首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inbred SPRET/Ei mice, derived from Mus spretus, were found to be extremely resistant to infection with a mouse adapted influenza A virus. The resistance was strongly linked to distal chromosome 16, where the interferon-inducible Mx1 gene is located. This gene encodes for the Mx1 protein which stimulates innate immunity to Orthomyxoviruses. The Mx1 gene is defective in most inbred mouse strains, but PCR revealed that SPRET/Ei carries a functional allele. The Mx1 proteins of M. spretus and A2G, the other major resistant strain derived from Mus musculus, share 95.7% identity. We were interested whether the sequence variations between the two Mx1 alleles have functional significance. To address this, we used congenic mouse strains containing the Mx1 gene from M. spretus or A2G in a C57BL/6 background. Using a highly pathogenic influenza virus strain, we found that the B6.spretus-Mx1 congenic mice were better protected against infection than the B6.A2G-Mx1 mice. This effect may be due to different Mx1 induction levels, as was shown by RT-PCR and Western blot. We conclude that SPRET/Ei is a novel Mx1-positive inbred strain useful to study the biology of Mx1.  相似文献   

2.
A total of 318 progeny from four backcrosses involving different laboratory strains and subspecies of Mus musculus were analyzed to map the Mx gene to the region of mouse chromosome 16 (MMU 16) which is homologous to human chromosome 21 (HSA 21). This result suggests that Mx will be found in the region of HSA 21 which has been implicated in Down syndrome when inherited in three copies.  相似文献   

3.
In mouse Mx+ cells, interferon alpha/beta induces the synthesis of the nuclear Mx protein, whose accumulation is correlated with specific inhibition of influenza viral protein synthesis. When Mx+ mouse cells are microinjected with the monoclonal anti-Mx antibody 2C12, interferon alpha/beta still induces Mx protein, but no longer inhibits efficiently the expression of influenza viral proteins as visualized by immunofluorescent labeling. However, interferon inhibition of an unrelated control virus, vesicular stomatitis virus, remains unchanged. Proteins with homology to mouse Mx protein are found in interferon-treated cells of a variety of mammalian species. In rat cells, for instance, rat interferon alpha/beta induces three Mx proteins which all cross-react with antibody 2C12 but differ in mol. wt and intracellular location, and it protects these cells well against influenza viruses. However, when rat cells are microinjected with antibody 2C12, interferon alpha/beta cannot induce an efficient antiviral state against influenza virus infection, whereas protection against vesicular stomatitis virus is not altered. These results show that both mouse and rat cells require functional Mx proteins for efficient protection against influenza virus. They further demonstrate that microinjection of antibodies is a promising way of elucidating the role of particular interferon-induced proteins in the intact cell.  相似文献   

4.
Activity of rat Mx proteins against a rhabdovirus.   总被引:20,自引:13,他引:7       下载免费PDF全文
E Meier  G Kunz  O Haller    H Arnheiter 《Journal of virology》1990,64(12):6263-6269
Upon stimulation with alpha/beta interferon, rat cells synthesize three Mx proteins. Sequence analysis of corresponding cDNAs reveals that these three proteins are derived from three distinct genes. One of the rat cDNAs is termed Mx1 because it is most closely related to the mouse Mx1 cDNA and because it codes for a nuclear protein that, like the mouse Mx1 protein, inhibits influenza virus growth. However, this protein differs from mouse Mx1 protein, in that it also inhibits vesicular stomatitis virus (VSV), a rhabdovirus. A second rat cDNA is more closely related to the mouse Mx2 cDNA and directs the synthesis of a cytoplasmic protein that inhibits VSV but not influenza virus. The third rat cDNA codes for a cytoplasmic protein that differs from the second one in only eight positions and has no detectable activity against either virus. These results indicate that rat Mx proteins have antiviral specificities not anticipated from the analysis of the murine Mx1 protein.  相似文献   

5.
The interferon-regulated mouse Mx gene encodes the 72-kilodalton nuclear Mx protein that selectively inhibits influenza virus replication. Mice carrying Mx+ alleles synthesize Mx protein and resist influenza virus infection, whereas mice homozygous for Mx- alleles fail to synthesize Mx protein and, as a consequence, are influenza virus susceptible. Southern blot analysis allowed us to define the following three distinct Mx restriction fragment length polymorphism (RFLP) types among classical inbred strains: RFLP type 1 in the Mx+ strains A2G and SL/NiA, RFLP type 2 in BALB/c and 33 other Mx- strains, and RFLP type 3 in CBA/J and 2 other Mx- strains. cDNA clones of Mx mRNAs from BALB/c and CBA/J cells were isolated, and their sequences were compared with that of the wild-type Mx mRNA of strain A2G. Mx mRNA of BALB/c mice has 424 nucleotides absent from the coding region, resulting in a frame shift and premature termination of Mx protein. The missing sequences correspond exactly to Mx exons 9 through 11. These three exons, together with some flanking intron sequences, are deleted from the genomes of all Mx RFLP type 2 strains. The Mx- phenotype of the Mx RFLP type 3 strain CBA/J is due to a point mutation that converts the lysine codon in position 389 to a termination codon. Mx RFLP type 3 strains have an extra HindIII site which maps to an intron and thus probably does not affect the coding capacity of Mx mRNA. We further show that the Mx mRNA levels in interferon-treated BALB/c and CBA/J cells are about 15-fold lower than in similarly treated Mx+ cells. This is probably due to decreased metabolic stabilities of the mutant mRNAs.  相似文献   

6.
The allele Mx regulates the extent to which interferon alpha/beta inhibits the growth of influenza viruses in mouse cells such as peritoneal macrophages. The time course of induction of the antiviral state against an influenza A virus is comparable in macrophages with and without Mx and is similar to that found with vesicular stomatitis virus. In contrast, the decay of the antiviral state against influenza virus is markedly slower in Mx-positive cells and slower than that against vesicular stomatitis virus observed in either Mx-positive or Mx-negative cells. Thus, after removal of interferon alpha/beta, Mx-positive cells remain protected against influenza virus at times when they have lost protection against vesicular stomatitis virus. These results suggest that interferon alpha/beta treatment activates different antiviral mechanisms, each acting against distinct groups of viruses and each independently controlled by host genes.  相似文献   

7.
Polymorphisms of the chicken antiviral MX gene   总被引:1,自引:0,他引:1  
  相似文献   

8.
E Kolb  E Laine  D Strehler    P Staeheli 《Journal of virology》1992,66(3):1709-1716
Transgenic mice constitutively expressing in the brain the influenza virus resistance protein Mx1 controlled by the HMG (3-hydroxy-3-methylglutaryl coenzyme A reductase) promoter showed specific resistance against the neurotropic influenza A virus strain NWS. Control mice of the A2G strain express Mx1 protein in all organs, but only after induction by interferon type I upon or without viral infection. The extent of specific resistance in transgenic mice of the best-expressing line reached about two-thirds that of controls, most likely because of considerably less total-body Mx protein activity in the transgenic mice. Thus, the theoretical advantage in these mice of the continuous presence of Mx protein with early inhibitory potential to viral replication was apparently offset by restricted organ expression. Strong evidence that the Mx1 protein on its own is a specific anti-influenza A virus agent and that its efficiency in the experimental setting is independent of interferon actions could be derived from the treatment of experimental and control mice with anti-interferon antibodies at the time of virus tests. Whereas in A2G mice, Mx1 mRNA and Mx1 protein synthesis were abolished and viral resistance was markedly reduced or abolished, resistance in the transgenic mice persisted to almost the same degree. Transgenic mice generated with a mouse albumin/Mx1 cDNA construct showed liver-specific expression. However, in two expressing transgenic lines, Mx1 protein synthesis was suppressed after a few months. The mechanism of suppression could not be elucidated, but increasing methylation of the transgene's coding region was not the cause. It is possible that continuous Mx1 protein expression in the liver is less well tolerated than that in the brain. Whether this partial suppression and, with the HMG promoter, restricted organ expression are the organism's responses to interference of Mx1 with normal cellular activities such as nucleocytoplasmic transport of RNA and proteins cannot be determined until the molecular mechanisms of antiviral activity of Mx1 protein are understood.  相似文献   

9.
10.
Mx+ mice are much more resistant to influenza virus than Mx- strains. The resistance is mediated by interferon (IFN) alpha/beta. After IFN treatment, Mx+ but not Mx- cells accumulate Mx protein and become specifically resistant to orthomyxoviruses. cDNA encoding Mx protein was cloned and sequenced. Southern analyses indicate that Mx- alleles derive from their Mx+ counterpart by deletions. IFN-treated Mx+ cells contained a 3.5 kb Mx mRNA, while Mx- cells showed only traces of shorter Mx RNA. Mx- cells transformed with Mx cDNA expressed Mx protein constitutively to varying extents; resistance of individual cells to influenza virus correlated with Mx protein expression. Thus, specific resistance to influenza virus in vivo may be attributed to Mx protein expression and is independent of other IFN-mediated effects.  相似文献   

11.
12.
13.
Proviral sequences complementary to the C3H mouse mammary tumor virus RNA genome are present in the DNA of early occurring mammary tumors of C3H/HeN mice and are absent from apparently normal C3H/HeN tissues; these sequences are non-germ line transmitted in C3H/HeN mice and have been termed tumor-associated sequences; (W. Drohan et al., J. Virol. 21:986-995, 1977). We report here that tumor-associated sequences are present in the DNA of spontaneous mammary tumors that occur early in the life of several inbred, high-tumor-incidence mouse strains but are absent in mammary tumors that occur later in life in low- and moderate-tumor-incidence strains. These sequences are also absent in apparently normal organs tested from numerous laboratory mouse strains, feral mice, Mus musculus subspecies, and other Mus species. Sequences represented in tumor-associated sequence RNA, however, are present as endogenous provirus in GR mice (at approximately four copies per haploid genome) and in two of five substrains of C3H mice tested (at approximately one copy per haploid genome). The two substrains of C3H mice positive for endogenous tumor-associated sequence provirus were recently (circa 1930) separated from the negative substrains of C3H mice. The results may be explained by the unlikely chance segregation of proviral sequences or by the recent integration of viral genes (within the last few decades). Whereas radioactively labeled mouse mammary tumor virus 60-70S RNA or complementary DNA detected mouse mammary tumor virus-related proviral information in all laboratory mouse strains, feral mice, subspecies of M. musculus, and other species of Mus, the use of tumor-associated sequence RNA clearly revealed the genetic diversity that may exist between different colonies or substrains of "inbred" laboratory mice commonly used in cancer research.  相似文献   

14.
15.
Treatment of cells from inbred mouse strains A/J and A2G with interferon resulted in the development of different antiviral states for influenza viruses. A2G mice-derived cells that carry the resistance gene Mx were efficiently protected by interferon against influenza viruses, whereas the interferon protection against the same viruses in wild-type A/J mice-derived cells was only marginal. The two cell types, however, were equally protected by interferon against vesicular stomatitis virus and other non-orthomyxoviruses. The interferon-induced mRNAs of mouse embryonic fibroblast cells that carried either homozygous wild-type alleles or homozygous Mx alleles were compared. The isolated polysome-bound mRNAs from A/J (+/+) and A2G (Mx/Mx) cells were translated in a cell-free translation system, and the translation products were analyzed after two-dimensional gel electrophoresis. New mRNAs coding for at least eight proteins with molecular weights (MW) ranging from 30,000 to 80,000 were found in interferon-treated cells but not in control cells. Differences in the interferon-induced mRNAs from A/J and A2G cells were also found. An mRNA coding for a 72,000-MW protein was found in interferon-treated A2G cells but not in interferon-treated A/J cells. Interferon-treated A/J cells, on the other hand, contained an mRNA coding for a 65,000-MW protein that was not found in interferon-treated A2G cells. The in vitro-synthesized 65,000-MW protein efficiently bound to GMP. Cytoplasmic extracts prepared from interferon-treated A/J cells also contained a GMP-binding 65,000-MW protein that was undetectable in similarly treated A2G cells.  相似文献   

16.
Mice carrying a wild-type Mx1 gene (Mx1+/+) differ from standard laboratory mice (Mx1-/-) in being highly resistant to infection with common laboratory strains of influenza A virus. We report that Mx1 also protects mice against the pandemic human 1918 influenza virus and a highly lethal human H5N1 strain from Vietnam. Resistance to H5N1 of Mx1+/+ but not Mx1-/- mice was enhanced if the animals were treated with a single dose of exogenous alpha interferon before infection. Thus, the interferon-induced resistance factor Mx1 represents a key component of the murine innate immune system that mediates protection against epidemic and pandemic influenza viruses.  相似文献   

17.
Interferons induce a number of different proteins that mediate the antiproliferative, antiviral, and immunomodulatory functions of interferons. At least three different proteins mediate the antiviral response, and one of them, Mx protein, specifically inhibits the replication of influenza virus and (vesicular stomatitis virus). Mouse and rat Mx1 proteins are nuclear, whereas other presently known Mx proteins are cytoplasmic. The cellular functions of Mx proteins are unknown, but all of them contain a consensus GTP binding site. Very little information is available on the structure and characteristics of the mouse Mx1 protein itself. For biochemical characterization, we expressed mouse Mx1 protein in a baculovirus system and purified it to homogeneity. The purified protein as well as the authentic murine cellular Mx1 protein exists in dimers and trimers in the presence of dissociating solvents, whereas in physiological buffers they form aggregates. Cross-linking experiments done on Mx-expressing cells from various species revealed that mouse, rat, and human Mx proteins exist predominantly in trimers. Amino acid sequence analysis shows that all known Mx proteins have conserved leucine repeats typical for a leucine zipper at their COOH-terminal end. In vitro translation of chimeric catechol O-methyltransferase-Mx1 gene constructs revealed that the leucine zipper domain of Mx1 protein is responsible for the oligomerization. The COOH terminus also functions as a nuclear localization signal. Microinjection of purified oligomers into the cell cytoplasm resulted in a fast accumulation of the protein in the resulted in a fast accumulation of the protein in the nucleus. Immunoelectron microscopy revealed that nuclear murine Mx1 protein exists in distinct, electron-dense structures separate from nuclear membrane, and chromatin, or nucleolus. These observations reveal that a COOH-terminal leucine zipper domain is an important structural element of all Mx proteins. Its relevance to the biology and functions of Mx proteins is presently not known.  相似文献   

18.
19.
Specific resistance of Mx+ mice to influenza virus is due to the interferon (IFN)-induced protein Mx. The Mx gene consists of 14 exons that are spread over at least 55 kilobase pairs of DNA. Surprisingly, the Mx gene promoter is induced as efficiently by Newcastle disease virus as it is by IFN. The 5' boundary of the region required for maximal induction by both IFN and Newcastle disease virus is located about 140 base pairs upstream of the cap site. This region contains five elements of the type GAAANN, which occurs in all IFN- and virus-inducible promoters. The consensus sequence purine-GAAAN(N/-)GAAA(C/G)-pyrimidine is found in all IFN-inducible promoters.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号