首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To study molecular motion and function of membrane phospholipids, we have developed various probes which bind specifically to certain phospholipids. Using a novel peptide probe, RoO9-0198, which binds specifically to phosphatidylethanolamine (PE) in biological membranes, we have analyzed the cell surface movement of PE in dividing CHO cells. We found that PE was exposed on the cell surface specifically at the cleavage furrow during the late telophase of cytokinesis. PE was exposed on the cell surface only during the late telophase and no alteration in the distribution of the plasma membranebound peptide was observed during the cytokinesis, suggesting that the surface exposure of PE reflects the enhanced transbilayer movement of PE at the cleavage furrow. Furthermore, cell surface immobilization of PE induced by adding of the cyclic peptide coupled with streptavidin to prometaphase cells effectively blocked the cytokinesis at late telophase. The peptide-streptavidin complex bound specifically to cleavage furrow and inhibited both actin filament disassembly at cleavage furrow and subsequent plasma membrane fusion. Binding of the peptide complex to interphase cells also induced immediate disassembly of stress fibers followed by assembly of cortical actin filaments to the local area of plasma membrane where the peptide complex bound. The cytoskeletal reorganizations caused by the peptide complex were fully reversible; removal of the surface-bound peptide complex by incubating with PE-containing liposome caused gradual disassembly of the cortical actin filaments and subsequent formation of stress fibers. These observations suggest that the redistribution of plasma membrane phospholipids act as a regulator of actin cytoskeleton organization and may play a crucial role in mediating a coordinate movement between plasma membrane and actin cytoskeleton to achieve successful cell division.  相似文献   

2.
Biochemical characterization of the human copper transporter Ctr1.   总被引:17,自引:0,他引:17  
The trace metal copper is an essential cofactor for a number of biological processes including mitochondrial oxidative phosphorylation, free radical detoxification, neurotransmitter synthesis and maturation, and iron metabolism. Consequently, copper transport at the cell surface and the delivery of copper to intracellular proteins are critical events in normal physiology. Little is known about the molecules and biochemical mechanisms responsible for copper uptake at the plasma membrane in mammals. Here, we demonstrate that human Ctr1 (hCtr1) is a component of the copper transport machinery at the plasma membrane. hCtr1 transports copper with high affinity in a time-dependent and saturable manner and is metal-specific. hCtr1-mediated (64)Cu transport is an energy-independent process and is stimulated by extracellular acidic pH and high K(+) concentrations. hCtr1 exists as a homomultimer at the plasma membrane in mammalian cells. This is the first report on the biochemical characterization of the human copper transporter hCtr1, which is important for understanding mechanisms for mammalian copper transport at the plasma membrane.  相似文献   

3.
Non-typable Haemophilus influenzae (NTHi) is an important human-specific respiratory pathogen colonizing the mucosa of the upper respiratory tract. The bacterium is a common cause of acute otitis media in children and exacerbations in patients with chronic obstructive pulmonary disease (COPD). An immunoglobulin (Ig) D-lambda myeloma protein was found to detect a 16 kDa surface protein that we designated protein E (PE). The pe gene was cloned using an NTHi genomic DNA library, and a truncated PE-derived protein lacking the endogenous signal peptide (PE22-160) was synthesized and produced in large amounts in Escherichia coli. Interestingly, PE was expressed at the bacterial surface of NTHi as revealed by flow cytometry using the IgD-lambda myeloma protein or PE-specific polyclonal antibodies. A PE-deficient NTHi mutant was produced and lost 50% of its adhesive capacity as compared to the wild-type counterpart when analysed for adhesion to type II lung alveolar epithelial cells. In parallel, E. coli expressing full-length PE1-160 adhered significantly more efficiently to epithelial cells as compared to wild-type E. coli. Recombinant IgD that recognized the chemical dansyl-chloride did not interact with PE indicating that the IgD-lambda myeloma protein most likely was an antibody directed against the H. influenzae surface epitope. In conclusion, we have discovered a novel NTHi outer membrane protein with adhesive properties using an IgD-myeloma protein.  相似文献   

4.
Adequate membrane fluidity is required for a variety of key cellular processes and in particular for proper function of membrane proteins. In most eukaryotic cells, membrane fluidity is known to be regulated by fatty acid desaturation and cholesterol, although some cells, such as insect cells, are almost devoid of sterol synthesis. We show here that insect and mammalian cells present similar microviscosity at their respective physiological temperature. To investigate how both sterols and phospholipids control fluidity homeostasis, we quantified the lipidic composition of insect SF9 and mammalian HEK 293T cells under normal or sterol-modified condition. As expected, insect cells show minimal sterols compared with mammalian cells. A major difference is also observed in phospholipid content as the ratio of phosphatidylethanolamine (PE) to phosphatidylcholine (PC) is inverted (4 times higher in SF9 cells). In vitro studies in liposomes confirm that both cholesterol and PE can increase rigidity of the bilayer, suggesting that both can be used by cells to maintain membrane fluidity. We then show that exogenously increasing the cholesterol amount in SF9 membranes leads to a significant decrease in PE:PC ratio whereas decreasing cholesterol in HEK 293T cells using statin treatment leads to an increase in the PE:PC ratio. In all cases, the membrane fluidity is maintained, indicating that both cell types combine regulation by sterols and phospholipids to control proper membrane fluidity.  相似文献   

5.
Phosphatidylserine (PS) and phosphatidylethanolamine (PE) are metabolically related membrane aminophospholipids. In mammalian cells, PS is required for targeting and function of several intracellular signaling proteins. Moreover, PS is asymmetrically distributed in the plasma membrane. Although PS is highly enriched in the cytoplasmic leaflet of plasma membranes, PS exposure on the cell surface initiates blood clotting and removal of apoptotic cells. PS is synthesized in mammalian cells by two distinct PS synthases that exchange serine for choline or ethanolamine in phosphatidylcholine (PC) or PE, respectively. Targeted disruption of each PS synthase individually in mice demonstrated that neither enzyme is required for viability whereas elimination of both synthases was embryonic lethal. Thus, mammalian cells require a threshold amount of PS. PE is synthesized in mammalian cells by four different pathways, the quantitatively most important of which are the CDP-ethanolamine pathway that produces PE in the ER, and PS decarboxylation that occurs in mitochondria. PS is made in ER membranes and is imported into mitochondria for decarboxylation to PE via a domain of the ER [mitochondria-associated membranes (MAM)] that transiently associates with mitochondria. Elimination of PS decarboxylase in mice caused mitochondrial defects and embryonic lethality. Global elimination of the CDP-ethanolamine pathway was also incompatible with mouse survival. Thus, PE made by each of these pathways has independent and necessary functions. In mammals PE is a substrate for methylation to PC in the liver, a substrate for anandamide synthesis, and supplies ethanolamine for glycosylphosphatidylinositol anchors of cell-surface signaling proteins. Thus, PS and PE participate in many previously unanticipated facets of mammalian cell biology. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.  相似文献   

6.
The major anionic phospholipid, phosphatidylserine (PS), and the neutral phospholipid, phosphatidylethanolamine (PE), are largely confined to the inner leaflet of the plasma membrane bilayer in mammalian cells under normal conditions. This asymmetry is lost when cells undergo apoptosis, become activated, or are exposed to irradiation, reactive oxygen species or certain drugs. It is not known whether exposure of anionic phospholipids (APLs) and PE occurs simultaneously or in the same region of the plasma membrane. Here we examined the coincidence of exposure of APLs and PE on the surface of bovine aortic endothelial cells and NS0 myeloma cells after irradiation. The cells were irradiated (5 Gy) and stained for APLs and PE using liposomes coated with either an Fab′ fragment of a PS-binding antibody (bavituximab) or a PE-binding peptide (duramycin). Using live cell imaging and flow cytometry, we showed that irradiation leads to synchronous externalization of APLs and PE. The time course of appearance of APLs and PE on the cell surface was the same and the two phospholipid types remained colocalized over time. Distinct patches double positive for APLs and PE were visible. Larger areas of APLs and PE appeared to have detached from the cytoskeleton to form membrane blebs which protruded and drifted on the cell surface. We conclude that APLs and PE coincidently appear on the external leaflet of the plasma membrane of cells after irradiation. Probably, this is because PE and the major APL, PS, share common regulatory mechanisms of translocation.  相似文献   

7.
P Schwille  U Haupts  S Maiti    W W Webb 《Biophysical journal》1999,77(4):2251-2265
Multiphoton excitation (MPE) of fluorescent probes has become an attractive alternative in biological applications of laser scanning microscopy because many problems encountered in spectroscopic measurements of living tissue such as light scattering, autofluorescence, and photodamage can be reduced. The present study investigates the characteristics of two-photon excitation (2PE) in comparison with confocal one-photon excitation (1PE) for intracellular applications of fluorescence correlation spectroscopy (FCS). FCS is an attractive method of measuring molecular concentrations, mobility parameters, chemical kinetics, and fluorescence photophysics. Several FCS applications in mammalian and plant cells are outlined, to illustrate the capabilities of both 1PE and 2PE. Photophysical properties of fluorophores required for quantitative FCS in tissues are analyzed. Measurements in live cells and on cell membranes are feasible with reasonable signal-to-noise ratios, even with fluorophore concentrations as low as the single-molecule level in the sampling volume. Molecular mobilities can be measured over a wide range of characteristic time constants from approximately 10(-3) to 10(3) ms. While both excitation alternatives work well for intracellular FCS in thin preparations, 2PE can substantially improve signal quality in turbid preparations like plant cells and deep cell layers in tissue. At comparable signal levels, 2PE minimizes photobleaching in spatially restrictive cellular compartments, thereby preserving long-term signal acquisition.  相似文献   

8.
9.
Cultured mammalian cell mutants defective in the biosynthesis of membrane phospholipids, although limited in number, are increasing our understanding of the molecular mechanisms underlying the biogenesis and the biological significance of membrane phospholipids in higher eukaryotes. This review summarizes the progress in the isolation and characterization of such mutants, focusing on those isolated from cultured Chinese hamster ovary (CHO) cells.  相似文献   

10.
Phosphatidylethanolamine (PE) is a major membrane phospholipid that is mainly localized in the inner leaflet of the plasma membrane. We previously demonstrated that PE was exposed on the cell surface of the cleavage furrow during cytokinesis. Immobilization of cell surface PE by a PE-binding peptide inhibited disassembly of the contractile ring components, including myosin II and radixin, resulting in formation of a long cytoplasmic bridge between the daughter cells. This blockade of contractile ring disassembly was reversed by removal of the surface-bound peptide, suggesting that the PE exposure plays a crucial role in cytokinesis. To further examine the role of PE in cytokinesis, we established a mutant cell line with a specific decrease in the cellular PE level. On the culture condition in which the cell surface PE level was significantly reduced, the mutant ceased cell growth in cytokinesis, and the contractile ring remained in the cleavage furrow. Addition of PE or ethanolamine, a precursor of PE synthesis, restored the cell surface PE on the cleavage furrow and normal cytokinesis. These findings provide the first evidence that PE is required for completion of cytokinesis in mammalian cells, and suggest that redistribution of PE on the cleavage furrow may contribute to regulation of contractile ring disassembly.  相似文献   

11.
Mitochondrial membrane biogenesis requires the import of phospholipids; however, the molecular mechanisms underlying this process remain elusive. Recent work has implicated membrane contact sites between the mitochondria, endoplasmic reticulum (ER), and vacuole in phospholipid transport. Utilizing a genetic approach focused on these membrane contact site proteins, we have discovered a ‘moonlighting’ role of the membrane contact site and vesicular fusion protein, Vps39, in phosphatidylethanolamine (PE) transport to the mitochondria. We show that the deletion of Vps39 prevents ethanolamine-stimulated elevation of mitochondrial PE levels without affecting PE biosynthesis in the ER or its transport to other sub-cellular organelles. The loss of Vps39 did not alter the levels of other mitochondrial phospholipids that are biosynthesized ex situ, implying a PE-specific role of Vps39. The abundance of Vps39 and its recruitment to the mitochondria and the ER is dependent on PE levels in each of these organelles, directly implicating Vps39 in the PE transport process. Deletion of essential subunits of Vps39-containing complexes, vCLAMP and HOPS, did not abrogate ethanolamine-stimulated PE elevation in the mitochondria, suggesting an independent role of Vps39 in intracellular PE trafficking. Our work thus identifies Vps39 as a novel player in ethanolamine-stimulated PE transport to the mitochondria.  相似文献   

12.
The red cell membrane has an asymmetric arrangement of phospholipids. The amino-phospholipids are localized primarily on the inner surface of the membrane and the choline phospholipids are localized to a large extent on the outer surface of the membrane. Evidence is presented based on the use of covalent chemical probes in sequence that the red cell membrane contains heterogeneous domains of PE and PS and that the transport systems for Pi and K+ are asymmetrically arranged. Certain amino groups of PE, PS, and/or protein localized on the outer membrane surface are involved in Pi transport and certain amino groups of PE, PS, and/or protein localized on the inner surface of the membrane are involved in K+ transport. Cross-linking studies with DFDNB show that the cross-linked PE-PE molecules are rich in plasmalogens. This suggests that clusters of plasmalogen forms of PE occur in the membrane. Both PE and PS are cross-linked to membrane protein. These PE and PS molecules contain 24–28% 16:0 and 18:0 fatty acids and 12% fatty aldehydes. PE and PS molecules are cross-linked to a spectrin-rich fraction. It is proposed that the binding of spectrin to membrane PE and PS may help anchor spectrin to the inner surface of the membrane and regulate shape changes in the cell. K+-valinomycin forms a complex with TNBS and converts it from a non-penetrating proble to a penetrating probe. Valinomycin enhances K+ leak and Pi leak in the red cells. SITS inhibits completely the valinomycin-induced Pi leak and inhibits partially the valinomycin induced K+ leak. Valinomycin and IAA have additive effects on Pi leak. Ouabin has no effect on basal or valino-mycin-induced Pi leak. These data suggest that Pi leak and K+ leak occur by separate transport systems. In summary, the amino-phospholipids in the red cell membrane are asymmetrically arranged; some occur in clusters and some are closely associated with membrane proteins. Amino-phospholipids also are believed to bind spectrin to the inner surface of the membrane and also may play a role in cation and anion leak.  相似文献   

13.
The major aims of this study were to determine the degree of phospholipid asymmetry and the neighbor analysis of phospholipids in different types of cell membranes. For this study a penetrating probe (FDNB), a non-penetrating probe (TNBS) and a cross-linking probe (DFDNB) were used. The reaction of hemoglobin, membrane protein and membrane PE and PS of erythrocytes with DFNB and TNBS was studied over a concentration range of 0.5 to 10 mM probe. TNBS reacts to an extremely small extend with hemoglobin over the concentration range 0.4 to 4 mM whereas FDNB reacts with hemoglobin to a very large extent (50 fold more than TNBS). The reaction of membrane protein of intact erythrocytes reaches a sharp plateau at 1 mM TNBS whereas the reaction of membrane protein goes to a much larger extent with FDNB with no plateau seen up to 4 mM FDNB. This data shows that TNBS does not significantly penetrate into the cell under our conditions whereas FDNB does penetrate into the cell. The results show that there are four fold more reactive sites on proteins localized on the inner surface of the erythrocyte membrane as compared to the outer surface. TNBS at 0.5 to 2 mM concentration does not label membrane PS and labels membrane PE to a small extent. The reaction of PE with TNBS shows an initial plateau at 2 mM probe and a second slightly higher plateau between 4 to 10 mM probe. TNBS from 0.5-2.0 mM does not react with PS, but between 3 to 10 mM concentration, a very small amount of PS reacts with TNBS. Hence above 2 mM TNBS or FDNB a perturbation occurs in the membrane such that more PE and PS are exposed and react with these probes. These results demonstrate that essentially no PS is localized on the outer surface of the membrane and only 5% of the total membrane PE is localized on the outer surface of the erythrocyte membrane. TNBS and FDNB were reacted with yeast, E. coli, and Acholeplasma cells. With yeast cells, FDNB reacts to a much larger extent with PE than does TNBS, indicating that FDNB penetrates into the cell and labels more PE molecules. With E. coli, but not with erythrocytes or yeast cells, phospholipase A activity was very pronounced at pH 8.5 giving rise to a large amount of DNP-GPE from DNP-PE. A phosphodiesterase was also present which hydrolyized DNP-GPE to DNP-ethanolamine. The multilayered structure of the E. coli cell envelop did not permit a definitive interpretation of the results. It is clear, however, that TNBS and FDNB react to a different extent with PE in this cell. The Acholeplasma membrane had no detectable PE or PS but contains amino acid esters of phosphatidylglycerol. The reaction of these components with TNBS and FDNB indicate that these aminoacyl-PG are localized on both surfaces of the membrane, with 31% being on the outer surface and 69% on the inner surface...  相似文献   

14.
J Connor  A J Schroit 《Biochemistry》1989,28(25):9680-9685
A 31-32-kDa integral membrane protein has been previously identified in erythrocytes as the protein most likely to be responsible for the transbilayer movement of phosphatidylserine (PS) [Connor & Schroit (1988) Biochemistry 27, 848-851]. Using similar techniques, we have identified analogous proteins of identical molecular weights in bovine, equine, ovine, porcine, canine, caprine, and rhesus red blood cells. Similar to human red blood cells, all of the mammalian cells were able to specifically transport an exogenously supplied fluorescent PS analogue from their outer-to-inner membrane leaflet. In addition, transport could be reversibly inhibited with the sulfhydryl-specific inhibitor pyridyldithioethylamine (PDA). PDA-sensitive PS transport was also observed in nucleated human and murine cell lines. Analysis of isolated plasma membranes from 125I-PDA-labeled cells revealed marked labeling of a 32,000-Da component. Attempts to inhibit PS transport by treating the cells with proteases, lectins, or antibody suggested that the 32-kDa polypeptide is an integral membrane protein that does not contain sites critical to its function at the cell surface.  相似文献   

15.
Two carbohydrate-binding probes, the lectin concanavalin A and an anti-carbohydrate monoclonal antibody designated FMG-1, have been used to study the distribution of their respective epitopes on the surface of Chlamydomonas reinhardtii, strain pf-18. Both of these ligands bind uniformly to the external surface of the flagellar membrane and the general cell body plasma membrane, although the labeling is more intense on the flagellar membrane. In addition, both ligands cross-react with cell wall glycoproteins. With respect to the flagellar membrane, both concanavalin A and the FMG-1 monoclonal antibody bind preferentially to the principal high molecular weight glycoproteins migrating with an apparent molecular weight of 350,000 although there is, in addition, cross-reactivity with a number of minor glycoproteins. Western blots of V-8 protease digests of the high molecular weight flagellar glycoproteins indicate that the epitopes recognized by the lectin and the antibody are both repeated multiple times within the glycoproteins and occur together, although the lectin and the antibody do not compete for the same binding sites. Incubation of live cells with the monoclonal antibody or lectin at 4 degrees C results in a uniform labeling of the flagellar surface; upon warming of the cells, these ligands are redistributed along the flagellar surface in a characteristic manner. All of the flagellar surface-bound antibody or lectin collects into a single aggregate at the tip of each flagellum; this aggregate subsequently migrates to the base of the flagellum, where it is shed into the medium. The rate of redistribution is temperature dependent and the glycoproteins recognized by these ligands co-redistribute with the lectin or monoclonal antibody. This dynamic flagellar surface phenomenon bears a striking resemblance to the capping phenomenon that has been described in numerous mammalian cell types. However, it occurs on a structure (the flagellum) that lacks most of the cytoskeletal components generally associated with capping in other systems. The FMG-1 monoclonal antibody inhibits flagellar surface motility visualized as the rapid, bidirectional translocation of polystyrene microspheres.  相似文献   

16.
Low density lipoprotein receptor-related protein 1, (LRP1) is a large multifunctional receptor that binds more than 25 physiologic ligands. In addition, it functions as the surface receptor for several Rhinoviruses, HIV-tat and Pseudomonas exotoxin (PE). We report that the expression of PE within mammalian cells can serve as a probe of LRP1 maturation and functionality. To avoid cell killing, an enzymatically inactive form of the toxin (PEΔ553) was expressed. A permanent cell line (termed CY301) was established whereby PEΔ553 was expressed continually into the ER of CHO cells. CY301 cells were 100-fold resistant to exogenously added active PE but exhibited no cross-resistance to other toxins. Our studies indicate that PEΔ553 bound to immature LRP1 in the ER, prevented its maturation to the cell surface and thereby produced a toxin resistant phenotype. By confocal microscopy, cell-associated PEΔ553 was localized to the ER and co-localized with LRP1. Further characterization of CY301 cells indicated that RAP, the chaperone that aids in LRP1 folding, was released to the growth media. Thus the intracellular expression of PEΔ553 appears to be a valuable probe of LRP1 maturation and trafficking.  相似文献   

17.
Increasing resistance of pathogenic bacteria against antibiotics is a severe problem in health care. Natural antimicrobial peptides and derivatives thereof have emerged as promising candidates for “new antibiotics”. In contrast to classical antibiotics, these peptides act by direct physical destabilization of the target cell membrane. Nevertheless, they exhibit a high specificity for bacteria over mammalian cells. However, the precise mechanism of action and the molecular basis for membrane selectivity are still a matter of debate. We have designed a new peptide antibiotic (NK-2) with enhanced antimicrobial activity based on an effector protein of mammalian immune cells (NK-lysin). Here we describe the interaction of this α-helical synthetic peptide with membrane mimetic systems, designed to mimic the lipid compositions of mammalian and bacterial cytoplasmic membranes. Utilizing fluorescence and biosensor assays, we could show that on one hand, NK-2 strongly interacts with negatively charged membranes; on the other hand, NK-2 is able to discriminate, without the necessity of negative charges, between the zwitterionic phospholipids phosphatidylethanolamine (PE) and phosphatidylcholine (PC), the major constituents of the outer leaflet of the cytoplasmic membranes of bacteria and mammalian cells, respectively.  相似文献   

18.
The temporal expression of cell surface antigens during mammalian spermatogenesis has been investigated using isolated populations of mouse germ cells. Spermatogenic cells at advanced stages of differentiation, including pachytene primary spermatocytes, round spermatids, and residual bodies of Regaud and mature spermatozoa, contain common antigenic membrane components which are not detected before the pachytene stage of the first meiotic prophase. These surface constituents are not detected on isolated populations of primitive type A spermatogonia, type A spermatogonia, type B spermatogonia, preleptotene primary spermatocytes, or leptotene and zygotene primary spermatocytes. These results have been demonstrated by immunofluorescence microscopy, by complement-mediated cytotoxicity, and by quantitative measurements of immunoglobulin (Ig) receptors on the plasma membrane of all cell populations examined. The cell surface antigens detected on germ cells are not found on mouse thymocytes, erythrocytes, or peripheral blood lymphocytes as determined by immunofluorescence and by cytotoxicity assays. Furthermore, absorption of antisera with kidney and liver tissue does not reduce the reactivity of the antibody preparations with spermatogenic cells, indicating that these antigenic determinants are specific to germ cells. This represents the first direct evidence for the ordered temporal appearance of plasma membrane antigens specific to particular classes of mouse spermatogenic cells. It appears that at late meiotic prophase, coincident with the production of pachytene primary spermatocytes, a variety of new components are inserted into the surface membranes of developing germ cells. The further identification and biochemical characterization of these constituents should facilitate an understanding of mammalian spermatogenesis at the molecular level.  相似文献   

19.
Phosphatidylserine (PS) and phosphatidylethanolamine (PE) are two aminophospholipids whose metabolism is interrelated. Both phospholipids are components of mammalian cell membranes and play important roles in biological processes such as apoptosis and cell signaling. PS is synthesized in mammalian cells by base-exchange reactions in which polar head groups of preexisting phospholipids are replaced by serine. PS synthase activity resides primarily on mitochondria-associated membranes and is encoded by two distinct genes. Studies in mice in which each gene has been individually disrupted are beginning to elucidate the importance of these two synthases for biological functions in intact animals. PE is made in mammalian cells by two completely independent major pathways. In one pathway, PS is converted into PE by the mitochondrial enzyme PS decarboxylase. In addition, PE is made via the CDP-ethanolamine pathway, in which the final reaction occurs on the endoplasmic reticulum and nuclear envelope. The relative importance of these two pathways of PE synthesis has been investigated in knockout mice. Elimination of either pathway is embryonically lethal, despite the normal activity of the other pathway. PE can also be generated from a base-exchange reaction and by the acylation of lyso-PE. Cellular levels of PS and PE are tightly regulated by the implementation of multiple compensatory mechanisms.  相似文献   

20.
Duramycin is a 19-amino-acid tetracyclic lantibiotic closely related to cinnamycin (Ro09-0198), which is known to bind phosphatidylethanolamine (PE). The lipid specificity of duramycin was not established. The present study indicates that both duramycin and cinnamycin exclusively bind to ethanolamine phospholipids (PE and ethanolamine plasmalogen). Model membrane study indicates that the binding of duramycin and cinnamycin to PE-containing liposomes is dependent on membrane curvature, i.e., the lantibiotics bind small vesicles more efficiently than large liposomes. The binding of the lantibiotics to multilamellar liposomes induces tubulation of membranes, as revealed by electron microscopy and small-angle x-ray scattering. These results suggest that both duramycin and cinnamycin promote their binding to the PE-containing membrane by deforming membrane curvature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号