共查询到20条相似文献,搜索用时 0 毫秒
1.
Exendin 1-39 amide (Ex-4) and its truncated form exendin 9-39 amide (Ex-9) are peptides of non-mammalian nature, which act as an agonist and antagonist, respectively, of the glucagon-like peptide-1 (GLP-1) receptor in mammals. GLP-1 is an intestinal peptide that plays an important role in the regulation of glucose metabolism and glucose uptake in skeletal muscle; however, the effects of its two analogs (Ex-4 and Ex-9) on myofiber properties are still unclear. Here, we report the effects of Ex-4 and Ex-9 alone or in combination on the myosin heavy chain (MyHC) type composition and the glucose uptake capacity in differentiated C2C12 myotubes. Neither Ex-4 nor Ex-9 altered basal glucose uptake, whereas Ex-9 significantly increased insulin-stimulated glucose uptake, suggesting enhanced insulin sensitivity. The mRNA expression of MyHC I and 2A as well as the percentage of MyHC I protein was remarkably increased in Ex-9-treated myotubes. In contrast, Ex-4, alone or in combination with Ex-9, caused a significant reduction in MyHC 2A mRNA expression and the percentage of MyHC I protein. Consistent with the MyHC type switching peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α expression in myotubes was remarkably increased by Ex-9 yet was significantly inhibited by Ex-4. In addition, intracellular concentrations of free Ca2+ were increased in all treatment groups, but only Ex-9-treated myotubes showed higher calcineurin A protein content. Taken together, our data suggest that Ex-9 promotes oxidative differentiation in myotubes to improve cell insulin sensitivity, probably through calcineurin and PGC-1α mediated pathways. 相似文献
2.
The role of adenosine 5'-triphosphate (ATP) and P2Y(1) nucleotide receptor in potentiating agrin-induced acetylcholine receptor (AChR) aggregation is being demonstrated in a co-culture system of NG108-15 cell, a mouse neuroblastoma X rat glioma hybrid cell line that resembles spinal motor neuron, with C2C12 myotube. In the co-cultures, antagonized P2Y(1) receptors showed a reduction in NG108-15 cell-induced AChR aggregation. Parallel to this observation, cultured NG108-15 cell secreted ATP into the conditioned medium in a time-dependent manner. Enhancement of ATP release from the cultured NG108-15 cells by overexpression of active mutants of small GTPases increased the aggregation of AChRs in co-culturing with C2C12 myotubes. In addition, ecto-nucleotidase was revealed in the co-culture, which rapidly degraded the applied ATP. These results support the notion that ATP has a role in directing the formation of post-synaptic apparatus in vertebrate neuromuscular junctions. 相似文献
3.
Effects of dimethyl sulfoxide and dexamethasone on mRNA expression of housekeeping genes in cultures of C2C12 myotubes 总被引:1,自引:0,他引:1
Nishimura M Nikawa T Kawano Y Nakayama M Ikeda M 《Biochemical and biophysical research communications》2008,367(3):603-608
We used quantitative real-time RT-PCR to investigate the effects of dimethyl sulfoxide (DMSO) and dexamethasone (Dex) on the mRNA expression levels of the housekeeping genes β-actin (ACTB), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), β-glucuronidase (GUSB), hypoxanthine phosphoribosyltransferase 1 (HPRT1), phosphoglycerate kinase 1 (PGK1), peptidylprolyl isomerase A (PPIA), and transferrin receptor (TFRC) in cultures of C2C12 myotubes. The ratios of ACTB mRNA levels to the HPRT1 mRNA level in C2C12 cells that were differentiating from myoblast cells to myotubes decreased from 0 to 120 h of culture, whereas the ratios of TFRC mRNA levels to the HPRT1 mRNA level increased from 0 to 120 h of culture. The ratios of GAPDH, GUSB, PGK1, and PPIA mRNA levels to the HPRT1 mRNA level remained constant from 0 to 120 h of culture. All housekeeping gene mRNA levels were unaffected by exposure to DMSO concentrations of 0.1% or less. The GAPDH mRNA level was increased by Dex, while the ACTB and PGK1 mRNA levels were significantly decreased by Dex. The GUSB, PPIA, and TFRC mRNA levels were unaffected by exposure to Dex. GUSB, HPRT1, and PPIA are thus suitable internal controls for evaluating mRNA expression levels in cultures of C2C12 cells. 相似文献
4.
5.
Structural and functional changes of myosin during development: comparison with adult fast, slow and cardiac myosin. 总被引:5,自引:0,他引:5
ATPase (Ca2+ and K+ activated) activity of myosin prepared from muscles of 3–4 week rabbit embryos (EM) is slighly lower than that of adult fast muscle myosin (FM), but in contrast to the less active adult slow muscle myosin (SM) is stable on exposure to pH 9.2. Studies of the time course, by means of Na dodecyl-SO4 polyacrylamide gel electrophoresis, of changes in the pattern of polypeptides released by tryptic digestion show that in this regard EM is closest to SM. The light chain complement of EM appears identical with that of FM rather than of SM or cardiac myosin (CM) by the criteria of coelectrophoresis and removal by 5,5′-dithio-2-dinitrobenzoate treatment of LC2 except that the relative amount of LC3 is less in EM than in FM. The staining pattern of light meromyosin (EMM) paracrystals prepared from EM is distinct from either the FM, SM or CM LMM staining pattern. These studies suggest that different genes are involved in the coding for embryonic and adult heavy chains. 相似文献
6.
We previously showed that L-lysine (Lys) and a metabolite of Lys, L-saccharopine, suppressed autophagic proteolysis in C2C12 myotubes. However, the effects of other metabolites of Lys on protein turnover were unknown. We here investigated the effect of the Lys metabolites, L-2-aminoadipic acid (2-AA) and L-pipecolic acid (Pip), on protein turnover in C2C12 myotubes. 2-AA suppressed myofibrillar protein degradation evaluated by the 3-methylhistidine and autophagy activity evaluated by light chain 3-II at lower concentration (100 μM) than did Lys. On the other hand, Pip stimulated the mammalian target of rapamycin signaling activity. Additionally, 100 μM Pip significantly increased the rates of protein synthesis whereas 100 μM Lys had no effect. These results indicate that in C2C12 myotubes, 2-AA could suppress autophagy and Pip could stimulate the rates of protein synthesis, and these metabolites may contribute to exert effect of Lys on protein turnover. 相似文献
7.
The cell-specific regulation of glutamine synthetase expression was studied in three cell lines. In C2C12 myotubes, glucocorticoids increased the abundance of both glutamine synthetase protein and mRNA. Culture in the absence of glutamine also resulted in very high glutamine synthetase protein abundance but mRNA levels were unchanged. Glucocorticoids also increased the abundance of glutamine synthetase mRNA in Hep G2 hepatoma cells but this was not reflected in changes in protein abundance. Culture of Hep G2 cells without glutamine resulted in very high levels of protein, again with no change in mRNA abundance. Insulin was without effect in both C2C12 and Hep G2 cells. In 3T3 L1 adipocytes glucocorticoids increased the abundance of both glutamine synthetase mRNA and protein, insulin added alone had no effect but in the presence of glucocorticoids resulted in lower mRNA levels than seen with glucocorticoids alone, although protein levels remained high under such conditions. In contrast to the other cell lines glutamine synthetase protein levels were relatively unchanged by culture in the absence of glutamine. The results support the hypothesis that in myocytes, and hepatomas, but not in adipocytes, glutamine acts to moderate glutamine synthetase induction by glucocorticoids. 相似文献
8.
Bensaid Samir Fabre Claudine Fourneau Julie Cieniewski-Bernard Caroline 《Journal of physiology and biochemistry》2019,75(3):367-377
Journal of Physiology and Biochemistry - Hypoxia, occurring in several pathologies, has deleterious effects on skeletal muscle, in particular on protein homeostasis. Different induction methods of... 相似文献
9.
10.
11.
Williamson DL Kimball SR Jefferson LS 《American journal of physiology. Endocrinology and metabolism》2005,289(1):E95-104
Insulin and TNF-alpha exert opposing effects on skeletal muscle protein synthesis that are mediated in part by the rapamycin-sensitive mammalian target of rapamycin (mTOR) pathway and the PD-98059-sensitive, extracellular signal-regulated kinase (ERK)1/2 pathway. The present study examined the separate and combined effects of insulin (INS), TNF, PD-98059, or dnMEK1 adenovirus on the translational control of protein synthesis in C(2)C(12) myotubes. Cultures were treated with INS, TNF, PD-98059, dnMEK1, or a combination of INS + TNF with PD-98059 or dnMEK1. INS stimulated protein synthesis, enhanced eIF4E.eIF4G association, and eIF4G phosphorylation and repressed eIF4E.4E-BP1 association vs. control. INS also promoted phosphorylation of ERK1/2, S6K1, and 4E-BP1 and dephosphorylation of eIF4E. TNF alone did not have an effect on protein synthesis (vs. control), eIF4E.eIF4G association, or the phosphorylation of eIF4G, S6K1, or 4E-BP1, although it transiently increased ERK1/2 and eIF4E phosphorylation. When myotubes were treated with TNF + INS, the cytokine blocked the insulin-induced stimulation of protein synthesis. This appeared to be due to an attenuation of insulin-stimulated eIF4E.eIF4G association, because other stimulatory effects of INS, e.g., phosphorylation of ERK1/2, 4E-BP1, S6K1, eIF4G, and eIF4E and eIF4E.4E-BP1 association, were unaffected. Finally, treatment of myotubes with PD-98059 or dnMEK1 adenovirus before TNF + INS addition resulted in a derepression of protein synthesis and the association of eIF4G with eIF4E. These findings suggest that TNF abrogates insulin-induced stimulation of protein synthesis in myotubes through a decrease in eIF4F complex assembly independently of S6K1 and 4E-BP1 signaling and dependently on a MEK1-sensitive signaling pathway. 相似文献
12.
Physical, enzymatic, and contractile properties of brain myosin with anti-brain myosin Fab fragment bound on its tail 总被引:1,自引:0,他引:1
An antibody obtained by immunizing a rabbit with purified bovine brain myosin was found to react with the tail portion of the myosin heavy chain. An Fab fragment obtained by limited papain digestion of the antibody was allowed to bind to brain myosin, and the complex of the Fab fragment and brain myosin (Fab-myosin) was isolated. On examination of the rotary-shadowed Fab-myosin by electron microscopy, most of the Fab fragment was located on the middle to C-terminal regions of the tails of the myosin molecules. The solubility of Fab-myosin in low salt solutions was higher than that of control brain myosin. Fab-myosin was found to form small irregular aggregates in low salt solutions instead of regular bipolar filaments, and the relative population of the monomeric form of myosin molecules observed for the Fab-myosin was much larger than that observed for the control myosin. The actin-activated Mg2+-ATPase activity of Fab-myosin was stimulated two- to threefold by phosphorylation of the light chains with myosin light chain kinase, as observed for the control brain myosin. Furthermore, the levels of the ATPase activity of the phosphorylated and dephosphorylated Fab-myosins were similar to those of the phosphorylated and dephosphorylated control myosins, respectively. The superprecipitation activity of Fab-myosin was also highly dependent on phosphorylation of the light chains. Although control brain myosin formed a large superprecipitate network which contracted to a dense particle, Fab-myosin generated only numerous tiny superprecipitates under the same conditions. From these results it was deduced that a regular filamentous state of brain myosin was not prerequisite for its actin-activated Mg2+-ATPase and superprecipitation activities but was indispensable for the formation of a large and well contractible superprecipitate. 相似文献
13.
14.
Mordier S Deval C Béchet D Tassa A Ferrara M 《The Journal of biological chemistry》2000,275(38):29900-29906
Loss of muscle mass usually characterizes different pathologies (sepsis, cancer, trauma) and also occurs during normal aging. One reason for muscle wasting relates to a decrease in food intake. This study addressed the role of leucine as a regulator of protein breakdown in mouse C2C12 myotubes and aimed to determine which cellular responses regulate the process. Determination of the rate of protein breakdown indicated that leucine is one key regulator of this process in myotubes because starvation for this amino acid is responsible for 30-40% of the total increase generated by total amino acid starvation. Leucine restriction rapidly accelerates the rate of protein breakdown (+11 to 15% (p < 0.001) after 1 h of starvation) in a dose-dependent manner. By using various inhibitors, evidence is provided that acceleration of protein catabolism results mainly from an induction of autophagy, activation of lysosome-dependent proteolysis, without modification of mRNA levels encoding the lysosomal cathepsins B, L, or D. Those results suggest that autophagy is an essential cellular response for increasing protein breakdown in muscle following food deprivation. Induction of autophagy precedes a decrease in global protein synthesis (-20% to -30% (p < 0.001)) that occurs after 3 h of leucine starvation. Inhibition of the mammalian target of rapamycin (mTOR) activity does not abolish the effect of leucine starvation and the level of phosphorylated ribosomal S6 protein is not affected by leucine withdrawal. These latter data provide clear evidence that the mTOR signaling pathway is not involved in the mediation of leucine effects on both protein synthesis and degradation in C2C12 myotubes. 相似文献
15.
Influence of serum on adult and fetal dermal fibroblast migration adhesion, and collagen expression 总被引:1,自引:0,他引:1
Brink HE Stalling SS Nicoll SB 《In vitro cellular & developmental biology. Animal》2005,41(8-9):252-257
Summary The wound healing response to injury can be affected by many factors such as cell migration and extracellular matrix elaboration.
The objective of this study was to examine the serum- and age-dependent effects on cell migration, adhesion, and collagen
expression by skin fibroblasts. Dermal fibroblasts were isolated and plated with and without serum for up to 7 d. Cell migration
was determined by quantitative image analysis, adhesion was quantified using a centrifugation assay, and collagen expression
was assessed by PCR and immunohistochemical staining. Both adult and fetal fibroblasts migrated significantly faster in serum-containing
medium compared to serum-free medium. There was no significant difference in migration between the two cell types in either
serum-containing or serum-free medium. There was no significant difference in adhesion in the presence of serum, although
there was a greater faction of adherent fetal skin fibroblasts than adult fibroblasts in serum-free medium. Moreover, the
adherent fraction of fetal fibroblasts in serum-free medium was not significantly different from that in serum-containing
medium, suggesting that fetal skin fibroblasts possess serum-independent adhesion properties. Collagen mRNA expression was
significantly up-regulated in serum-free compared to serum-containing medium for both cell types. With respect to collagen
immunohistochemistry, both dermal fibroblast populations exhibited greater type I collagen compared to type III collagen staining.
Quantitative assessment of collagen staining indicated significantly enhanced type I collagen secretion in the presence of
serum by fetal skin fibroblasts. These findings suggest that intrinsic cellular characteristics may govern the observed differences
in adult and fetal wound healing. 相似文献
16.
Members of the Bcl-2 family of apoptosis-regulating proteins contain at least one of the four evolutionarily conserved domains, termed BH1, BH2, BH3, or BH4. Here, we report the identification, cloning, physical mapping, and expression pattern of BCL2L12, a novel gene that encodes a BCL2-like proline-rich protein. Proline-rich sites have been shown to interact with Src homology region 3 (SH3) domains of several tyrosine kinases, mediating their oncogenic potential. This new gene maps to chromosome 19q13.3 and is located between the IRF3 and the PRMT1/HRMT1L2 genes, close to the RRAS gene. BCL2L12 is composed of seven coding exons and six intervening introns, spanning a genomic area of 8.8 kb. All of the exon-intron splice sites conform to the consensus sequence for eukaryotic splice sites. The BCL2L12 protein is composed of 334 amino acids, with a calculated molecular mass of 36.8 kDa and an isoelectric point of 9.45. The BCL2L12 protein contains one BH2 homology domain, one proline-rich region similar to the TC21 protein and, five consensus PXXP tetrapeptide sequences. BCL2L12 is expressed mainly in breast, thymus, prostate, fetal liver, colon, placenta, pancreas, small intestine, spinal cord, kidney, and bone marrow and to a lesser extent in many other tissues. We also identified one splice variant of BCL2L12 that is primarily expressed in skeletal muscle. 相似文献
17.
S Morimoto 《Journal of biochemistry》1991,109(1):120-126
Ca2+ binding to fast skeletal muscle troponin C reincorporated into troponin C-depleted (CDTA-treated) myofibrils has been measured directly by using 45Ca and indirectly by using a fluorescent probe. Direct Ca2(+)-binding measurements have shown that the Ca2+ affinity of the low-affinity sites is enhanced in the absence of ATP and conversely reduced when myosin is selectively extracted from myofibrils, compared to the Ca2+ affinity in the presence of ATP. Fluorescence intensity changes of a dansylaziridine label at the Met-25 residue of troponin C have shown the same Ca2(+)-sensitivity whether or not ATP is present, while much lower Ca2(+)-sensitivity is seen in the myosin-extracted myofibrils. Since the Met-25 residue is in the amino terminal side alpha-helix of Ca2(+)-binding site I and far from Ca2(+)-binding site II in the primary structure, Ca2+ binding to site II has been evaluated by assuming that the fluorescence change monitors Ca2+ binding to site I alone. Ca2+ binding to site II thus estimated has shown high positive cooperativity only in the presence of ATP and has been found to be nearly proportional to the activation of myofibrillar ATPase, suggesting that Ca2(+)-binding site II is directly involved in the activation of myofibrillar ATPase activity. On the other hand, Ca2(+)-binding site I has been suggested to regulate the interaction of weakly binding cross-bridges with the thin filament, since the fluorescence change in the presence of ATP is saturated at the free Ca2+ concentration required for the activation of myofibrillar ATPase. 相似文献
18.
19.
A new PLA2 Bj-V from Bothrops jararacussu (14039.49 Da determined by MALDI-TOF mass spectrometry) was isolated in only one chromatographic step by HPLC ion-exchange and its purity was confirmed by reverse phase. Amino acid analysis showed a high content of hydrophobic and basic amino acids as well as 14 half-cysteine residues. The N-terminal sequence (DLWQFGQMIL KETGKIPFPY YGAYGCYCGW GGRGGKPKDG TDRCCYVHD...) showed a high degree of homology with basic D49 PLA2 myotoxins from other Bothrops venoms. Bj V showed discrete sigmoidal enzymatic behavior, with maximal activity at pH 8.4 and 35-40 degrees C. Full PLA2 activity required Ca2+ (10 mM) and there was little catalytic activity in the presence of 1 mM Ca2+. The addition of Mn2+ or Mg2+ (10 mM) in the presence of low (1 mM) Ca2+ slightly increased the enzyme activity, whereas Zn2+ and Cu2+ (10 mM) diminished the activity. The substitution of Ca2+ for Mg2+ or Cu2+ also reduced the enzymatic activity. Bj V had PLA2 activity and produced cytotoxicity in murine C2C12 skeletal muscle myoblasts and myotubes. The isolation of these isoforms Bj-IV [1] and Bj-V (described herein) found in a fraction previously described as homogeneous shows us the importance of optimization in purification techniques in order to better understand their biological behavior. 相似文献