首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A bubble column fitted with an ejector has been tested for its physical and biological performance. The axial diffusion coefficient of the liquid phase in the presence of electrolytes and ethanol was measured by a stimulus-response technique with subsequent evaluation by means of a diffusion model. In contrast to ordinary bubble columns, the coefficient of axial mixing is inversely dependent on the superficial air velocity. The liquid velocity acts in an opposite direction to the backmixing flow in the column. The measurement of volumetric oxygen transfer coefficient in the presence of electrolytes and ethanol was performed using a dynamic gassing-in method adapted for a column. The data were correlated with the superficial air and liquid velocities, total power input, and power for aeration and mixing; the economy coefficient of oxygen transfer was used for finding an optimum ratio of power for aeration and pumping. Growth experiments with Candida utilis on ethanol confirmed some of the above results. Biomass productivity of 2.5 g L(-1) h(-1) testifies about a good transfer capability of the column. Columns fitted with pneumatic and/or hydraulic energy input may be promising for aerobic fermentations considering their mass transfer and mixing characteristics.  相似文献   

2.
A method was developed to characterize the kinetics of biodegradation of low water soluble gaseous compounds in batch experiments. The degradation of ethene by resting Mycobacterium E3 cells was used as a model system. The batch degradation data were recorded as the progress curve (i.e., the time course of the ethene concentration in the headspace of the batch vessel). The recorded progress curves, however, suffered gas:liquid mass transfer limitation. A new multiresponse fitting method had to be developed to allow unequivocal identification of both the affinity coefficient, K(aff), and the gas:liquid mass transfer coefficient, K(l)a, in the batch vessel from the mass transfer limited data. Simulation showed that the K(aff) estimate obtained is influenced by the dimensionless (volumetric basis) ethene gas:liquid partitioning coefficient (H). In the fitting procedure, Monod, Teissier, and Blackman biokinetics were evaluated for characterization of the ethene biodegradation process. The fits obtained reflected the superiority of the Blackman biokinetic function. Overall, it appears that resting Mycobacterium E3 cells metabolizing ethene at 24 degrees C have, using Blackman biokinetics, a maximum specific degradation rate, v(max), of 10.2 nmol C(2)H(4) mg(-1) CDW min(-1), and an affinity coefficient, K(aff.g), expressed in equilibrium gas concentration units, of 61.9 ppm, when H is assumed equal to 8.309. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 511-519, 1997.  相似文献   

3.
Dichloromethane removal from waste gases with a trickle-bed bioreactor   总被引:7,自引:0,他引:7  
A 66 dm3 trickle-bed bioreactor was constructed to assess the possibilities of eliminating dichloromethane from industrial waste gases. The trickle-bed bioreactor was filled with a randomly-stacked polypropylene packing material over which a liquid phase was circulated. The pH of the circulating liquid was externally controlled at a value of 7 and the temperature was maintained at 25 °C. The packing material was very quickly covered by a dichloromethane-degrading biofilm which thrived on the dichloromethane supplied via the gas phase. The biological system was very stable and not sensitive to fluctuations in the dichloromethane supply. Removal of dichloromethane from synthetic waste gas was possible down to concentrations well below the maximal allowable concentration of 150mg/m3 required by West-German law for gaseous emissions. At higher dichloromethane concentrations specific dichloromethane degradation rates of 200 g h–1 m–3 were possible. At very low inlet concentrations, dichloromethane elimination was completely mass transfer limited.The gas-phase mixing could be described by a series of 10 to 7 identical ideally-mixed tanks for superficial gas velocities ranging from 150 to 450 m/h. Dichloromethane elimination with the tricklebed bioreactor was modelled using an overall mass-transfer coefficient that was dependent on the gas and liquid velocities. Masstransfer resistance within the biofilm was also accounted for. Using the model, elimination efficiencies were predicted which were very close to the experimentally observed values.  相似文献   

4.
Biofiltration of n-butyric acid for the control of odour   总被引:3,自引:0,他引:3  
Odour control from pig production facilities is a significant concern due to increased public awareness and the development of more stringent legislation to control production. Although many technologies exist, biofiltration is still the most attractive due to its low maintenance and operating costs. One of the key odour components, n-butyric acid, was selected for a laboratory scale biofilter study. It was examined as a sole carbon substrate in order to investigate the effectiveness of biofiltration in reducing n-butyric acid concentration under different operating conditions using a moist enriched woodchip medium. Three superficial gas velocities; 38.2, 76.4, and 114.6 m x h(-1) were tested for n-butyric acid concentrations ranging from 0.13 to 3.1 g [n-butyric acid] m(-3) [air]. For superficial gas velocities 38.2, 76.4, and 114.6 m x h(-1), maximum elimination capacities (100% removal) of 148, 113 and 34.4 g x m(3) x h(-1), respectively, were achieved. Upon investigation of effective bed height, true elimination capacities (100% removal) of 230, 233 and 103 g x m(-3) x h(-1), respectively, were achieved at these superficial gas velocities. Averaged pressure drops for superficial gas velocities 38.2, 76.4, and 114.6 m x h(-1) were 30, 78 and 120 Pa, respectively. It was concluded that biofiltration is a viable technology for the removal of n-butyric acid from waste exhaust air, but near 100% removal efficiency is required due to the low odour detection threshold for this gaseous compound.  相似文献   

5.
Membrane process for biological treatment of contaminated gas streams   总被引:5,自引:0,他引:5  
A hollow fiber membrane bioreactor was investigated for control of air emissions of biodegradable volatile organic compounds (VOCs). In the membrane bioreactor, gases containing VOCs pass through the lumen of microporous hydrophobic hollow fiber membranes. Soluble compounds diffuse through the membrane pores and partition into a VOC degrading biofilm. The hollow fiber membranes serve as a support for the microbial population and provide a large surface area for VOC and oxygen mass transfer. Experiments were performed to investigate the effects of toluene loading rate, gas residence time, and liquid phase turbulence on toluene removal in a laboratory-scale membrane bioreactor. Initial acclimation of the microbial culture to toluene occurred over a period of nine days, after which a 70% removal efficiency was achieved at an inlet toluene concentration of 200 ppm and a gas residence time of 1.8 s (elimination capacity of 20 g m-3 min-1). At higher toluene loading rates, a maximum elimination capacity of 42 g m-3 min-1 was observed. In the absence of a biofilm (abiotic operation), mass transfer rates were found to increase with increasing liquid recirculation rates. Abiotic mass transfer coefficients could be estimated using a correlation of dimensionless parameters developed for heat transfer. Liquid phase recirculation rate had no effect on toluene removal when the biofilm was present, however. Three models of the reactor were created: a numeric model, a first-order flat sheet model, and a zero-order flat sheet model. Only the numeric model fit the data well, although removal predicted as a function of gas residence time disagreed slightly with that observed. A modification in the model to account for membrane phase resistance resulted in an underprediction of removal. Sensitivity analysis of the numeric model indicated that removal was a strong function of the liquid phase biomass density and biofilm diffusion coefficient, with diffusion rates below 10(-9) m2 s-1 resulting in decreased removal rates.  相似文献   

6.
Dispersed water-immiscible solvents are known to enhance oxygen transfer rates in oxygen-limited aerobic fermentations. Here, this technique is applied to improve the mass transfer rate of poorly water-soluble gaseous pollutants during the biological treatment of waste gases. In a stirred-tank reactor, the enhancement of mass transfer rates was studied as a function of the pollutant solubility in water. The solvent used was FC40 (up to 10% v/v) and the model gaseous pollutants were toluene and oxygen (moderately and poorly water-soluble, respectively).

The overall volumetric mass transfer coefficient from the gas to the bulk liquid (klagl) was measured under nonsteady-state conditions in the absence of micro-organisms. It was found to be essentially constant for the solvent volume fractions tested and for both toluene and oxygen. Using the values of klagl and the partition coefficient gas/liquid (mgl), the enhancement of the mass transfer rate by solvent addition could be predicted theoretically. A good agreement between the theoretical evaluation and the experimental results from experiments in the presence of biological consumption was observed. An enhancement of the mass transfer rate by a factor of 1.1 was found for toluene using a dispersion containing 10% (v/v) FC40 while the oxygen transfer rate increased by a factor of two at the same solvent volume fraction. It was further demonstrated theoretically for other gaseous compounds that the addition of solvent has a more pronounced effect on the enhancement of the transfer rate in the case of poorly water-soluble compounds compared to moderately water-soluble ones.  相似文献   


7.
A quick, cheap, and accurate method for the determination of ammonia in air is described. Ammonia and water vapor are trapped simultaneously in a gas sampling tube cooled in liquid nitrogen. Subsequently ammonia is derivatized with o-phthaldialdehyde and determined using fluorescence detection. The detection limit of ammonia in a gaseous sample is about 1 nmol per liter of gas. The recovery, using a calibration gas of 6.00 ppm ammonia in nitrogen, is 102.9 +/- 6.4%. Examples are presented in which this method is used for the determination of ammonia in environmental air and in expired air during exhaustive exercise of a human subject. It is suggested that this method can be used for the determination of volatile ammonia and other compounds in air during environmental and biological monitoring and in research.  相似文献   

8.
A 2-l (1-l working volume) two-phase partitioning bioreactor (TPPB) was used as an integrated scrubber/bioreactor in which the removal and destruction of benzene from a gas stream was achieved by the reactor's organic/aqueous liquid contents. The organic solvent used to trap benzene was n-hexadecane, and degradation of benzene was achieved in the aqueous phase using the bacterium Alcaligenes xylosoxidans Y234. A gas stream with a benzene concentration of 340 mg l(-1) at a flow rate of 0.414 l h(-1) was delivered to the system at a loading capacity of 140 g m(-3) h(-1), and an elimination capacity of 133 g m(-3 )h(-1) was achieved (the volume in this term is the total liquid volume of the TPPB). This elimination capacity is between 3 and 13 times greater than any benzene elimination achieved by biofiltration, a competing biological air treatment strategy. It was also determined that the evaluation of TPPB performance in terms of elimination capacity should include the cell mass present in the system, as this is a readily controllable quantity. A specific benzene utilization rate of 0.57 g benzene (g cells)(-1) h(-1) was experimentally determined in a bioreactor with a cell concentration that varied dynamically between 0.2 and 1 g l(-1). If it assumed that this specific benzene utilization rate (0.57 g g(-1) h(-1)) is independent of cell concentration, then a TPPB operated at high cell concentrations could potentially achieve elimination capacities several hundred times greater than those obtained with biofilters.  相似文献   

9.
A new experimental technique, called oxygen programmed fermentation (OPF), was used to study microbial cultures of the years Pichia stipitis and Candida utilis growing on xylose as carbon and energy source. In the oxygen programmed fermentation, the inlet oxygen mole fraction was continuously changed to scan through a wide range of oxygen uptake rates in a continuous culture. The largest ethanol yields and productivities of P. stipitis were found at oxygen transfer rates below 1.5 mmol L(-1) h(-1). It was found that the ratio between the culture fluorescence and near-IR absorbance increased at oxygen transfer rates lower than 1.5 mmol L(-1) h(-1). Small amounts of ethanol were produced also by C. utilis when the oxygen transfer rate was between 0 and 3 mmol L(-1) h(-1). It is suggested that OPF will form a nice complement to ordinary, microaerobic chemostat experiments, by making the identification of interesting regions of oxygen transfer rates possible in an efficient and time-saving initial experiment. (c) 1994 John Wiley & Sons, Inc.  相似文献   

10.
Removal of toluene in waste gases using a biological trickling filter   总被引:12,自引:0,他引:12  
The removal of toluene from waste gas was studied in a trickling biofilter. A high level of water recirculation (4.7 m h–1) was maintained in order to keep the liquid phase concentration constant and to achieve a high degree of wetting. For loads in the range from 6 to 150 g m–3 h–1 the maximum volumetric removal rate (elimination capacity) was 35±10 g m–3 h–1, corresponding to a zero order removal rate of 0.11±0.03 g m–2 h–1 per unit of nominal surface area. The surface removal was zero order above the liquid phase concentrations of approximately 1.0 g m–3, corresponding to inlet gas concentrations above 0.7–0.8 g m–3. Below this concentration the surface removal was roughly of first order. The magnitude of the first order surface removal rate constant, k1A , was estimated to be 0.08–0.27 m h–1 (k1A a=24–86 h–1). Near-equilibrium conditions existed in the gas effluent, so mass transfer from gas to liquid was obviously relatively fast compared to the biological degradation. An analytical model based on a constant liquid phase concentration through the trickling filter column predicts the effluent gas concentration and the liquid phase concentration for a first and a zero order surface removal. The experimental results were in reasonable agreement with a very simple model valid for conditions with an overall removal governed by the biological degradation and independent of the gas/liquid mass transfer. The overall liquid mass transfer coefficient, KLa, was found to be a factor 6 higher in the system with biofilm compared to the system without. The difference may be explained by: 1. Difference in the wetting of the packing material, 2. Mass transfer occurring directly from the gas phase to the biofilm, and 3. Enlarged contact area between the gas phase and the biofilm due to a rough biofilm surface.  相似文献   

11.
Removal of gaseous chlorobenzene (CB) by a biotrickling filter (BTF) filled with modified ceramics and multi-surface hollow balls during gas–liquid mass transfer at the steady state was by microbial degradation rather than dissolution in the spray liquid or emission into the atmosphere. The BTF was flexible and resistant to the acid environment of the spray liquid, with the caveat that the spray liquid should be replaced once every 6–7 days. The BTF, loaded with Lysinibacillus fusiformis, performed well for purification of high-loading CB gas. The maximum CB gas inlet loading rate, 103 g m?3 h?1, CB elimination capacity, 97 g m?3 h?1, and CB removal efficiency, 97.7 %, were reached at a spray liquid flow rate of 27.6 ml min?1, an initial CB concentration of up to 1,300 mg m?3, and an empty bed retention time of more than 45 s.  相似文献   

12.
The conversion of ethanol to ethyl acetate has an advantage as a method of ethanol recovery since ethyl acetate is amenable to simple solvent extraction. The potential of Candida utilis in this conversion was studied. The kinetics of accumulation of ethanol and ethyl acetate in glucose-grown C. utilis showed that ester formation resulted from ethanol utilization under appropriate aeration and was inhibited by Fe(3+) supplementation. Candida utilis converted ethanol to ethyl acetate optimally at pH 5.0-7.0. The five-hour rate of ester production increased as the ethanol concentration increased to 10 g/L, and rapidly declined to zero at concentrations exceeding 35 g/L. Thus, C. utilis has potential to recover dilute ethanol in the form of ethyl acetate.  相似文献   

13.
A novel type of bioreactor was designed to clean VOCs-containing air.The operation of this reactor consists in mixing the polluted gas and a mistof nutrient solution in the presence of microorganisms in order to maximizecontact and transfer between gas, liquid and microorganisms and to promotethe degradation kinetics and the relative removal efficiency of thepollutant. A bacterial consortium acclimatized to MEK and containing apreponderance of Alcaligenes denitrificans was established under non-axenicconditions. On the tubular reactor's glass walls, a continuous biofilm wasdeveloped. This biofilm was rapidly contaminated by two fungi able todegrade MEK: Geotrichum candidum and Fusarium oxysporum. Their abundance inthe reactor is probably linked to the acidic conditions inside the biofilmand to their broader tolerance for low pH values concomitant with MEKdegradation. In the reactor, a maximum volumetric degradation rate of 3.5 kgMEK/m3 reactor·d was obtained for arelative removal efficiency of 35%, whereas the latter was maintainedat 70% for more modest applied loadings of 1.5 kgMEK/m3 reactor ·d. In liquid batchcultures, a biomass originating from the biofilm was able to degrade 0.40gMEK/gDCW·h at the optimal pH of 7. Aregular cycle of detachment-recolonization was observed during the operationof the bioreactor. The maximal degradation activity was obtained with a thinbiofilm and was not increased as the biofilm grew in thickness. The overalldegradation rate of the process did not appear to be limited by thediffusion of oxygen inside the biofilm. Over short periods of time, the MEKtransfer from the gaseous phase to the biofilm was neither affected by thepresence of the mist nor by the wetting of the biofilm. A better control ofthe biofilm pH led to improved performance in terms of removal rate but notin terms of relative elimination efficiency.  相似文献   

14.
Liquid-to-gas mass transfer in anaerobic processes was investigated theoretically and experimentally. By using the classical definition of k(L)a, the global volumetric mass transfer coefficient, theoretical development of mass balances in such processes demonstrates that the mass transfer of highly soluble gases is not limited in the usual conditions occurring in anaerobic fermentors (low-intensity mixing). Conversely, the limitation is important for poorly soluble gases, such as methane and hydrogen. The latter could be overconcentrated to as much as 80 times the value at thermodynamic equilibrium. Such overconcentrations bring into question the biological interpretations that have been deduced solely from gaseous measurements. Experimental results obtained in three different methanogenic reactors for a wide range of conditions of mixing and gas production confirmed the general existence of low mass transfer coefficients and consequently of large overconcentrations of dissolved methane and hydrogen (up to 12 and 70 times the equilibrium values, respectively). Hydrogen mass transfer coefficients were obtained from the direct measurements of dissolved and gaseous concentrations, while carbon dioxide coefficients were calculated from gas phase composition and calculation of related dissolved concentration. Methane transfer coefficients were based on calculations from the carbon dioxide coefficients. From mass balances performed on a gas bubble during its simulated growth and ascent to the surface of the liquid, the methane and carbon dioxide contents in the gas bubble appeared to be controlled by the bubble growth process, while the bubble ascent was largely responsible for a slight enrichment in hydrogen.  相似文献   

15.
A new type of bioreactor for air pollution control has been developed. The new process relies on an organic-phase emulsion and actively growing pollutant-degrading microorganisms, made into a foam with the air being treated. This new reactor is referred to as a foamed emulsion bioreactor (FEBR). As there is no packing in the reactor, the FEBR is not subject to clogging. Mathematical modeling of the process and proof of concept using a laboratory prototype revealed that the foamed emulsion bioreactor greatly surpasses the performance of existing gas-phase bioreactors. Experimental results showed a toluene elimination capacity as high as 285 g(toluene) m(-3) (reactor) h(-1) with a removal efficiency of 95% at a gas residence time of 15 s and a toluene inlet concentration of 1-1.3 g x m(-3). Oxygen limited the reactor performance at toluene concentration above about 0.7-1.0 g x m(-3); consequently, performance was significantly improved when pure oxygen was added to the contaminated air. The elimination capacity increased from 204 to 408 g x m(-3) h(-1) with >77% toluene removal at toluene inlet concentrations of 2-2.2 g x m(-3). Overall, the results show that the performance of the FEBR far exceeds that of currently used bioreactors for air pollution control.  相似文献   

16.
Biological purification of exhaust air using fixed bacterial monocultures   总被引:4,自引:0,他引:4  
Summary This paper presents the results of basic investigations on reactions and process engineering in the biological purification of exhaust air in a trickle-bed reactor. The biocatalysts used were pollutant-specific bacterial monocultures, which were immobilized on various carriers. By using different pollutants (e.g. acetone, propionaldehyde, naphthalene and toluence, crude gas concentrations: 5–35 ppm), the effect of the water solubility of the gaseous substances on separation efficiency was studied. Furthermore, a combination of monocultures was used for degradation of a mixture of pollutants. The results show that, with suitable combinations of bacteria, pollutants and carriers, conversions of more than 80% at a space velocity of about 1000-1 can be achieved by this method.  相似文献   

17.
Summary Microorganisms were able to remove hydrocarbons (pentane and isobutane) from air by biological action in a columnar bioreactor with ceramic packing. The reactor was operated in a liquid continuous mode with gas recirculation and a slow addition of the organic-containing air. After a period of acclimation, the reactor has operated for 12 months with only pentane and isobutane as carbon sources. The gaseous hydrocarbons have been degraded throughout this period. The hydrocarbon removal rates measured between 1 and 2 g h–1 m–3. The microbes were shown to be able to degrade these gaseous hydrocarbons completely in a closed bioreactor without any additional nutrients.Research supported by the Advanced Industrial Concepts Division-Biological and Chemical Technologies Research. U.S. Department of Energy, under contract DE-AC05-84OR21400 with Martin Marietta Energy Systems. Inc.  相似文献   

18.
A hollow-fiber membrane bioreactor was used to separate trichloroethylene (TCE) from a gaseous waste stream with subsequent cometabolic biodegradation by a pure culture of Methylosinus trichosporium OB3b PP358. The two-stage bioreactor system was successfully operated for 20 days. PP358 was grown in a continuous-flow chemostat and circulated through the fiber lumen of a hollow-fiber membrane module (HFMM), while TCE contaminated air (141 to 191 microg/L) was pumped through the HFMM shell. Between 54% -84% TCE transfer and 92%-96% TCE cometabolism were obtained in the HFMM reactor loop. Short shell-residence times, 1.6 to 5.0 minutes, demonstrated quick throughput of TCE contaminated air. Best-fit computer modeling of the biological experiments estimated mass transfer coefficients between 2.0 x 10(-3) cm/min and 5.6 x 10(-3) cm/min. The average pseudo-first-order biodegradation rate constant for the biological experiments was 0.46 L/mg TSS/d. These results demonstrate that the hollow-fiber membrane bioreactor represents an attractive technology for the bioremediation of gaseous waste streams.  相似文献   

19.
Biofiltration of volatile organic compounds   总被引:6,自引:0,他引:6  
The removal of volatile organic compounds (VOCs) from contaminated airstreams has become a major air pollution concern. Improvement of the biofiltration process commonly used for the removal of odorous compounds has led to a better control of key parameters, enabling the application of biofiltration to be extended also to the removal of VOCs. Moreover, biofiltration, which is based on the ability of micro-organisms to degrade a large variety of compounds, proves to be economical and environmentally viable. In a biofilter, the waste gas is forced to rise through a layer of packed porous material. Thus, pollutants contained in the gaseous effluent are oxidised or converted into biomass by the action of microorganisms previously fixed on the packing material. The biofiltration process is then based on two principal phenomena: (1) transfer of contaminants from the air to the water phase or support medium, (2) bioconversion of pollutants to biomass, metabolic end-products, or carbon dioxide and water. The diversity of biofiltration mechanisms and their interaction with the microflora mean that the biofilter is defined as a complex and structured ecosystem. As a result, in addition to operating conditions, research into the microbial ecology of biofilters is required in order better to optimise the management of such biological treatment systems.  相似文献   

20.
An optical bio-sniffer for ethanol was constructed by immobilizing alcohol oxidase (AOD) onto a tip of a fiber optic oxygen sensor with a tube-ring, using an oxygen sensitive ruthenium organic complex (excitation, 470 nm; fluorescent, 600 nm). A reaction unit for circulating buffer solution was applied to the tip of the device. After the experiment in the liquid phase, the sniffer-device was applied for gas analysis using a gas flow measurement system with a gas generator. The optical device was applied to detect the oxygen consumption induced by AOD enzymatic reaction with alcohol application. The sensor in the liquid phase was used to measure ethanol solution from 0.50 to 9.09 mmol/l. Then, the bio-sniffer was calibrated against ethanol vapor from 0.71 to 51.49 ppm with good gas-selectivity based on the AOD substrate specificity. The bio-sniffer with the reaction unit was also used to monitor the concentration change of gaseous ethanol by rinsing and cleaning the fiber tip and the enzyme membrane with buffer solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号