首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ubiquitin-proteasome pathway acts as a regulator of the endocytosis of selected membrane proteins. Recent evidence suggests that it may also function in the intracellular trafficking of membrane proteins. In this study, several models were used to address the role of the ubiquitin-proteasome pathway in sorting of internalized proteins to the lysosome. We found that lysosomal degradation of ligands, which remain bound to their receptors within the endocytic pathway, is blocked in the presence of specific proteasome inhibitors. In contrast, a ligand that dissociates from its receptor upon endosome acidification is degraded under the same conditions. Quantitative electron microscopy showed that neither the uptake nor the overall distribution of the endocytic marker bovine serum albumin-gold is substantially altered in the presence of a proteasome inhibitor. The data suggest that the ubiquitin-proteasome pathway is involved in an endosomal sorting step of selected membrane proteins to lysosomes, thereby providing a mechanism for regulated degradation.  相似文献   

2.
Zhu L  Li Y  Li S  Li H  Qiu Z  Lee C  Lu H  Lin X  Zhao R  Chen L  Wu JZ  Tang G  Yang W 《PloS one》2011,6(12):e29120
Hemagglutinin (HA) of the influenza virus plays a crucial role in the early stage of the viral life cycle by binding to sialic acid on the surface of host epithelial cells and mediating fusion between virus envelope and endosome membrane for the release of viral genomes into the cytoplasm. To initiate virus fusion, endosome pH is lowered by acidification causing an irreversible conformational change of HA, which in turn results in a fusogenic HA. In this study, we describe characterization of an HA inhibitor of influenza H1N1 viruses, RO5464466. One-cycle time course study in MDCK cells showed that this compound acted at an early step of influenza virus replication. Results from HA-mediated hemolysis of chicken red blood cells and trypsin sensitivity assay of isolated HA clearly showed that RO5464466 targeted HA. In cell-based assays involving multiple rounds of virus infection and replication, RO5464466 inhibited an established influenza infection. The overall production of progeny viruses, as a result of the compound's inhibitory effect on fusion, was dramatically reduced by 8 log units when compared with a negative control. Furthermore, RO5487624, a close analogue of RO5464466, with pharmacokinetic properties suitable for in vivo efficacy studies displayed a protective effect on mice that were lethally challenged with influenza H1N1 virus. These results might benefit further characterization and development of novel anti-influenza agents by targeting viral hemagglutinin.  相似文献   

3.
The mechanism by which rotavirus and other nonenveloped viruses enter the cell is still not clear. We have proposed an endocytosis model where the critical step for virus uncoating and membrane permeabilization is the decrease in Ca(2+) concentration in the endosome. In this paper, we monitored rotavirus entry by measuring alpha-sarcin-rotavirus coentry and infectivity in MA104 cells. The participation of endocytosis, acidification, and endosomal Ca(2+) concentration on virus entry was studied by inhibiting the endosomal H(+)-ATPase with bafilomycin A1 and/or increasing the extracellular calcium reservoir by addition of 10 mM CaEGTA. Rotavirus-alpha-sarcin coentry was inhibited by bafilomycin A1 and by addition of 10 mM CaEGTA. These effects were additive. These substances induced a significant inhibition of infectivity without affecting virus binding and postentry steps. These results are compatible with the interpretation that bafilomycin A1 and CaEGTA block rotavirus penetration from the endosome into the cytoplasm and support our hypothesis of a Ca(2+)-dependent endocytosis model.  相似文献   

4.
A quantitative understanding of viral trafficking would be useful in treating viral-mediated diseases, designing protocols for viral gene therapy, and optimizing heterologous protein production. In this article, a model for the trafficking of Semliki Forest virus and its RNA synthesis in baby hamster kidney (BHK-21) cells is presented. This model includes the various steps leading to infection such as attachment, endocytosis, and viral fusion in the endosome. The model estimates a mean fusion time of 4 to 6 min for the wild-type virus, and 38 min for Fus-1, an SFV mutant which requires a lower pH for fusion. These mean fusion times are consistent with the time-scale of endosomal acidification, suggesting viruses fuse almost instantaneously with the endosomal membrane as soon as the pH of the endosome drops below the pH threshold of the virus. Infection is most likely controlled at the level of viral uncoating, as shown by the close agreement between the efficiency of uncoating and the experimentally determined fraction of viruses that is infectious. The viral RNA synthesized per cell is best described by assuming that it depends on the number of uncoated viruses prior to the onset of replication according to a saturation-type expression. A Poisson distribution is used to determine the distribution of uncoated viruses among the cells. Because attachment is the rate-limiting step in the uncoating of the virus, increasing the attachment rate can lead to enhanced RNA synthesis and, hence, new virion production. Such an increase in the attachment rate may be obtained by lowering the medium pH or the addition of a polycation. (c) 1995 John Wiley & Sons, Inc.  相似文献   

5.
泛素-蛋白酶体途径——降解溶酶体外蛋白的主要细胞内系统,在许多细胞功能中发挥重要作用。为自身利益如病毒出芽、凋亡抑制和免疫逃避,许多病毒已经进化出了利用泛素-蛋白酶体途径的不同策略。深入理解泛素-蛋白酶体途径在病毒感染中的作用有助于揭示一些病毒病的致病机理和发现新的分子靶标以开发抗病毒药物。因此,将泛素-蛋白酶体途径在病毒感染中的作用方面的最新进展作一综述。  相似文献   

6.
Adenovirus (Ad) vectors are widely used for gene delivery in vitro and in vivo. A solid understanding of the biology of this virus is imperative for the development of novel, effective, and safe vectors. For the group C adenovirus serotypes 2 and 5 that use CAR as a primary attachment receptor, it is known that the penton base RGD motifs interact with cellular integrins and that this interaction promotes virus internalization. However, the RGD motif's impact on the efficiency of postinternalization steps, such as the escape of the virus particle from the endosome, is less defined. Furthermore, the role of penton-integrin interactions remains unknown for new vectors possessing group B Ad fiber knobs that use CD46 as a primary virus attachment receptor. In this study, we used vectors with the RGD motif deleted that contained Ad5 and B-group Ad35 fiber knobs and long fiber shafts and studied the role of RGD-integrin interactions in virus internalization and endosome escape. The deletion of the RGD motif in the penton base did not affect virus attachment, regardless of the type of cellular receptor used for attachment. RGD motif deletion, however, significantly reduced the rate of virus internalization for both the Ad5 and Ad35 fiber knob-containing vectors. This study also demonstrates the role of penton RGD motifs in facilitating the endosome escape step of virus infection and indicates that penton-integrin interactions are involved in internalization of capsid-chimeric CD46-interacting Ads with long fiber shafts.  相似文献   

7.
Here we show that the ubiquitin-proteasome system is required for the efficient replication of rotavirus RRV in MA104 cells. The proteasome inhibitor MG132 decreased the yield of infectious virus under conditions where it severely reduces the synthesis of not only viral but also cellular proteins. Addition of nonessential amino acids to the cell medium restored both viral protein synthesis and cellular protein synthesis, but the production of progeny viruses was still inhibited. In medium supplemented with nonessential amino acids, we showed that MG132 does not affect rotavirus entry but inhibits the replication of the viral genome. It was also shown that it prevents the efficient incorporation into viroplasms of viral polymerase VP1 and the capsid proteins VP2 and VP6, which could explain the inhibitory effect of MG132 on genome replication and infectious virus yield. We also showed that ubiquitination is relevant for rotavirus replication since the yield of rotavirus progeny in cells carrying a temperature-sensitive mutation in the E1 ubiquitin-activating enzyme was reduced at the restrictive temperature. In addition, overexpression of ubiquitin in MG132-treated MA104 cells partially reversed the effect of the inhibitor on virus yield. Altogether, these data suggest that the ubiquitin-proteasome (UP) system has a very complex interaction with the rotavirus life cycle, with both the ubiquitination and proteolytic activities of the system being relevant for virus replication.  相似文献   

8.
代军  仇旭升  丁铲 《生物工程学报》2023,39(10):3948-3965
内吞体分选转运复合体(endosomal sorting complex required for transport,ESCRT)系统驱动细胞的不同生命进程,包括内体分选、细胞器生物发生、囊泡运输、维持质膜完整性、细胞质分裂期间的膜裂变、有丝分裂后的核膜重组、自噬过程中吞噬孔的封闭以及包膜病毒出芽等。越来越多的证据表明,ESCRT系统能够被不同家族病毒劫持用于自身增殖。在病毒生命周期的不同阶段,病毒可以通过各种方式干扰或利用ESCRT系统介导的生理过程,最大限度地提高感染宿主的机会。此外,许多逆转录病毒和RNA病毒蛋白具有“晚期结构域”基序,可招募宿主ESCRT亚基蛋白帮助病毒内吞、运输、复制、出芽以及外排。因此,病毒“晚期结构域”基序和ESCRT亚基蛋白可能是病毒感染治疗中具有广泛应用前景的药物靶点。本文重点综述了ESCRT系统的组成及功能,ESCRT亚基和病毒“晚期结构域”基序对病毒复制的影响以及ESCRT介导的抗病毒作用,以期为抗病毒药物的开发和利用提供参考。  相似文献   

9.
The ubiquitin-proteasome system has been shown to play an important role in the replication cycle of different viruses. In this study, we describe a strong impairment of rotavirus replication upon inhibition of proteasomal activity. The effect was evidenced at the level of accumulation of viral proteins, viral RNA, and yield of infective particles. Kinetic studies revealed that the early steps of the replicative cycle following attachment, entry, and uncoating were clearly more sensitive to proteasome inhibition. We ruled out a direct inhibition of the viral polymerase activities and stability of viral proteins and found that the crucial step that was impaired by blocking proteasome activity was the assembly of new viroplasms. This was demonstrated by using chemical inhibitors of proteasome and by gene silencing using small interfering RNAs (siRNAs) specific for different proteasomal subunits and for the ubiquitin precursor RPS27A. In addition, we show that the effect of proteasome inhibition on virus infection is not due to increased levels of beta interferon (IFN-β).  相似文献   

10.
The role of ubiquitin in retroviral egress   总被引:3,自引:0,他引:3  
HIV and many other enveloped viruses encode a late budding domain (L-domain) that recruits the cellular machinery that mediates the separation of the nascent virion from the infected cell. The ubiquitin-proteasome system has been implicated in the L-domain activity, but the exact role of ubiquitin transfer and ubiquitin-binding proteins in the last step of viral replication remains elusive. It is now widely accepted that the class E vacuolar protein sorting pathway mediates both viral budding and vesicle budding into the multivesicular bodies and, remarkably, both budding events share the same topology and similar requirements for ubiquitin. In this review, the role of ubiquitin in viral budding is discussed in the light of recent advances in the understanding of the cellular mechanisms that assist the last step of HIV-1 release.  相似文献   

11.
Influenza virus enters cells by endocytosis, and requires the low pH of the late endosome for successful infection. Here, we investigated the requirements for sorting into the multivesicular body pathway of endocytosis. We show that treatment of host cells with the proteasome inhibitors MG132 and lactacystin directly affects the early stages of virus replication. Unlike other viruses, such as retroviruses, influenza virus budding was not affected. The requirement for proteasome function was not shared by two other pH-dependent viruses: Semliki Forest virus and vesicular stomatitis virus. With MG132 treatment, incoming influenza viruses were retained in endosomes that partially colocalized with mannose 6-phosphate receptor, but not with classical markers of early or late endosomes. Colocalization was also observed with Rme-1, which is part of the recycling pathway of endocytosis. In addition, influenza virus entry was dependent on the vacuolar protein sorting pathway, as over-expression of dominant-negative hVPS4 caused arrest of viruses in endosome-like populations that partially colocalized with the hVPS4 protein. Overall, we conclude that influenza virus selectively requires the ubiquitin/vacuolar protein sorting pathway for entry into host cells, and that it must communicate with a specific cellular machinery for intracellular sorting during the initial phase of virus infection.  相似文献   

12.
BK polyomavirus (BKPyV) is a member of a family of potentially oncogenic viruses, whose reactivation can cause severe pathological conditions in transplant patients, leading to graft rejection. As with many non-enveloped viruses, it is assumed that virus release occurs through lysis of the host cell. We now show the first evidence for a non-lytic release pathway for BKPyV and that this pathway can be blocked by the anion channel inhibitor DIDS. Our data show a dose-dependent effect of DIDS on the release of BKPyV virions. We also observed an accumulation of viral capsids in large LAMP-1-positive acidic organelles within the cytoplasm of cells upon DIDS treatment, suggesting potential late endosome or lysosome-related compartments are involved in non-lytic BKPyV release. These data highlight a novel mechanism by which polyomaviruses can be released from infected cells in an active and non-lytic manner, and that anion homeostasis regulation is important in this pathway.  相似文献   

13.
A central event in the invasion of a host cell by an enveloped virus is the fusion of viral and cell membranes. For many viruses, membrane fusion is driven by specific viral surface proteins that undergo large-scale conformational rearrangements, triggered by exposure to low pH in the endosome upon internalization. Here, we present evidence suggesting that in both class I (helical hairpin proteins) and class II (beta-structure-rich proteins) pH-dependent fusion proteins the protonation of specific histidine residues triggers fusion via an analogous molecular mechanism. These histidines are located in the vicinity of positively charged residues in the prefusion conformation, and they subsequently form salt bridges with negatively charged residues in the postfusion conformation. The molecular surfaces involved in the corresponding structural rearrangements leading to fusion are highly conserved and thus might provide a suitable common target for the design of antivirals, which could be active against a diverse range of pathogenic viruses.  相似文献   

14.
Successful initiation of infection by many different viruses requires their uptake into the endosomal compartment. While some viruses exit this compartment early, others must reach the degradative, acidic environment of the late endosome. Mammalian orthoreovirus (reovirus) is one such late penetrating virus. To identify host factors that are important for reovirus infection, we performed a CRISPR-Cas9 knockout (KO) screen that targets over 20,000 genes in fibroblasts derived from the embryos of C57/BL6 mice. We identified seven genes (WDR81, WDR91, RAB7, CCZ1, CTSL, GNPTAB, and SLC35A1) that were required for the induction of cell death by reovirus. Notably, CRISPR-mediated KO of WD repeat-containing protein 81 (WDR81) rendered cells resistant to reovirus infection. Susceptibility to reovirus infection was restored by complementing KO cells with human WDR81. Although the absence of WDR81 did not affect viral attachment efficiency or uptake into the endosomal compartments for initial disassembly, it reduced viral gene expression and diminished infectious virus production. Consistent with the role of WDR81 in impacting the maturation of endosomes, WDR81-deficiency led to the accumulation of reovirus particles in dead-end compartments. Though WDR81 was dispensable for infection by VSV (vesicular stomatitis virus), which exits the endosomal system at an early stage, it was required for VSV-EBO GP (VSV that expresses the Ebolavirus glycoprotein), which must reach the late endosome to initiate infection. These results reveal a previously unappreciated role for WDR81 in promoting the replication of viruses that transit through late endosomes.  相似文献   

15.
Enveloped viruses often enter cells via endocytosis; however, specific endocytic trafficking pathway(s) for many viruses have not been determined. Here we demonstrate, through the use of dominant-negative Rab5 and Rab7, that influenza virus (Influenza A/WSN/33 (H1N1) and A/X-31 (H3N2)) requires both early and late endosomes for entry and subsequent infection in HeLa cells. Time-course experiments, monitoring viral ribonucleoprotein colocalization with endosomal markers, indicated that influenza exhibits a conventional endocytic uptake pattern – reaching early endosomes after approximately 10 min, and late endosomes after 40 min. Detection with conformation-specific hemagglutinin antibodies indicated that hemagglutinin did not reach a fusion-competent form until the virus had trafficked beyond early endosomes. We also examined two other enveloped viruses that are also pH-dependent for entry – Semliki Forest virus and vesicular stomatitis virus. In contrast to influenza virus, infection with both Semliki Forest virus and vesicular stomatitis virus was inhibited only by the expression of dominant negative Rab5 and not by dominant negative Rab7, indicating an independence of late endosome function for infection by these viruses. As a whole, these data provide a definitive characterization of influenza virus endocytic trafficking and show differential requirements for endocytic trafficking between pH-dependent enveloped viruses .  相似文献   

16.
Muscle atrophy is a prominent feature of catabolic conditions and in animal models of these conditions there is accelerated muscle proteolysis that is dependent on the ubiquitin-proteasome system. However, ubiquitin system cannot degrade actomyosin or myofibrils even though it rapidly degrades actin or myosin. We identified caspase-3 as the initial and potentially rate-limiting proteolytic step that cleaves actomyosin/myofibrils. In rodent models of catabolic conditions, we find that caspase-3 is activated to cleave muscle proteins and actomyosin to fragments that are rapidly degraded by the ubiquitin system. This initial proteolytic step in muscle can be recognized because it leaves a footprint of a characteristic 14-kDa actin band. Stimulation of caspase-3 activity depends on activation of phosphatidylinositol 3-kinase. When we suppressed this enzyme in muscle cells, protein breakdown increased as did the expression of caspase-3. In addition, there was increased expression of E3-ubiquitin-conjugating enzymes that are involved in muscle proteolysis, atrogin-1/MAFbx and MuRF1. Thus, when phosphatidylinositol 3-kinase activity is low in muscle cells or rat muscle, both caspase-3 and the ubiquitin-proteasome system are stimulated to degrade protein. Additional investigations will be needed to define the cell signaling processes that activate muscle proteolysis in uremia and catabolic conditions.  相似文献   

17.
泛素-蛋白酶体途径是溶酶体外蛋白降解的主要系统,在许多细胞功能中发挥重要作用。越来越多的证据表明病毒参与泛素-蛋白酶体途径,干扰IFN信号通路和免疫受体表达、凋亡抑制及介导病毒潜伏。深入理解病毒利用泛素-蛋白酶体途径逃避宿主抗病毒反应的策略,有助于揭示病毒的致病机理和鉴定抗病毒药物新靶标。  相似文献   

18.
Inhibitors of endosome acidification or cathepsin proteases attenuated infections mediated by envelope proteins of xenotropic murine leukemia virus-related virus (XMRV) and Ebola virus, as well as ecotropic, amphotropic, polytropic, and xenotropic murine leukemia viruses (MLVs), indicating that infections by these viruses occur through acidic endosomes and require cathepsin proteases in the susceptible cells such as TE671 cells. However, as previously shown, the endosome acidification inhibitors did not inhibit these viral infections in XC cells. It is generally accepted that the ecotropic MLV infection in XC cells occurs at the plasma membrane. Because cathepsin proteases are activated by low pH in acidic endosomes, the acidification inhibitors may inhibit the viral infections by suppressing cathepsin protease activation. The acidification inhibitors attenuated the activities of cathepsin proteases B and L in TE671 cells, but not in XC cells. Processing of cathepsin protease L was suppressed by the acidification inhibitor in NIH3T3 cells, but again not in XC cells. These results indicate that cathepsin proteases are activated without endosome acidification in XC cells. Treatment with an endocytosis inhibitor or knockdown of dynamin 2 expression by siRNAs suppressed MLV infections in all examined cells including XC cells. Furthermore, endosomal cathepsin proteases were required for these viral infections in XC cells as other susceptible cells. These results suggest that infections of XC cells by the MLVs and Ebola virus occur through endosomes and pH-independent cathepsin activation induces pH-independent infection in XC cells.  相似文献   

19.
Many viruses take advantage of receptor-mediated endocytosis in order to enter target cells. We have utilized influenza virus and Semliki Forest virus (SFV) to define a role for protein kinase C betaII (PKCbetaII) in endocytic trafficking. We show that specific PKC inhibitors prevent influenza virus infection, suggesting a role for classical isoforms of PKC. We also examined virus entry in cells overexpressing dominant-negative forms of PKCalpha and -beta. Cells expressing a phosphorylation-deficient form of PKCbetaII (T500V), but not an equivalent mutant form of PKCalpha, inhibited successful influenza virus entry-with the virus accumulating in late endosomes. SFV, however, believed to enter cells from the early endosome, was unaffected by PKCbetaII T500V expression. We also examined the trafficking of two cellular ligands, transferrin and epidermal growth factor (EGF). PKCbetaII T500V expression specifically blocked EGF receptor trafficking and degradation, without affecting transferrin receptor recycling. As with influenza virus, in PKCbetaII kinase-dead cells, EGF receptor was trapped in a late endosome compartment. Our findings suggest that PKCbetaII is an important regulator of a late endosomal sorting event needed for influenza virus entry and infection.  相似文献   

20.
Irie T  Sakaguchi T 《Uirusu》2007,57(1):1-7
Our knowledge about envelope virus budding has been dramatically increased, since L-domain motifs were identified within their matrix and retroviral Gag proteins which drive virus budding. These viral proteins have been shown to interact with host cellular proteins involved in endocytosis and/or multi-vesicular body (MVB) sorting via their L-domains. Since budding of many enveloped viruses have been reported to be dependent on the activity of cellular Vps4, which catalyzes the disassembly of ESCRT machinery in the final step of protein sorting, this cellular function is believed to be utilized for efficient virus budding. However, for many enveloped viruses, L-domain motifs have not yet been identified, and the involvement of MVB sorting machinery in virus budding is still unknown. In this review, we will focus on paramyxoviruses among such viruses, and discuss their budding with the latest information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号