首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bacterial carbon demand, an important component of ecosystem dynamics in polar waters and sea ice, is a function of both bacterial production (BP) and respiration (BR). BP has been found to be generally higher in sea ice than underlying waters, but rates of BR and bacterial growth efficiency (BGE) are poorly characterized in sea ice. Using melted ice core incubations, community respiration (CR), BP, and bacterial abundance (BA) were studied in sea ice and at the ice–water interface (IWI) in the Western Canadian Arctic during the spring and summer 2008. CR was converted to BR empirically. BP increased over the season and was on average 22 times higher in sea ice as compared with the IWI. Rates in ice samples were highly variable ranging from 0.2 to 18.3 μg C l−1 d−1. BR was also higher in ice and on average ~10 times higher than BP but was less variable ranging from 2.39 to 22.5 μg C l−1 d−1. Given the high variability in BP and the relatively more stable rates of BR, BP was the main driver of estimated BGE (r = 0.97, < 0.0001). We conclude that microbial respiration can consume a significant proportion of primary production in sea ice and may play an important role in biogenic CO2 fluxes between the sea ice and atmosphere.  相似文献   

2.
3.
4.
Growth limitation of submerged aquatic macrophytes by inorganic carbon   总被引:4,自引:1,他引:3  
1. This study determined the effects of CO2 and HCO3- enrichment on in situ growth of two submerged macrophytes, Elodea canadensis and Callitriche cophocarpa, in two Danish lakes: Lake Hampen and Lake Væng. Lake Hampen is an oligotrophic low-alkaline lake (0.4 meq ?1) and Lake Væng is mesotrophic with an alkalinity of 1.1 meq 1-?1. In Lake Hampen experiments were carried out throughout the growth season, whereas experiments in Lake Væng were restricted to late summer. The CO2 and HCO3-enrichment procedures used increased the concentration of free-CO2 by 500–1000 μM and the concentration of HCO3- by about 80 μM. 2. The concentration of free-CO2 in Lake Hampen was about five times atmospheric equilibrium concentration (55 μM) in early summer declining to virtually zero at the end of summer. 3. Under ambient conditions Callitriche, which is restricted to CO2 use, was unable to grow and survive in both lakes. In contrast, Elodea, which has the potential to use HCO3- in photosynthesis, grew at rates varying from 0.046 to 0.080 day?1 over the season. 4. Under CO2 enrichment the growth rate of Callitriche varied from 0.089 to 0.124 day?1 and for Elodea from 0.076 to 0.117 day?1 over the season. Enrichment with HCO3-affected Elodea only and only to a limited extent. This may be a result of insufficient increase in [HCO3-] upon enrichment or to a limited capacity of the plants to take up HCO3-. 5. The substantial stimulation of in situ growth of Elodea and Callitriche by enhanced concentrations of free-CO2 shows that inorganic carbon is an important determinant of growth of submerged macrophytes and that inorganic carbon limitation of in situ growth may be a common phenomenon in nature, even in lakes with an alkalinity as high a 1 meq 1-?1. Inorganic carbon, however, is only one of many parameters important for growth, and the growth rates of Elodea at both ambient and high free-CO2 were closely coupled to day length and photon irradiance, indicating that light had an ultimate control on growth.  相似文献   

5.
Microscale photographs were taken of the ice bottom to examine linkages of algal chlorophyll a (chl a) biomass distribution with bottom ice features in thick Arctic first-year sea ice during a spring field program which took place from May 5 to 21, 2003. The photographic technique developed in this paper has resulted in the first in situ observations of microscale variability in bottom ice algae distribution in Arctic first-year sea ice in relation to ice morphology. Observations of brine channel diameter (1.65–2.68 mm) and number density (5.33–10.35 per 100 cm2) showed that the number of these channels at the bottom of thick first-year sea ice may be greater than previously measured on extracted ice samples. A variogram analysis showed that over areas of low chl a biomass (≤20.7 mg chl a m−2), patchiness in bottom ice chl a biomass was at the scale of brine layer spacing and small brine channels (∼1–3 mm). Over areas of high chl a biomass (≥34.6 mg chl a m−2), patchiness in biomass was related to the spacing of larger brine channels on the ice bottom (∼10–26 mm). Brine layers and channels are thought to provide microscale maxima of light, nutrient replenishment and space availability which would explain the small scale patchiness over areas of low algal biomass. However, ice melt and erosion near brine channels may play a more important role in areas with high algal biomass and low snow cover.  相似文献   

6.
We investigated the shade adaptation of a seasonally well-developed ice algal community in thin sea ice at Saroma-Ko Lagoon, Hokkaido, Japan on 3–4 March 2006 and 4–5 March 2007, by examining photosynthetic pigment concentrations, the chlorophyll a-specific light-absorption coefficient (a ph *), and the light-saturation index (E k ). The high proportions of photosynthetic pigments, including chlorophyll a, fucoxanthin, and chlorophyll c, and the low values of a ph *(440) and a ph *(675) suggested that the lagoon’s ice algal community was shade-adapted. The high ratio of E k to total photosynthetically active radiation (PAR) in the ice algal habitat suggested that the degree of shade adaptation is weak. Scaling of E k to total PAR could be extended to studies of the degree of photoadaptive succession of ice algal communities in the Northern Hemisphere. The degree of shade adaptation of ice algal communities in the Northern Hemisphere might be related to ice thickness, regardless of latitude.  相似文献   

7.
8.
We determined fatty acid (FA) profiles and carbon stable isotopic composition of individual FAs (δ13CFA values) from sea ice particulate organic matter (i-POM) and pelagic POM (p-POM) in the Bering Sea during maximum ice extent, ice melt, and ice-free conditions in 2010. Based on FA biomarkers, differences in relative composition of diatoms, dinoflagellates, and bacteria were inferred for i-POM versus p-POM and for seasonal succession stages in p-POM. Proportions of diatom markers were higher in i-POM (16:4n-1, 6.6–8.7 %; 20:5n-3, 19.6–25.9 %) than in p-POM (16:4n-1, 1.2–4.0 %; 20:5n-3, 5.5–14.0 %). The dinoflagellate marker 22:6n-3/20:5n-3 was highest in p-POM. Bacterial FA concentration was higher in the bottom 1 cm of sea ice (14–245 μg L?1) than in the water column (0.6–1.7 μg L?1). Many i-POM δ13CFA values were higher (up to ~10 ‰) than those of p-POM, and i-POM δ13CFA values increased with day length. The higher i-POM δ13CFA values are most likely related to the reduced dissolved inorganic carbon (DIC) availability within the semi-closed sea ice brine channel system. Based on a modified Rayleigh equation, the fraction of sea ice DIC fixed in i-POM ranged from 12 to 73 %, implying that carbon was not limiting for primary productivity in the sympagic habitat. These differences in FA composition and δ13CFA values between i-POM and p-POM will aid efforts to track the proportional contribution of sea ice algal carbon to higher trophic levels in the Bering Sea and likely other Arctic seas.  相似文献   

9.
Currently, the impact of declining seasonal sea ice extent in the Arctic on polar food webs remains uncertain. Previously, a range of proxy techniques has been employed to determine links between sea ice or phytoplankton primary production and the Arctic marine food web, although it is accepted that such approaches have their limitations. Here, we propose a novel approach to tracing sea ice primary production through Arctic food webs using the sea ice diatom biomarker, IP25. Various benthic macrofaunal specimens were collected between March and May 2008 from Franklin Bay in the Amundsen Gulf, Arctic Canada, as part of the International Polar Year–Circumpolar Flaw Lead system study. Each specimen was analysed for the presence of the sea ice diatom biomarker IP25 in order to provide evidence for feeding by benthic organisms on sea ice algae. IP25 was found in nineteen out of the twenty-one specimens analysed, often as the most abundant of the highly branched isoprenoid biomarkers detected. The stable isotope composition of IP2513C = −17.1 ± 0.5‰) in the sea urchin (Strongylocentrotus sp.) specimens was similar to that reported previously for this biomarker in Arctic sea ice, sedimenting particles and sediments. It is concluded that detection of IP25 in Arctic benthic macrofauna represents a novel approach to providing convincing evidence for feeding on sea ice algae. It is also proposed that analysis of IP25 may be used to trace trophic transfer of sea ice algal-derived organic matter through Arctic food webs in the future.  相似文献   

10.
A total of 338 aerobic heterotrophic bacterial strains were isolated from Arctic sea ice, Canada Basin (77°30′N–80°12′N). The capability of the isolates to produce protease, lipase, amylase, chitinase, β-galactosidase, cellulase and/or agarase was investigated. Isolates that were able to degrade tributyrin, skim milk, starch, lactose and chitin accounted for 71.6, 65.7, 38.5, 31.6 and 16.9% of sea ice strains, respectively. Lipase producers and/or protease producers were phylogenetically widespread among the isolated strains. Starch and/or lactose hydrolytic strains were mainly distributed among Colwellia, Marinomonas, Pseudoalteromonas, Pseudomonas and Shewanella isolates. Pseudoalteromonas tetraodonis, Pseudoalteromonas elyakovii, Bacillus firmus and Janibacter melonis isolates all have the ability to degrade chitin. Only some strains belonging to Pseudoalteromonas genus scored positive for agarase (6) and cellulose (9). The temperature dependences for lipase activities were determined for five psychrophilic and six psychrotolerant bacteria. At low temperatures, the psychrophilic bacterial lipase activity was not significantly higher than psychrotolerant bacterial lipase, though all lipases showed remarkably high activity with 10–36% residual activity at 0°C.  相似文献   

11.
Microalgal assemblages from the bottom ice, the ice-water interface and the water column were systematically sampled from April to June 1986, in southeastern Hudson Bay (Canadian Arctic). The taxonomic similarity between samples from the three environments was assessed using a clustering procedure. There were two groups that comprised samples from both the ice-water interface and the water column, while five other groups were made of samples originating from a single environment. Taxonomic compositions of the two mixed groups suggest two types of connexion between the ice-water interface and the water column, i.e. before the phytoplankton bloom, there was seeding of the water column by ice algae and, during ice melt, interfacial algae contributed to the water column communities that were otherwise typically phytoplankton. Overall, the phytoplankton community underwent a succession from pennate to centric diatoms. Sinking rates of algae from the ice-water interface were estimated using settling columns (SETCOL). The sinking rates increased seasonally (0.4–2.7 m d–1), which enhanced accessibility of ice-algal cells to the pelagic grazers. Ice algae contributed to water column production as they became accessible to the pelagic grazers, and also by seeding the water column before the phytoplankton bloom.Contribution to the programs of GIROQ (Groupe interuniversitaire de recherches océanographiques du Québec) and of the Maurice Lamontagne Institute (Department of Fisheries and Oceans)  相似文献   

12.
Early summer in the Arctic with extensive ice melt and break-up represents a dramatic change for sympagic–pelagic fauna below seasonal sea ice. As part of the International Polar Year-Circumpolar Flaw Lead system study (IPY-CFL), this investigation quantified zooplankton in the meltwater layer below landfast ice and remaining ice fauna below melting ice during June (2008) in Franklin Bay and Darnley Bay, Amundsen Gulf, Canada. The ice was in a state of advanced melt, with fully developed melt ponds. Intense melting resulted in a 0.3- to 0.5-m-thick meltwater layer below the ice, with a strong halocline to the Arctic water below. Zooplankton under the ice, in and below the meltwater layer, was sampled by SCUBA divers. Dense concentrations (max. 1,400 ind. m−3) of Calanus glacialis were associated with the meltwater layer, with dominant copepodid stages CIV and CV and high abundance of nauplii. Less abundant species included Pseudocalanus spp., Oithona similis and C. hyperboreus. The copepods were likely feeding on phytoplankton (0.5–2.3 mg Chl-a m−3) in the meltwater layer. Ice amphipods were present at low abundance (<10 ind. m−2) and wet biomass (<0.2 g m−2). Onisimus glacialis and Apherusa glacialis made up 64 and 51% of the total ice faunal abundance in Darnley Bay and Franklin Bay, respectively. During early summer, the autochthonous ice fauna becomes gradually replaced by allochthonous zooplankton, with an abundance boom near the meltwater layer. The ice amphipod bust occurs during late stages of melting and break-up, when their sympagic habitat is diminished then lost.  相似文献   

13.
14.
There is mounting evidence that multiyear ice (MYI) is a unique component of the Arctic Ocean and may play a more important ecological role than previously assumed. This study improves our understanding of the potential of MYI as a suitable habitat for sea ice algae on a pan‐Arctic scale. We sampled sea ice cores from MYI and first‐year sea ice (FYI) within the Lincoln Sea during four consecutive spring seasons. This included four MYI hummocks with a mean chl a biomass of 2.0 mg/m2, a value significantly higher than FYI and MYI refrozen ponds. Our results support the hypothesis that MYI hummocks can host substantial ice‐algal biomass and represent a reliable ice‐algal habitat due to the (quasi‐) permanent low‐snow surface of these features. We identified an ice‐algal habitat threshold value for calculated light transmittance of 0.014%. Ice classes and coverage of suitable ice‐algal habitat were determined from snow and ice surveys. These ice classes and associated coverage of suitable habitat were applied to pan‐Arctic CryoSat‐2 snow and ice thickness data products. This habitat classification accounted for the variability of the snow and ice properties and showed an areal coverage of suitable ice‐algal habitat within the MYI‐covered region of 0.54 million km2 (8.5% of total ice area). This is 27 times greater than the areal coverage of 0.02 million km2 (0.3% of total ice area) determined using the conventional block‐model classification, which assigns single‐parameter values to each grid cell and does not account for subgrid cell variability. This emphasizes the importance of accounting for variable snow and ice conditions in all sea ice studies. Furthermore, our results indicate the loss of MYI will also mean the loss of reliable ice‐algal habitat during spring when food is sparse and many organisms depend on ice‐algae.  相似文献   

15.
Mutualistic symbioses are common, especially in nutrient-poor environments where an association between hosts and symbionts can allow the symbiotic partners to persist and collectively out-compete non-symbiotic species. Usually these mutualisms are built on an intimate transfer of energy and nutrients (e.g. carbon and nitrogen) between host and symbiont. However, resource availability is not consistent, and the benefit of the symbiotic association can depend on the availability of resources to mutualists. We manipulated the diets of two temperate sea anemone species in the genus Anthopleura in the field and recorded the responses of sea anemones and algal symbionts in the family Symbiodiniaceae to our treatments. Algal symbiont density, symbiont volume and photosynthetic efficiency of symbionts responded to changes in sea anemone diet, but the responses depended on the species of sea anemone. We suggest that temperate sea anemones and their symbionts can respond to changes in anemone diet, modifying the balance between heterotrophy and autotrophy in the symbiosis. Our data support the hypothesis that symbionts are upregulated or downregulated based on food availability, allowing for a flexible nutritional strategy based on external resources.  相似文献   

16.
Summary A distinct fauna consisting mainly of nematodes, harpacticoid and cyclopoid copepods, rotifers, turbellarians and polychaete larvae, inhabits the lower levels of the sea ice in Frobisher Bay. Similar faunas are found throughout circumpolar regions. Thirteen taxa of the Frobisher Bay ice fauna were entirely herbivorous. Their food consisted of 26 genera of algae dominated by Chlamydomonas, Nitzschia, Navicula and Chaetoceros. There was a clear tendency to feed on the most abundant ice algae, hence little evidence of selective feeding. High algal food concentrations in the ice (estimated at 5000 g C/l) were in sharp contrast with the scant nourishment available from phytoplankton under the ice (8 g C/l) from mid-winter until the start of the summer bloom. Algal stocks and estimated productivity rates indicate that ice meiofaunal food requirements may be met by the ice algae. All the major ice meiofaunal species are well adapted to feeding within the ice. All are small enough to enter brine channels and secure particulate prey from surfaces within confined spaces. The ice meiofaunal species are major consumers of the ice algae and therefore important links in the transfer of energy from the ice to pelagic and benthic predators, including fishes, birds and mammals.  相似文献   

17.
Algal communities and export of organic matter from sea ice were studied in the offshore marginal ice zone (MIZ) of the northern Barents Sea and Nansen Basin of the Arctic Ocean north of Svalbard by means of ice cores and short-term deployed sediment traps. The observations cover a total of ten stations within the drifting pack ice, visited over a period of 3 years during the period of ice melt in May and July. Maximum flux of particulate organic carbon and chlorophyll a from the ice at 1 m depth (1,537 mg C m−2 per day and 20 mg Chl a m−2 per day) exceeded the flux at 30 m by a factor of 2 during spring, a pattern that was reversed later in the season. Although diatoms dominated the ice-associated algal biomass, flagellates at times revealed similarly high biomass and typically dominated the exported algal carbon. Importance of flagellates to the vertical flux increased as melting progressed, whereas diatoms made the highest contribution during the early melting stage. High export of ice-derived organic matter and phytoplankton took place simultaneously in the offshore MIZ, likely as a consequence of ice drift dynamics and the mosaic structure of ice-covered and open water characteristic of this region.  相似文献   

18.
19.
The acorn barnacle Perforatus perforatus has a defined breeding temperature range and reproductive season that varies geographically. This study aims to investigate the influence of reproductive parameters of P. perforatus in species distribution ranges in the NE Atlantic. The hypothesis tested is that the breeding season of P. perforatus off NW Portugal begins earlier and is longer than at the northern distribution limit of this species, and that fecundity is higher in terms of number of broods per individual per breeding season. The span of the breeding season and fecundity indices were assessed based on the presence and maturation of ovigerous lamellae and correlated with temperature. Results showed that the breeding season in the NW Portuguese coast lasts over 10 months (February–November) and the number of broods was determined to be 9.2 ind/year. Temperature seems to be a primary factor determining the breeding season, but other factors, such as food availably, light and photoperiod, are also of great importance. However, the higher quantity of embryos produced in NW Portugal is not reflected in a higher abundance of settled adults in rocky shores. Contrarily, the species is particularly abundant in artificial substrata offshore.  相似文献   

20.
Ice cores were collected between 10.03.93 and 15.03.93 along a 200 m profile on a large ice floe in Fram Strait. The ice was typical of Arctic multi-year ice, having a mean thickness along the profile of 2.56 ±0.53 m. It consisted mostly of columnar ice (83%) grown through congelation of seawater at the ice bottom, and the salinity profiles were characterized by a linear increase from 0 psu at the top to values ranging between 3 and 5 psu at depth. Distributions of dissolved organic carbon (DOC) and nitrogen (DON) and major nutrients were compared with ice texture, salinity and chlorophyll a. DOC, DON, dissolved inorganic nitrogen (DIN), NH4 + and NO2 were present in concentrations in excess of that predicted by dilution curves derived from Arctic surface water values. Only NO3 was depleted, although not exhausted. High DOC and DON values in conjunction with high NH4 + levels indicated that a significant proportion of the dissolved organic matter (DOM) was a result of decomposition/grazing of ice algae and/or detritus. The combination of high NH4 + and NO2 points to regeneration of nitrogen compounds. There was no significant correlation between DOC and Chl a in contrast to DON, which had a positively significant correlation with both salinity and Chl a, and the distribution of DOM in the cores might best be described as a combination of both physical and biological processes. There was no correlation between DOC and DON suggesting an uncoupling of DOC and DON dynamics in multi year ice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号