首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rotavirus SA11, suspended in tryptose phosphate broth with 2.5 mg of rhodamine B per ml, was aerosolized (Collison nebulizer) into a rotating drum, and the aerosols were held at 20 +/- 1 degree C with the desired relative humidity (RH). An all-glass impinger with tryptose phosphate broth was used to collect 1-min (5.6-liter) samples of air from the drum. The virus was found to survive best at medium (50 +/- 5%) RH, where its half-life was nearly 40 h. The half-life of the virus at the low (25 +/- 5%) RH level was about 9 h. Even at 72 h of aerosol age, 45 and 21% of the infectious virus remained detectable in the air at the medium and low RH levels, respectively. The high (80 +/- 5%) RH level was found to be the least favorable to the survival of the virus, since 50% of the infectious virus became undetectable within 2 h of aerosolization. In a separate experiment at the midrange RH, 3% of the infectious virus was detectable in the drum air after 223 h (9 days) of aerosol age. Rotaviruses could, therefore, survive in air for prolonged periods, thus making air a possible vehicle for their dissemination.  相似文献   

2.
A mixture of a cell culture-adapted strain (C-486) of calf rotavirus and poliovirus type 1 (Sabin) was prepared in tryptose phosphate broth containing 0.1% uranine (physical tracer) and antifoam at a final concentration of 0.001%. By using a six-jet Collison nebulizer, the mixture was aerosolized into a 300-liter stainless-steel rotating (4 rpm) drum. The temperature of the air inside the drum was kept at 20 +/- 1 degrees C, and the virus aerosols were held at the following three levels of relative humidity (RH): low (30 +/- 5%), medium (50 +/- 5%), and high (80 +/- 5%). An all-glass impinger, containing 10.0 ml of tryptose phosphate broth with antifoam, was used to collect samples of air from the drum. Both viruses were propagated and quantitated in MA-104 cells. The calf rotavirus was found to survive well at mid-range RH, where 60% of the infectious virus could be detected even after 24 h of virus aerosolization. At the low RH, the half-life of the infectious rotavirus was ca. 14 h. On the other hand, no infectious poliovirus could be recovered from the drum air at the low and medium RH. At the high RH, more than 50% of the infectious rotavirus became undetectable within 90 min of aerosolization. In contrast to this, the half-life of the poliovirus at the high RH was about 10 h. These data, based on the aerosolization of virus mixtures, therefore suggest that there is a pronounced difference in the way RH influences the airborne survival of these two types of viruses held under identical experimental conditions.  相似文献   

3.
A mixture of a cell culture-adapted strain (C-486) of calf rotavirus and poliovirus type 1 (Sabin) was prepared in tryptose phosphate broth containing 0.1% uranine (physical tracer) and antifoam at a final concentration of 0.001%. By using a six-jet Collison nebulizer, the mixture was aerosolized into a 300-liter stainless-steel rotating (4 rpm) drum. The temperature of the air inside the drum was kept at 20 +/- 1 degrees C, and the virus aerosols were held at the following three levels of relative humidity (RH): low (30 +/- 5%), medium (50 +/- 5%), and high (80 +/- 5%). An all-glass impinger, containing 10.0 ml of tryptose phosphate broth with antifoam, was used to collect samples of air from the drum. Both viruses were propagated and quantitated in MA-104 cells. The calf rotavirus was found to survive well at mid-range RH, where 60% of the infectious virus could be detected even after 24 h of virus aerosolization. At the low RH, the half-life of the infectious rotavirus was ca. 14 h. On the other hand, no infectious poliovirus could be recovered from the drum air at the low and medium RH. At the high RH, more than 50% of the infectious rotavirus became undetectable within 90 min of aerosolization. In contrast to this, the half-life of the poliovirus at the high RH was about 10 h. These data, based on the aerosolization of virus mixtures, therefore suggest that there is a pronounced difference in the way RH influences the airborne survival of these two types of viruses held under identical experimental conditions.  相似文献   

4.
Effect of relative humidity on the airborne survival of rhinovirus-14   总被引:5,自引:0,他引:5  
Rhinovirus-14, suspended in tryptose phosphate broth supplemented with uranine (physical tracer) and an antifoam, was aerosolized by use of a Collison nebulizer. The aerosols were held in a rotating drum with the relative humidity at either the low (30 +/- 5%), medium (50 +/- 5%), or high (80 +/- 5%) level at 20 +/- 1 degrees C. An all-glass impinger was used to recover the virus from the air in the drum, with the first air sample being collected after a 15-min period of aerosol stabilization. Subsequent air samples were withdrawn at 2, 4, 8, and 14 h after stabilization of the aerosol. At the low and medium relative humidity levels, the infectivity of the airborne virus was rapidly lost and less than 0.25% could be detected in the first air sample. At the high RH level, however, the airborne virus had a half-life of 13.7 +/- 1.91 h and nearly 30% of the input infectious virus could be detected in the drum air even after 24 h of aerosolization. These findings suggest that under certain environmental conditions, notably high relative humidity, air may act as a vehicle for the spread of rhinovirus infections.  相似文献   

5.
The Wa strain of human rotavirus, grown in MA-104 cells, was suspended either in tryptose phosphate broth or feces from a case of rotaviral diarrhea. It was then aerosolized into a rotating drum using a Collison nebulizer. The drum air was sampled using an all-glass impinger containing tryptose phosphate broth as collecting fluid. At 20 +/- 1 degree C, the virus aerosolized from tryptose phosphate broth was found to survive best at 50 +/- 5% relative humidity, where its half-life was 44.2 +/- 6.3 h. At 30 +/- 5% and 80 +/- 5% relative humidity, the half-life of the virus was 24.5 +/- 3.5 and 3.8 +/- 1.0 h, respectively. At 6 +/- 1 degree C, the airborne survival of the virus at the mid and low relative humidity levels was further enhanced, but at the high relative humidity it remained very similar to that seen at 20 +/- 1 degree C. When aerosols of fecally suspended human rotavirus were held at 20 +/- 1 degree C with 50 +/- 5% relative humidity, nearly 80% of the airborne virus particles remained infectious even at the aerosol age of 24 h. These findings may help in our understanding of the epidemiology of rotaviral infections.  相似文献   

6.
To study the survival of human rhinovirus 14 on environmental surfaces, each stainless steel disk (1 cm in diameter) was contaminated with 10 microL (about 10(5) plaque-forming units) of the virus suspended in either 1 chi tryptose phosphate broth (TPB), 5 mg/mL of bovine mucin in normal saline, or undiluted human nasal discharge. The inoculum was dried in a laminar flow cabinet for 1 h under ambient conditions. The disks were then placed in a glass chamber (20 +/- 1 degree C) with the relative humidity at either low (20 +/- 5%), medium (50 +/- 5%), or high (80 +/- 5%) level. At appropriate intervals, the disk to be tested was placed in 1 mL of tryptose phosphate broth and the eluate titrated in A-5 HeLa cells. When the virus was suspended in either tryptose phosphate broth, mucin, or the nasal discharge and subjected to initial drying, there was a 3.0 +/- 1.0, 82.0 +/- 6.7, and 89.0 +/- 3.0% loss in virus infectivity, respectively. The half-life of the TPB-suspended virus was about 14 h at the high relative humidity as compared with less than 2 h at the other two relative humidity levels. The half-lives for the mucin-suspended virus at the high, medium, and low relative humidity were 1.42, 0.55, and 0.24 h, respectively; the corresponding values for the nasal discharge suspended virus being 0.17, 0.25, and 0.09 h.  相似文献   

7.
Stainless steel disks (diameter, 1 cm) were contaminated with fecally suspended hepatitis A virus (HAV; strain HM-175) and held at low (25% +/- 5%), medium (55% +/- 5%), high (80% +/- 5%), or ultrahigh (95% +/- 5%) relative humidity (RH) at an air temperature of 5,20, or 35 degrees C. HAV survival was inversely proportional to the level of RH and temperature, and the half-lives of the virus ranged from greater than 7 days at the low RH and 5 degrees C to about 2 h at the ultrahigh RH and 35 degrees C. In parallel tests with fecally suspended Sabin poliovirus (PV) type 1 at the low and ultrahigh RH, all PV activity was lost within 4 h at the low RH whereas at the ultrahigh RH it remained detectable up to 12 h. HAV could therefore survive much better than PV on nonporous environmental surfaces. Moreover, the ability of HAV to survive better at low levels of RH is in direct contrast to the behavior of other enteroviruses. These findings should help in understanding the genesis of HAV outbreaks more clearly and in designing better measures for their control and prevention.  相似文献   

8.
Stainless steel disks (diameter, 1 cm) were contaminated with fecally suspended hepatitis A virus (HAV; strain HM-175) and held at low (25% +/- 5%), medium (55% +/- 5%), high (80% +/- 5%), or ultrahigh (95% +/- 5%) relative humidity (RH) at an air temperature of 5,20, or 35 degrees C. HAV survival was inversely proportional to the level of RH and temperature, and the half-lives of the virus ranged from greater than 7 days at the low RH and 5 degrees C to about 2 h at the ultrahigh RH and 35 degrees C. In parallel tests with fecally suspended Sabin poliovirus (PV) type 1 at the low and ultrahigh RH, all PV activity was lost within 4 h at the low RH whereas at the ultrahigh RH it remained detectable up to 12 h. HAV could therefore survive much better than PV on nonporous environmental surfaces. Moreover, the ability of HAV to survive better at low levels of RH is in direct contrast to the behavior of other enteroviruses. These findings should help in understanding the genesis of HAV outbreaks more clearly and in designing better measures for their control and prevention.  相似文献   

9.
Yang W  Marr LC 《PloS one》2011,6(6):e21481
There is mounting evidence that the aerosol transmission route plays a significant role in the spread of influenza in temperate regions and that the efficiency of this route depends on humidity. Nevertheless, the precise mechanisms by which humidity might influence transmissibility via the aerosol route have not been elucidated. We hypothesize that airborne concentrations of infectious influenza A viruses (IAVs) vary with humidity through its influence on virus inactivation rate and respiratory droplet size. To gain insight into the mechanisms by which humidity might influence aerosol transmission, we modeled the size distribution and dynamics of IAVs emitted from a cough in typical residential and public settings over a relative humidity (RH) range of 10-90%. The model incorporates the size transformation of virus-containing droplets due to evaporation and then removal by gravitational settling, ventilation, and virus inactivation. The predicted concentration of infectious IAVs in air is 2.4 times higher at 10% RH than at 90% RH after 10 min in a residential setting, and this ratio grows over time. Settling is important for removal of large droplets containing large amounts of IAVs, while ventilation and inactivation are relatively more important for removal of IAVs associated with droplets <5 μm. The inactivation rate increases linearly with RH; at the highest RH, inactivation can remove up to 28% of IAVs in 10 min. Humidity is an important variable in aerosol transmission of IAVs because it both induces droplet size transformation and affects IAV inactivation rates. Our model advances a mechanistic understanding of the aerosol transmission route, and results complement recent studies on the relationship between humidity and influenza's seasonality. Maintaining a high indoor RH and ventilation rate may help reduce chances of IAV infection.  相似文献   

10.
A system for studying the effects of relative humidity (RH) and temperature on biological aerosols, utilizing a modified toroid for a static aerosol chamber, is described. Studies were conducted at 23 C and at three RH levels (10, 35, and 90%) with four viruses (Newcastle disease virus, infectious bovine rhinotracheitis virus, vesicular stomatitis virus, and Escherichia coli B T3 bacteriophage). Virus loss on aerosol generation was consistently lower at 90% than at 10 or 35% RH. When stored at 23 C, Newcastle disease virus and vesicular stomatitis virus survived best at 10% RH. Infectious bovine rhinotracheitis virus and E. coli B T3 bacteriophage survived storage at 23 C best at 90% RH.  相似文献   

11.
Summary Heating ofListeria monocytogenes (Scott A strain) in potassium phosphate buffer (0.1 M, pH 7.2) at 52°C for 1 h led to injury, with the heat-injured cells failing to produce colonies on agar medium containing 5% NaCl. The detection of injury was based on the use of differential media: plating on tryptose phosphate broth+2% agar and 1% sodium pyruvate (TPBA+P) and on tryptose phosphate broth+2% agar and 5% NaCl (TPBA+S). Only non-injuredListeria formed colonies on TPBA+S whereas both heat-injured and non-injured cells formed colonies on TPBA+P. The bacterial count on TPBA+P minus that on TPBA+S represents the extent of heat injury. A large number of selective agars were tested and compared to TPBA+P for their ability to support repair and colony formation of heat-injuredL. monocytogenes. Media containing 0.025% phenylethanol, 0.0012–0.0025% acriflavin, 0.1–0.2% potassium tellurite, 0.001% polymyxin B sulfate, 5% NaCl or a combination of these ingredients were detrimental to the recovery of heat-injuredL. monocytogenes. Media currently in use forL. monocytogenes are not satisfactory for the recovery of injured cells.  相似文献   

12.
Infection of BHK-21 cells with lymphocytic choriomeningitis (LCM) virus resulted in the production of significant titers of complement-fixing (CF) antigen. The antigen was spontaneously released from the cells, but the highest titer of 1:16 was recovered by disruption of the infected cells by freeze-thawing in tryptose phosphate broth. The antigen could be partially separated from infectious virus by centrifugation. Furthermore, it was possible to detect LCM virus infection of cell cultures by the production of the CF antigen, but this method proved less sensitive than titration by intracerebral inoculation of mice. The CF antigen from cell cultures was at least as sensitive and specific as the reference antigen prepared from infected guinea pig spleen.  相似文献   

13.
Listeria monocytogenes multiplied at 20°C in medium adjusted to pH 4.5 with HCl, and the lag before growth was eliminated when the inoculum was grown to log phase in the same medium. In a tryptone soya medium with yeast extract and added glucose, growth at pH 4.5 was more rapid than in a tryptose phosphate medium, and this difference was greater in air than under nitrogen. The results show that the bacterium was capable of more rapid growth in air than under nitrogen at this pH and suggest that the tryptose phosphate medium was nutritionally limiting for growth.  相似文献   

14.
An 80- to 150-ml amount of calf or simian rotavirus-containing cell culture harvests of MA-104 cells were treated with 50 microgram of trypsin per ml and hydroextracted overnight (4 degrees C) with polyethylene glycol 6,000. The concentrate was resuspended in 8 to 10 ml of tryptose phosphate broth and plaque assayed. Between 85 and 97% of the input virus could be recovered with a concentration of up to 15-fold.  相似文献   

15.
Airborne Stability of Tailless Bacterial Viruses S-13 and MS-2   总被引:6,自引:6,他引:0       下载免费PDF全文
The effect of relative humidity (RH) on the airborne stability of two small bacterial viruses, S-13 and MS-2, was studied. Poorest recovery of S-13 was obtained at 50% RH. Humidification prior to aerosol sampling significantly increased the recovery of S-13 at RH deleterious to the airborne virus. A commercial preparation of MS-2 suspended in a buffered saline solution showed a rapid loss of viability at RH above 30%, whereas a laboratory preparation containing 1.3% tryptone showed high recoveries at all RH studied. Dilution of the commercial MS-2 into tryptone broth conferred stability on the airborne virus. Humidification prior to sampling significantly reduced the viable recovery from aerosols of commercial MS-2, whereas the laboratory preparation was unaffected.  相似文献   

16.
The simian rotavirus SA11 was used to develop a simple, reliable, and efficient method to concentrate rotavirus from tap water, treated sewage, and raw sewage by absorption to and elution from Filterite fiberglass-epoxy filters. SA11 adsorbed optimally to Filterite filters from water containing 0.5 mM AlCl3 at pH 3.5. Filter-bound virus was eluted with 0.05 M glycine-NaOH supplemented with 10% tryptose phosphate broth at pH 10. SA11 was quantitated by plaque assay, whereas human rotavirus was detected by immunofluorescence. The method was applied to detect rotavirus in raw and treated sewage at two Houston, Tex., sewage treatment plants. The sewage isolates were identified as rotavirus, probably a human strain, based on several criteria. The sewage isolates were detectable by an immunofluorescence test, using anti-SA11 serum which would detect the simian, human bovine, and porcine rotaviruses. No reaction was noted by immunofluorescence with the reoviruses or several common enteroviruses. The sewage isolates were neutralized by convalescent sera from a human adult and infant who had been infected by rotavirus as well as by a hyperimmune serum prepared in guinea pigs against purified human rotavirus. Preimmune or preillness sera did not react with the isolates by neutralization or immunofluorescence. The natural isolates were sensitive to pH 11 and other inactivating agents, similar to SA11. The buoyant density of the sewage isolates in CsCl gradients was 1.36 g/cm3, which is the value usually reported for complete, infectious rotavirus particles. The double-shelled particle diameter was 67.1 +/- 2.4 nm. Finally, electron micrographs of cell lysates inoculated with the sewage isolate showed particles displaying characteristic rotavirus morphology.  相似文献   

17.
The simian rotavirus SA11 was used to develop a simple, reliable, and efficient method to concentrate rotavirus from tap water, treated sewage, and raw sewage by absorption to and elution from Filterite fiberglass-epoxy filters. SA11 adsorbed optimally to Filterite filters from water containing 0.5 mM AlCl3 at pH 3.5. Filter-bound virus was eluted with 0.05 M glycine-NaOH supplemented with 10% tryptose phosphate broth at pH 10. SA11 was quantitated by plaque assay, whereas human rotavirus was detected by immunofluorescence. The method was applied to detect rotavirus in raw and treated sewage at two Houston, Tex., sewage treatment plants. The sewage isolates were identified as rotavirus, probably a human strain, based on several criteria. The sewage isolates were detectable by an immunofluorescence test, using anti-SA11 serum which would detect the simian, human bovine, and porcine rotaviruses. No reaction was noted by immunofluorescence with the reoviruses or several common enteroviruses. The sewage isolates were neutralized by convalescent sera from a human adult and infant who had been infected by rotavirus as well as by a hyperimmune serum prepared in guinea pigs against purified human rotavirus. Preimmune or preillness sera did not react with the isolates by neutralization or immunofluorescence. The natural isolates were sensitive to pH 11 and other inactivating agents, similar to SA11. The buoyant density of the sewage isolates in CsCl gradients was 1.36 g/cm3, which is the value usually reported for complete, infectious rotavirus particles. The double-shelled particle diameter was 67.1 +/- 2.4 nm. Finally, electron micrographs of cell lysates inoculated with the sewage isolate showed particles displaying characteristic rotavirus morphology.  相似文献   

18.
When chicken kidney cell (CKC) culture in a petri dish was prepared in medium with or without serum and incubated in a humidified incubator at 38 degreesC with no addition of CO2, monolayers of CKCs were formed completely on the 5th day of cultivation. Growth medium used for CKC culture was Eagle's minimum essential medium containing 0.3% of dehydrated tryptose phosphate broth. The number of cells in both cultures prepared in medium with or without serum was the same when measured on the 5th day of cultivation. Monolayers of CKC culture prepared in medium with or without serum were maintained up to 21 days of cultivation, while maintenance medium was changed every 4th day. The time of appearance and degree of cytopathic effect, plaque-forming ability, and propagation of some avian viruses were similar in both cultures prepared in medium with or without serum.  相似文献   

19.
Aho  Matti  Kauppi  Maija  Hirn  Jorma 《Acta veterinaria Scandinavica》1988,29(3-4):443-449
A method was developed to detect fewer than 100 CFU of campylobacteria from SIFF transport medium to which thawing drip from deep frozen broiler carcasses was added as a source of contamination and which was then stored at room temperature for 20 h. The method was made possible by using pre–enrichment in 1 % buffered peptone water under a microaerophilic atmosphere for 5 h at 43°C before selective enrichment either in brucella enrichment broth and on brucella blood selective agar supplemented with Skirrow antibiotics or in CCD enrichment broth and on blood free CCD selective agar. The other pre–enrichment broth studied was alkaline peptone water with reducing agents (RAPW) and the other enrichment broths and selective agars were Preston broth and agar, THAL broth and alkaline tryptose broth (ATB) and brucella agar with ATB antibiotics. Contaminating flora can be a problem when using enrichment broths and selective agars with limited antibiotic supplementation.  相似文献   

20.
The aerosol survival in air was determined for Pasteurella tularensis live vaccine strain (LVS) as a function of relative humidity (RH). Three different preparations of bacteria were used: (i) liquid suspension of P. tularensis LVS in spent culture medium; (ii) powders of P. tularensis LVS freeze-dried in spent culture fluid; (iii) P. tularensis LVS freeze-dried in spent culture fluid and then reconstituted with distilled water and disseminated as a liquid suspension. Preparation (i) gave greatest survival at high RH and lowest survival at intermediate RH. Preparation (ii), in contrast, gave greatest survival at low RH and minimum survival at 81% RH. Preparation (iii) was the same as preparation (i), i.e., the process of freeze-drying and reconstituting with distilled water before aerosol formation had little or no effect upon aerosol survival as a function of RH. Hence, control of aerosol survival appears to be through the water content of P. tularensis LVS at the moment of aerosol generation rather than the water content of the bacteria in the aerosol phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号