis of at-risk males for EDMD by linkage analysis. The positioning of the EDMD locus close to the loci for F8C and R/GCP will assist in future efforts to identify and isolate the disease gene.  相似文献   

9.
Summary The polymorphic DNA marker DXS304 detected by probe U6.2 has recently been shown to be closer to the fragile X locus than previously available markers. Its usefulness has however been limited by its relatively low heterozygosity. We have isolated, by cosmid cloning, a 67 kilobase region around probe U6.2 and have characterized a new probe (U6.2-20E) that detects BanI and BstEII restriction fragment length polymorphisms (RFLPs). The BanI RFLP has a heterozygosity of 0.49 and is in partial linkage disequilibrium with the previously described polymorphism, with a combined heterozygosity of 0.63. Furthermore, we have found that the U6.2 original probe, which probably detects an insertion-deletion polymorphism, is also informative in BanI digests. Thus, the two informative RFLPs at the DXS304 locus can be conveniently tested in a single hybridization with a single digest. An updated linkage analysis confirms that DXS304 is distal to the fragile X locus. This informative locus can now be used effectively for genetic mapping of the Xq27–q28 region, and for diagnostic applications in fragile X or Hunter syndrome families.  相似文献   

10.
Genetic mapping of new RFLPs at Xq27-q28.   总被引:15,自引:0,他引:15  
The development of the human gene map in the region of the fragile X mutation (FRAXA) at Xq27 has been hampered by a lack of closely linked polymorphic loci. The polymorphic loci DXS369 (detected by probe RN1), DXS296 (VK21A, VK21C), and DXS304 (U6.2) have recently been mapped to within 5 cM of FRAXA. The order of loci near FRAXA has been defined on the basis of physical mapping studies as cen-F9-DXS105-DXS98-DXS369-DXS297-FRAXA-++ +DXS296-IDS-DXS304-DXS52-qter. The probe VK23B detected HindIII and XmnI restriction fragment length polymorphisms (RFLPs) at DXS297 with heterozygote frequencies of 0.34 and 0.49, respectively. An IDS cDNA probe, pc2S15, detected StuI and TaqI RFLPs at IDS with heterozygote frequencies of 0.50 and 0.08, respectively. Multipoint linkage analysis of these polymorphic loci in normal pedigrees indicated that the locus order was F9-(DXS105, DXS98)-(DXS369, DXS297)-(DXS293,IDS)-DXS304-DXS52. The recombination fractions between adjacent loci were F9-(0.058)-DXS105-(0.039)-DXS98-(0.123)-DXS369-(0.00)- DXS297-(0.057)-DXS296- (0.00)-IDS-(0.012)-DXS304-(0.120)-DXS52. This genetic map will provide the basis for further linkage studies of both the fragile X syndrome and other disorders mapped to Xq27-q28.  相似文献   

11.
Caltractin belongs to a family of calcium-binding proteins and is a structural component of the centrosome. A human caltractin cDNA (CALT) has recently been mapped by fluorescence in situ hybridization (FISH) to Xq28. We report here refined mapping of the human CALT gene and its murine homolog between the loci DXS1104 (DXHXS1104) and DXS52 (DXHXS52) by PCR and Southern analysis of YACs and somatic cell hybrids from the region in both species. These mapping studies place the gene within the critical region for the murine X-linked dominant, male lethal mutations bare patches and striated.  相似文献   

12.
Repeated DNA sequences in the distal long arm of the human X chromosome   总被引:1,自引:1,他引:0  
Summary Two DNA probes from within a single large insert from a recombinant phage-DNA library that was constructed from flow-sorted chromosomes enriched for the human X chromosome were shown to hybridize with repeated X-specific and autosomal DNA sequences. The X-chromosomal repeated sequences were assigned to the distal long arm of the X chromosome by both hybrid mapping and in situ hybridization. Fine mapping places these repeats in a region of Xq28 between DX13 (DXS15, in distal Xq28) and factor VIII (F8C, in proximal Xq28). The location of the X-specific repeats makes them potentially useful for future investigations of discases mapping to the distal long arm of the X chromosome, such as the fragile X syndrome.  相似文献   

13.
We isolated X-chromosomal DNA probes from a cosmid library constructed from a single human X/hamster hybrid-cell line (C12D). One hundred human clones were isolated and used to construct a pool of X-chromosomal DNA. This DNA was digested into 0.15-2-kb fragments and subcloned into plasmids allowing the rapid characterization of new single-copy probes. These were regionally mapped and used for the detection of restriction-site polymorphisms. Together with a series of subcloned probes from individually isolated cosmids, we found seven polymorphic probes among 53 tested. Thirty-one of the probes were physically localized to different regions of the X chromosome. Four polymorphic probes map to Xq27-Xq28: DXS102 (cX38.1), DXS105(cX55.7), DXS107(cpX234), and DXS134(cpX67). These were genetically mapped by multipoint analysis relative to previously characterized loci, a mapping that resulted in the following order: DXYS1, DXS107, DXS51/DXS102, F9, DXS105, Fra-X, F8/DXS52, DXS15, DXS134. The mapping of DXS105 between F9 and Fra-X makes this probe useful for Fra-X analysis. For the linkage between FraX and DXS105, a maximum lod score of 5.01 at 4 cMorgans has been obtained in one large Dutch pedigree.  相似文献   

14.
Genetic Linkage Heterogeneity in Myotubular Myopathy   总被引:3,自引:1,他引:2       下载免费PDF全文
Myotubular myopathy is a severe congenital disease inherited as an X-linked trait (MTM1; McKusick 31040). It has been mapped to the long arm of chromosome X, to the Xq27-28 region. Significant linkage has subsequently been established for the linkage group comprised of DXS304, DXS15, DXS52, and F8C in several studies. To date, published linkage studies have provided no evidence of genetic heterogeneity in severe neonatal myotubular myopathy (XLMTM). We have investigated a family with typical XLMTM in which no linkage to these markers was found. Our findings strongly suggest genetic heterogeneity in myotubular myopathy and indicate that great care should be taken when using Xq28 markers in linkage studies for prenatal diagnosis and genetic counseling.  相似文献   

15.
The gene for the neural cell adhesion molecule L1 (L1CAM) has been shown to be located close to the color vision pigment genes in mouse and man. This location has been confirmed by a number of different mapping strategies in both species. With pulsed field gel electrophoresis it has been proposed that L1CAM lies between the RCP, GCP, and GDX, G6PD loci. We report here a reinterpretation of the location of this gene, based on the physical linkage of L1CAM to the more proximal locus DXS15. This places L1CAM between this marker and the color vision genes (RCP, GCP), a region very dense in CpG islands, expected to contain a large fraction of the disease genes assigned to the Xq28 region. In combination with the physical mapping data on Xq28 described previously, this closes the last remaining gap in the map of the Xq27–Xq28 region. This removes the last contradiction between the maps of this region in the genomes of man and mouse, and confirms the close similarity of order and distances of markers between these organisms. Offprint requests to: C.M. Disteche  相似文献   

16.
Summary Two sisters with premature menopause and a small deletion of the long arm of one of their X chromosomes [del (X)(pterq26.3:)] were investigated with polymorphic DNA probes near the breakpoint. The deleted chromosome retained the factor IX (F9) locus and the loci DXS51 (52A) and DXS100 (pX45h), which are proximal to F9. However, the factor VIII (F8) locus was not present, nor were two loci tightly linked to this locus, DXS52 (St14) and DXS15 (DX13) This deletion refines the location of the F9 locus to Xq26 or to the interface Xq26/Xq27, thus placing it more proximally than has been previously reported. The DNA obtained from these patients should be valuable in the mapping of future probes derived from this region of the X chromosome.  相似文献   

17.
We report the isolation and characterization of a novel DNA marker (1A1) in Xqter in the region of the fragile X. Genetic studies in families segregating for the fragile X syndrome suggest that 1A1 lies between the disease mutation and the distal locus, DXS52. Studies in normal and fragile X families show that 1A1 is tightly linked to DXS52 (Zmax = 17.20; theta max = 0.03) and F8 (Zmax = 7.01; theta max = 0.08). Multipoint mapping of families supports the order Xcen-DXS105-FRAXA-1A1-DXS52-(F8, DXS115)-Xqter. Pulsed-field gel electrophoresis (PFGE) studies demonstrate that 1A1 defines a new region of at least 2 Mb of DNA not physically linked to DXS52 or F8, thus extending the physical map of Xq27-qter to over 4 Mb. Complex partial digestion PFGE patterns, probably due to differing degrees of methylation, are observed with 1A1 in unrelated normal and fragile-X-positive individuals, whereas other distal markers give uniform digestion profiles. Physical data suggest that 1A1 lies in a region less CpG rich than other distal markers in Xq27-qter.  相似文献   

18.
Summary The q26–q28 region of the human X chromosome contains several important disease loci, including the locus for the fragile X mental retardation syndrome. We have characterized new polymorphic DNA markers useful for the genetic mapping of this region. They include a new BclI restriction fragment length polymorphism (RFLP) detected by the probe St14-1 (DXS52) and which may therefore be of diagnostic use in hemophilia A families. A linkage analysis was performed in fragile X families and in large normal families from the Centre d'Etude du Polymorphisme Humain (CEPH) by using seven polymorphic loci located in Xq26-q28. This multipoint linkage study allowed us to establish the order centromere-DXS100-DXS86-DXS144-DXS51-F9-FRAX-(DXS52-DXS15). Together with other studies, our results define a cluster of nine loci that are located in Xq26-q27 and map within a 10 to 15 centimorgan region. This contrasts with the paucity of markers (other than the fragile X locus) between the F9 gene in q27 and the G6PD cluster in q28, which are separated by about 30% recombination.  相似文献   

19.
We report the study of five independent X-linked hydrocephalus (HSAS1) families with polymorphic DNA markers of the Xq28 region. A total of 58 individuals, including 7 living affected males and 22 obligate carriers, have been studied. Maximum lod score was 7.21 at theta = 2.40% for DXS52 (St14-1). A single recombination event was observed between this marker and the HSAS1 locus. Other markers studied were DXS296 (Z = 2.02 at theta = 2.5%), DXS304 (Z = 4.37 at theta = 7.8%), DXS74 (Z = 3.50 at theta = 0%), DXS15 (Z = 1.96 at theta = 5.7%), DXS134 (Z = 3.31 at theta = 0%), and F8C (Z = 5.79 at theta = 0%). These data confirm the localization of the HSAS1 gene to Xq28 and provide evidence for genetic homogeneity of this syndrome. In addition, examination of two obligate recombinant meioses along with multipoint linkage analysis supports the distal localization of the HSAS1 locus with respect to the DXS52 cluster. These observations are of potential interest for future studies aimed at HSAS1 gene characterization.  相似文献   

20.
X-linked hydrocephalus is a well-defined disorder which accounts for > or = 7% of hydrocephalus in males. Pathologically, the condition is characterized by stenosis or obliteration of the aqueduct of Sylvius. Previous genetic linkage studies have suggested the likelihood of genetic homogeneity for this condition, with close linkage to the DXS52 and F8C markers in Xq28. We have investigated a family with typical X-linked aqueductal stenosis, in which no linkage to these markers was present. In this family, close linkage was established to the DXS548 and FRAXA loci in Xq27.3. Our findings demonstrate that X-linked aqueductal stenosis may result from mutations at two different loci on the X chromosome. Caution is indicated in using linkage for the prenatal diagnosis of X-linked hydrocephalus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号