首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Light, controls the “blueprint” for chloroplast development, but at high intensities is toxic to the chloroplast. Excessive light intensities inhibit primarily photosystem II electron transport. This results in generation of toxic singlet oxygen due to impairment of electron transport on the acceptor side between pheophytin and QB -the secondary electron acceptor. High light stress also impairs electron transport on the donor side of photosystem II generating highly oxidizing species Z+ and P680+. A conformationsl change in the photosystem II reaction centre protein Dl affecting its QB-binding site is involved in turning the damaged protein into a substrate for proteolysis. The evidence indicates that the degradation of D1 is an enzymatic process and the protease that degrades D1 protein has been shown to be a serine protease Although there is evidence to indicate that the chlorophyll a-protein complex CP43 acts as a serine-type protease degrading Dl, the observed degradation of Dl protein in photosystem II reaction centre particlesin vitro argues against the involvement of CP43 in Dl degradation. Besides the degradation during high light stress of Dl, and to a lesser extent D2-the other reaction centre protein, CP43 and CP29 have also been shown to undergo degradation. In an oxygenic environment, Dl is cleaved from its N-and C-termini and the disassembly of the photosystem II complex involves simultaneous release of manganese and three extrinsic proteins involved in oxygen evolution. It is known that protein with PEST sequences are subject to degradation; D1 protein contains a PEST sequence adjacent to the site of cleavage on the outer side of thylakoid membrane between helices IV and V. The molecular processes of “triggering” of Dl for proteolytic degradation are not clearly understood. The changes in structural organization of photosystem II due to generation of oxy-radicals and other highly oxidizing species have also not been resolved. Whether CP43 or a component of the photosystem II reaction centre itself (Dl. D2 or cy1 b559 subunits), which may be responsible for degradation of Dl, is also subject to light modification to become an active protease, is also not known. The identity of proteases degrading Dl, LHCII and CP43 and C29 remains to be established  相似文献   

2.
This study examines the effects of ecologically important levels of ultraviolet B radiation on protein D1 turnover and stability and lateral redistribution of photosystem II. It is shown that ultraviolet B light supported only limited synthesis of protein D1, one of the most important components of photosystem II, whereas it promoted significant degradation of proteins D1 and D2. Furthermore, dephosphorylation of photosystem II subunits was specifically elicited upon exposure to ultraviolet B light. Structural modifications of photosystem II and changes in its lateral distribution between granum membranes and stroma-exposed lamellae were found to be different from those observed after photoinhibition by strong visible light. In particular, more complete dismantling of photosystem II cores was observed. Altogether, the data reported here suggest that ultraviolet B radiation alone fails to activate the photosystem II repair cycle, as hypothesized for visible light. This failure may contribute to the toxic effect of ultraviolet B radiation, which is increasing as a consequence of depletion of stratospheric ozone.  相似文献   

3.
Quality control of photosystem II   总被引:1,自引:0,他引:1  
Photosystem II is particularly vulnerable to excess light. When illuminated with strong visible light, the reaction center D1 protein is damaged by reactive oxygen molecules or by endogenous cationic radicals generated by photochemical reactions, which is followed by proteolytic degradation of the damaged D1 protein. Homologs of prokaryotic proteases, such as ClpP, FtsH and DegP, have been identified in chloroplasts, and participation of the thylakoid-bound FtsH in the secondary degradation steps of the photodamaged D1 protein has been suggested. We found that cross-linking of the D1 protein with the D2 protein, the alpha-subunit of cytochrome b(559), and the antenna chlorophyll-binding protein CP43, occurs in parallel with the degradation of the D1 protein during the illumination of intact chloroplasts, thylakoids and photosystem II-enriched membranes. The cross-linked products are then digested by a stromal protease(s). These results indicate that the degradation of the photodamaged D1 protein proceeds through membrane-bound proteases and stromal proteases. Moreover, a 33-kDa subunit of oxygen-evolving complex (OEC), bound to the lumen side of photosystem II, regulates the formation of the cross-linked products of the D1 protein in donor-side photoinhibition of photosystem II. Thus, various proteases and protein components in different compartments in chloroplasts are implicated in the efficient turnover of the D1 protein, thus contributing to the control of the quality of photosystem II under light stress conditions.  相似文献   

4.
Too much of a good thing: light can be bad for photosynthesis.   总被引:35,自引:0,他引:35  
Even though light is the ultimate substrate for photosynthetic energy conversion, it can also harm plants. This toxicity is targeted to the water-splitting photosystem II and leads to damage and degradation of the reaction centre D1-polypeptide. The degradation of this very important protein appears to be a direct consequence of photosystem II chemistry involving highly oxidizing radicals and toxic oxygen species. The frequency of this damage is relatively low under normal conditions but becomes a significant problem for the plant with increasing light intensity, especially when combined with other environmental stress factors. However, the plant survives this photoinhibition through an efficient repair system which involves an autoproteolytic activity of the photosystem II complex, D1-polypeptide synthesis and reassembly of active complexes.  相似文献   

5.
Isotope (Na(15)NO(3), ((15)NH(4))SO(4) or [(13)C]glucose) labeling was used to analyze chlorophyll synthesis and degradation rates in a set of Synechocystis mutants that lacked single or multiple small Cab-like proteins (SCPs), as well as photosystem I or II. When all five small Cab-like proteins were inactivated in the wild-type background, chlorophyll stability was not affected unless the scpABCDE(-) strain was grown at a moderately high light intensity of 100-300 micromol photons m(-2) s(-1). However, the half-life time of chlorophyll was 5-fold shorter in the photosystem I-less/scpABCDE(-) strain than in the photosystem I-less strain even when grown at low light intensity (~3 micromol photons m(-2) s(-1)) (32 +/- 5 and 161 +/- 25 h, respectively). In other photosystem I-less mutants that lacked one to four of the scp genes the chlorophyll lifetime was in between these two values, with the chlorophyll lifetime generally decreasing with an increasing number of inactivated scps. In contrast, the chlorophyll biosynthesis rate was only marginally affected by inactivation of scps except when all five scp genes were deleted. Small Cab-like protein deficiency did not significantly affect photoinhibition or turnover of photosystem II-associated beta-carotene. It is concluded that SCPs do not alter the stability of functional photosystem II complexes but retard the degradation of photosystem II-associated chlorophyll, consistent with the proposed involvement of SCPs in photosystem II re-assembly or/and repair processes by temporarily binding chlorophyll while photosystem II protein components are being replaced.  相似文献   

6.
Using a var2-2 mutant of Arabidopsis thaliana, which lacks a homologue of the zinc-metalloprotease, FtsH, we demonstrate that this protease is required for the efficient turnover of the D1 polypeptide of photosystem II and protection against photoinhibition in vivo. We show that var2-2 leaves are much more susceptible to light-induced photosystem II photoinhibition than wild-type leaves. Furthermore, the rate of photosystem II photoinhibition in untreated var2-2 leaves is equivalent to that of var2-2 and wild-type leaves, which have been treated with lincomycin, an inhibitor of the photosystem II repair cycle at the level of D1 synthesis. This is in contrast to untreated wild-type leaves, which show a much slower rate of photosystem II photoinhibition due to an efficient photosystem II repair cycle. The recovery of var2-2 leaves from photosystem II photoinhibition is also impaired relative to wild-type. Using Western blot analysis in the presence of lincomycin we show that the D1 polypeptide remains stable in leaves of the var2-2 mutant under photoinhibitory conditions that lead to D1 degradation in wild-type leaves and that the abundance of DegP2 is not affected by the var2-2 mutation. We conclude, therefore, that the Var2 FtsH homologue is required for the cleavage of the D1 polypeptide in vivo. In addition, we identify a conserved lumenal domain in Var2 that is unique to FtsH homologues from oxygenic phototrophs.  相似文献   

7.
Illumination of isolated spinach thylakoid membranes under anaerobic conditions gave rise to severe inhibition of photosystem II electron transport but did not result in D1-protein degradation. When these photoinhibited thylakoids were incubated in total darkness the photosystem II activity could be fully restored in vitro in a process that required 1-2 h for completion.  相似文献   

8.
The mechanism of D1 protein degradation was investigated during photoinhibitory illumination of isolated photosystem II core preparations. The studies revealed that a proteolytic activity resides within the photosystem II core complex. A relationship between the inhibition of D1 protein degradation and the binding of the highly specific serine protease inhibitor diisopropyl fluorophosphate to isolated complexes of photosystem II was observed, evidence that this protease is of the serine type. Using radiolabeled inhibitor, it was shown that the binding site, representing the active serine of the catalytic site, is located on a 43-kDa polypeptide, probably the chlorophyll a protein CP43. The protease is apparently active in darkness, with the initiation of breakdown being dependent on high light-induced substrate activation. The proteolysis, which has an optimum at pH 7.5, gives rise to primary degradation fragments of 23 and 16 kDa. In addition, D1 protein fragments of 14, 13, and 10 kDa were identified. Experiments with phosphate-labeled D1 protein and sequence-specific antisera showed that the 23- and 16-kDa fragments originate from the N- and C-termini, respectively, suggesting a primary cleavage of the D1 protein at the outer thylakoid surface in the region between transmembrane helices D and E.  相似文献   

9.
The light exposure history and/or binding of different herbicides at the Q(B) site may induce heterogeneity of photosystem II acceptor side conformation that affects D1 protein degradation under photoinhibitory conditions. GTP was recently found to stimulate the D1 protein degradation of photoinactivated photosystem II (Spetea, C. , Hundal, T., Lohmann, F., and Andersson, B. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 6547-6552). Here we report that GTP enhances the cleavage of the D1 protein D-E loop following exposure of thylakoid membranes to either high light, low light, or repetitive single turnover flashes but not to trypsin. GTP does not stimulate D1 protein degradation in the presence of herbicides known to affect the accessibility of the cleavage site to proteolysis. However, GTP stimulates degradation that can be induced even in darkness in some photosystem II conformers following binding of the PNO8 herbicide (Nakajima, Y., Yoshida, S., Inoue, Y., Yoneyama, K., and Ono, T. (1995) Biochim. Biophys. Acta 1230, 38-44). Both the PNO8- and the light-induced primary cleavage of the D1 protein occur in the grana membrane domains. The subsequent migration of photosytem II containing the D1 protein fragments to the stroma domains for secondary proteolysis is light-activated. We conclude that the GTP effect is not confined to a specific photoinactivation pathway nor to the conformational state of the photosystem II acceptor side. Consequently, GTP does not interact with the site of D1 protein cleavage but rather enhances the activity of the endogenous proteolytic system.  相似文献   

10.
The relationship between state transitions and photoinhibition has been studied in Chlamydomonas reinhardtii cells. In State 2, photosystem II activity was more inhibited by light than in State 1. In State 2, however, the D1 subunit was not degraded, whereas a substantial degradation was observed in State 1. These results suggest that photoinhibition occurs via the generation of an intermediate state in which photosystem II is inactive but the D1 protein is still intact. The accumulation of this state is enhanced in State 2, because in this State only cyclic photosynthetic electron transport is active, whereas there is no electron flow between photosystem II and the cytochrome b(6)f complex (Finazzi, G., Furia, A., Barbagallo, R. P., and Forti, G. (1999) Biochim. Biophys. Acta 1413, 117-129). The activity of photosystem I and of cytochrome b(6)f as well as the coupling of thylakoid membranes was not affected by illumination under the same conditions. This allows repairing the damages to photosystem II thanks to cell capacity to maintain a high rate of ATP synthesis (via photosystem I-driven cyclic electron flow). This capacity might represent an important physiological tool in protecting the photosynthetic apparatus from excess of light as well as from other a-biotic stress conditions.  相似文献   

11.
Photosynthetic activity, pigment conversion and D1 protein degradation under high light stress has been investigated in a wild type strain and two xanthophyll cycle mutants (npq1 and npq2) of Chlamydomonas reinhardtii. Wild type cells exhibited the well-known inactivation of photosystem II in high light, which was accompanied by the loss of β-carotene and a concomitant increase of zeaxanthin. Complete degradation of D1 protein was found after 2 h of illumination in the presence of chloramphenicol, an inhibitor of chloroplast protein synthesis. The npq1 mutant, which is unable to convert violaxanthin to zeaxanthin, showed a very similar behaviour. For the npq2 mutant, however, which is unable to form violaxanthin from zeaxanthin and thus contains high amounts of zeaxanthin even in low light, photosystem II inactivation was less pronounced. This was paralleled by a much slower D1 protein degradation in chloramphenicol treated cells. Our results support a protective role for zeaxanthin against high light-induced photosystem II inactivation resulting in a slowed-down D1 protein turnover.  相似文献   

12.
Given the unique problem of the extremely high potential of the oxidant P(+)(680) that is required to oxidize water to oxygen, the photoinactivation of photosystem II in vivo is inevitable, despite many photoprotective strategies. There is, however, a robustness of photosystem II, which depends partly on the highly dynamic compositional and structural heterogeneity of the cycle between functional and non-functional photosystem II complexes in response to light level. This coordinated regulation involves photon usage (energy utilization in photochemistry) and excess energy dissipation as heat, photoprotection by many molecular strategies, photoinactivation followed by photon damage and ultimately the D1 protein dynamics involved in the photosystem II repair cycle. Compelling, though indirect evidence suggests that the radical pair P(+)(680)Pheo(-) in functional PSII should be protected from oxygen. By analogy to the tentative oxygen channel of cytochrome c oxidase, oxygen may be liberated from the two water molecules bound to the catalytic site of the Mn cluster, via a specific pathway to the membrane surface. The function of the proposed oxygen pathway is to prevent O(2) from having direct access to P(+)(680)Pheo(-) and prevent the generation of singlet oxygen via the triplet-P(680) state in functional photosytem IIs. Only when the, as yet unidentified, potential trigger with a fateful first oxidative step destroys oxygen evolution, will the ensuing cascade of structural perturbations of photosystem II destroy the proposed oxygen, water and proton pathways. Then oxygen has direct access to P(+)(680)Pheo(-), singlet oxygen will be produced and may successively oxidize specific amino acids of the phosphorylated D1 protein of photosystem II dimers that are confined to appressed granal domains, thereby targeting D1 protein for eventual degradation and replacement in non-appressed thylakoid domains.  相似文献   

13.
PsbU is a subunit of the extrinsic complex attached to the core of photosystem II. A PsbU-mutant of Synechococcus PCC 7942 was isolated based on its elevated resistance to externally applied oxidative stress. PsbU-mutant exhibits fast rates of degradation of the photosystem II core protein, D1, under sub-saturating as well as high-light conditions. While forward electron transfer is not affected, back electron flow is severely impaired in the mutant. We suggest that impairment of psbU results in production of reactive-oxygen-species, which trigger antioxidative mechanisms even under standard growth conditions. Accordingly, when challenged with external oxidative stress, these cells are more resistant than wild type cells.  相似文献   

14.
R Kettunen  E Tyystjrvi    E M Aro 《Plant physiology》1996,111(4):1183-1190
Photoinhibition-induced degradation of the D1 protein of the photosystem II reaction center was studied in intact pumpkin (Cucurbita pepo L.) leaves. Photoinhibition was observed to cause the cleavage of the D1 protein at two distinct sites. The main cleavage generated an 18-kD N-terminal and a 20-kD C-terminal degradation fragment of the D1 protein. this cleavage site was mapped to be located clearly N terminally of the DE loop. The other, less-frequent cleavage occurred at the DE loop and produced the well-documented 23-kD, N-terminal D1 degradation product. Furthermore, the 23-kD, N-terminal D1 fragment appears to be phosphorylated and can be detected only under severe photoinhibition in vivo. Comparison of the D1 degradation pattern after in vivo photoinhibition to that after in vitro acceptor-side and donor-side photoinhibition, performed with isolated photosystem II core particles, gives indirect evidence in support of donor-side photoinhibition in intact leaves.  相似文献   

15.
应用蛋白质免疫杂交技术分析了永绿色基因(Stay-green Rice,SGR)突变和超表达对水稻(Oryza sativa)叶片类囊体蛋白质降解的影响.结果表明,在正常生长条件下,SGR超表达降低了光系统Ⅱ(PSⅡ)、光系统Ⅰ(PS Ⅰ)和电子传递链等的蛋白质含量.暗诱导衰老处理时,SGR突变延缓了PSⅠ和PSⅡ的蛋...  相似文献   

16.
An outcome of the photochemistry during oxygenic photosynthesis is the rapid turn over of the D1 protein in the light compared to the other proteins of the photosystem II (PS II) reaction center. D1 is a major factor of PS II instability and its replacement a primary event of the PS II repair cycle. D1 also undergoes redox-dependent phosphorylation prior to its degradation. Although it has been suggested that phosphorylation modulates D1 metabolism, reversible D1 phosphorylation was reported not to be essential for PS II repair in Arabidopsis. Thus, the involvement of phosphorylation in D1 degradation is controversial. We show here that nitric oxide donors inhibit in vivo phosphorylation of the D1 protein in Spirodela without inhibiting degradation of the protein. Thus, D1 phosphorylation is not tightly linked to D1 degradation in the intact plant.  相似文献   

17.
The effect of visible light on photosystem II reaction centre D1 protein in plants treated with ultraviolet-B light was studied. It was found that a 20 kDa C-terminal fragment of D1 protein generated during irradiation with ultraviolet-B light was stable when plants were incubated in the dark, but was degraded when plants were incubated in visible light. In this condition the recovery of photosynthetic activity was also observed. Even a low level of white light was sufficient to promote both further degradation of the fragment and recovery of activity. During this phase, the D1 protein is the main synthesized thylakoid polypeptide, indicating that other photosystem II proteins are recycled in the recovery process. Although both degradation of the 20 kDa fragment and resynthesis of D1 are light-dependent phenomena, they are not closely related, as degradation of the 20 kDa fragment may occur even in the absence of D1 synthesis. Comparing chemical and physical factors affecting the formation of the fragment in ultraviolet-B light and its degradation in white light, it was concluded that the formation of the fragment in ultraviolet-B light is a photochemical process, whereas the degradation of the fragment in white light is a protease-mediated process.  相似文献   

18.
Massive degradation of photosynthetic proteins is the hallmark of leaf senescence; however the mechanism involved in chloroplast protein breakdown is not completely understood. As small 'senescence-associated vacuoles' (SAVs) with intense proteolytic activity accumulate in senescing leaves of soybean and Arabidopsis, the main goal of this work was to determine whether SAVs are involved in the degradation of chloroplastic components. SAVs with protease activity were readily detected through confocal microscopy of naturally senescing leaves of tobacco (Nicotiana tabacum L.). In detached leaves incubated in darkness, acceleration of the chloroplast degradation rate by ethylene treatment correlated with a twofold increase in the number of SAVs per cell, compared to untreated leaves. In a tobacco line expressing GFP targeted to plastids, GFP was re-located to SAVs in senescing leaves. SAVs were isolated by sucrose density gradient centrifugation. Isolated SAVs contained chloroplast-targeted GFP and the chloroplast stromal proteins Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) and glutamine synthetase, but lacked the thylakoid proteins D1 and light-harvesting complex II of the photosystem II reaction center and photosystem II antenna, respectively. In SAVs incubated at 30 degrees C, there was a steady decrease in Rubisco levels, which was completely abolished by addition of protease inhibitors. These results indicate that SAVs are involved in degradation of the soluble photosynthetic proteins of the chloroplast stroma during senescence of leaves.  相似文献   

19.
小麦品种的更新换代是小麦产量不断提高的重要因素,阐明小麦品种演替过程中不同生理特性的变化对新品种选育具有重要参考价值.旗叶衰老速率快慢是影响小麦产量水平的关键因素,目前对于不同小麦品种衰老过程中旗叶光系统Ⅱ功能的变化规律尚不清楚.本试验选用1941-2014年间河南地区不同时期种植的31个品种,通过黑暗诱导离体叶片衰老,测定旗叶叶绿素荧光诱导动力学参数、叶绿素相对含量的变化,分析了光系统Ⅱ功能的变化规律.结果表明:品种演替过程中旗叶的叶绿素含量逐渐提高,衰老过程中近代品种叶绿素的降解速率低于较早年代品种;旗叶衰老过程中,近代品种荧光诱导动力学曲线的J点上升幅度小于I点;品种更替过程中光系统Ⅱ最大光化学效率和单位面积有活性反应中心数目逐渐增加,但是近代品种降低速率低于较早年代品种.叶绿素含量的变化与未衰老叶片中Fv/Fm没有显著相关性,但是随着衰老程度增加,相关性逐渐增大,且趋势线斜率逐渐提高;光系统Ⅱ单位面积有活性反应中心数目与品种育成时间呈显著正相关,且随着衰老程度增加,相关程度和趋势线斜率均显著提高.综上,小麦品种演替过程中,旗叶叶绿素含量逐渐升高,降解速率逐渐减缓,光合电子传递过程中QA到QB电子传递的抗衰老能力得到改善,从而减缓了衰老过程中光系统Ⅱ最大光化学效率和有活性反应中心的衰减速率,同时,叶绿素含量的提高和旗叶光系统Ⅱ抗衰老能力的增强也是品种更替过程中产量逐渐提高的重要因素.  相似文献   

20.
The abundance of photosystem II in chloroplast thylakoid membranes has been a contentious issue because different techniques give quite different estimates of photosystem II titer. This discrepancy led in turn to disagreements regarding the stoichiometry of photosystem II to photosystem I in these membranes. We believe that the discrepancy in photosystem II quantitation is resolved by evidence which shows that a large population of photosystem II centers with negligible turnover rates are present in isolated thylakoid membranes as well as in normally developed leaves of healthy plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号