首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Recent development of DNA markers provides powerful tools for population genetic analyses. Amplified fragment length polymorphism (AFLP) markers result from a polymerase chain reaction (PCR)-based DNA fingerprinting technique that can detect multiple restriction fragments in a single polyacrylamide gel, and thus are potentially useful for population genetic studies. Because AFLP markers have to be analysed as dominant loci in order to estimate population genetic diversity and genetic structure parameters, one must assume that dominant (amplified) alleles are identical in state, recessive (unamplified) alleles are identical in state, AFLP fragments segregate according to Mendelian expectations and that the genotypes of an AFLP locus are in Hardy-Weinberg equilibrium (HWE). The HWE assumption is untestable for natural populations using dominant markers. Restriction fragment length polymorphism (RFLP) markers segregate as codominant alleles, and can therefore be used to test the HWE assumption that is critical for analysing AFLP data. This study examined whether the dominant AFLP markers could provide accurate estimates of genetic variability for the Aedes aegypti mosquito populations of Trinidad, West Indies, by comparing genetic structure parameters using AFLP and RFLP markers. For AFLP markers, we tested a total of five primer combinations and scored 137 putative loci. For RFLP, we examined a total of eight mapped markers that provide a broad coverage of mosquito genome. The estimated average heterozygosity with AFLP markers was similar among the populations (0.39), and the observed average heterozygosity with RFLP markers varied from 0.44 to 0.58. The average FST (standardized among-population genetic variance) estimates were 0.033 for AFLP and 0.063 for RFLP markers. The genotypes at several RFLP loci were not in HWE, suggesting that the assumption critical for analysing AFLP data was invalid for some loci of the mosquito populations in Trinidad. Therefore, the results suggest that, compared with dominant molecular markers, codominant DNA markers provide better estimates of population genetic variability, and offer more statistical power for detecting population genetic structure.  相似文献   

2.
The genetic variation and population structure of three populations of Anopheles darlingi from Colombia were studied using random amplified polymorphic markers (RAPDs) and amplified fragment length polymorphism markers (AFLPs). Six RAPD primers produced 46 polymorphic fragments, while two AFLP primer combinations produced 197 polymorphic fragments from 71 DNA samples. Both of the evaluated genetic markers showed the presence of gene flow, suggesting that Colombian An. darlingi populations are in panmixia. Average genetic diversity, estimated from observed heterozygosity, was 0.374 (RAPD) and 0.309 (AFLP). RAPD and AFLP markers showed little evidence of geographic separation between eastern and western populations; however, the F ST values showed high gene flow between the two western populations (RAPD: F ST = 0.029; Nm: 8.5; AFLP: F ST = 0.051; Nm: 4.7). According to molecular variance analysis (AMOVA), the genetic distance between populations was significant (RAPD:phiST = 0.084; AFLP:phiST = 0.229, P < 0.001). The F ST distances and AMOVAs using AFLP loci support the differentiation of the Guyana biogeographic province population from those of the Chocó-Magdalena. In this last region, Chocó and Córdoba populations showed the highest genetic flow.  相似文献   

3.
Amplified fragment length polymorphism (AFLP) and random amplified polymorphic DNA (RAPD) markers were used to provide estimates of the comparative genetic variation within and among populations of various Guizotia taxa with the goal of conserving and utilizing their genetic diversity. The percentage of polymorphic loci (P(S)) ranged from 28.5%-90% (AFLP) and 85.6%-99.6% (RAPD). The overall gene diversity estimate () has shown slight variation among taxa ranging from 0.32-0.37 (AFLP) and from 0.22 to 0.28 (RAPD). The within population diversity of "Chelelu" and "Ketcha" was found to be unexpectedly high. Both parameters used to estimate population differentiation (G(ST) and F(ST)) revealed the highest population differentiation G. zavattarii in followed by G. arborescens. Genetic variation among populations within a taxon was highly significant for all the five taxa as revealed by AMOVA (P<0.0001). The need for immediate conservation activities for G. arborescens and G. zavattarii, and factors that contribute to the existing genetic variability and population genetic structures are discussed.  相似文献   

4.
Since no universal codominant markers are currently available, dominant genetic markers, such as amplified fragment length polymorphism (AFLP), are valuable tools for assessing genetic diversity in tropical trees. However, the measurement of genetic diversity (H) with dominant markers depends on the frequency of null homozygotes (Q) and the fixation index (F) of populations. While Q can be estimated for AFLP loci, F is less accessible. Through a modelling approach, we show that the monolocus estimation of genetic diversity is strongly dependent on the value of F, but that the multilocus diversity estimate is surprisingly robust to variations in F. The robustness of the estimate is due to a mechanistic effect of compensation between negative and positive biases of H by different AFLP loci exhibiting contrasting frequency profiles of Q. The robustness was tested across contrasting theoretical frequency profiles of Q and verified for 10 neotropical species. Practical recommendations for the implementation of this analytical method are given for genetic surveys in tropical trees, where such markers are widely applied.  相似文献   

5.
To examine the performance and information content of different marker systems, comparative assessment of population genetic diversity was undertaken in nine populations of Athyrium distentifolium using nine genomic and 10 expressed sequence tag (EST) microsatellite (SSR) loci, and 265 amplified fragment length polymorphism (AFLP) loci from two primer combinations. In range-wide comparisons (European vs. North American populations), the EST-SSR loci showed more reliable amplification and produced more easily scorable bands than genomic simple sequence repeats (SSRs). Genomic SSRs showed significantly higher levels of allelic diversity than EST-SSRs, but there was a significant correlation in the rank order of population diversities revealed by both marker types. When AFLPs, genomic SSRs, and EST-SSRs are considered, comparisons of different population diversity metrics/markers revealed a mixture of significant and nonsignificant rank-order correlations. However, no hard incongruence was detected (in no pairwise comparison of populations did different marker systems or metrics detect opposingly significant different amounts of variation). Comparable population pairwise estimates of F(ST) were obtained for all marker types, but whilst absolute values for genomic and EST-SSRs were very similar (F(ST) = 0.355 and 0.342, respectively), differentiation was consistently higher for AFLPs in pairwise and global comparisons (global AFLP F(ST) = 0.496). The two AFLP primer combinations outperformed 18 SSR loci in assignment tests and discriminatory power in phenetic cluster analyses. The results from marker comparisons on A. distentifolium are discussed in the context of the few other studies on natural plant populations comparing microsatellite and AFLP variability.  相似文献   

6.
In order to assess the genetic diversity and genetic relationships among the six commercial pig breeds including the Korean native pig, we performed an amplified fragment length polymorphism (AFLP) analysis. Applying the three EcoRI/TagI primer combinations to 54 individual pig samples out of six breeds, a total of 186 AFLP bands were generated, 67 (36%) of which were identified as polymorphic bands. From these polymorphic bands, the three estimates (percentage of polymorphic loci, Neis heterozygosity and Shannon index) of genetic diversity, G(ST) estimates, Neis unbiased genetic distance and two indices of genetic similarity were calculated. From all the calculations of genetic diversity, the lowest genetic diversity was exhibited in the Korean native pig, and the highest in the Chinese Yanbian pig. Given the mean G(ST) value (G(ST) = 0.390) across all pigs examined, levels of apparent breed subdivision were considerable. A UPGMA tree of individuals based on Jaccards similarity index showed that the Korean native pig formed a distinct cluster from the other five pigs. In addition, the tree displayed that all the individuals except for six individuals were grouped into their breeds. Principal component analysis based on the binary data matrix of either presence or absence confirmed the distinctness of the Korean native pig from the other pigs. Our results indicate that the Korean native pig has a low level of genetic diversity and is distinct from the five pig breeds, confirming the results from previous microsatellite data. The findings also suggest that AFLP analysis may be a valuable tool for revealing genetic relationships and genetic diversity among different pig breeds.  相似文献   

7.
Eight primer combinations were used to investigate the application of amplified fragment length polymorphism (AFLP) markers in catfish for genetic analysis. Intraspecific polymorphism was low among channel catfish or blue catfish strains. Interspecific AFLP polymorphism was high between the channel catfish and blue catfish. Each primer combination generated from 70 to more than 200 bands, of which 38.6–75.7% were polymorphic between channel catfish and blue catfish. On average, more than 20 polymorphic bands per primer combination were produced as quality markers suitable for genetic analysis. All AFLP markers were transmitted into channel catfish?×?blue catfish F1 hybrids, except rare markers that were heterozygous in the parents and therefore were segregating in F1 hybrids. The two reciprocal channel catfish?×?blue catfish F1 hybrids (channel catfish female?×?blue catfish male; blue catfish female?×?channel catfish male) produced identical AFLP profiles. The AFLP markers were inherited and segregated in expected Mendelian ratios. At two loci, E8-b9 and E8-b2, markers were found at significantly lower frequencies than expected with F2 and backcross hybrids which had been selected for increased growth rates. The reproducibility of AFLP was excellent. These characteristics of the catfish AFLP markers make them highly useful for genetic analysis of catfish, especially for construction of genetic linkage and quantitative trait loci maps, and for marker-assisted selection.  相似文献   

8.
Genetic variation of Avicennia marina in the costal area of Vietnam was examined using microsatellite and AFLP markers. By using five microsatellite loci a total of 21 alleles were detected. The average number of alleles per locus per population ranged from 1.667 to 3.000. The observed heterozygosity varied from 0.180 to 0.263, with an average of 0.210 indicating relatively low level of genetic variation comparing to the previous studies on A. marina in the worldwide range. The expected heterozygosity was larger than the observed heterozygosity leading to positive inbreeding coefficients in all the six populations. Highly significant departures from Hardy-Weinberg Equilibrium were detected in four populations. AFLP analysis revealed a total of 386 loci, of which 232 (60.1%) were polymorphic. In congruent with microsatellite markers relatively low levels of genetic variation were detected at both gene and nucleotide levels (H = 0.086; pi = 0.0054). Reduced level of genetic variation was found in the central population, and in the southern populations. Both microsatellite and AFLP markers revealed large genetic differentiation (F(ST) = 0.262 and 0.338, respectively) indicating strong genetic structure among regional populations. Pairwise genetic distance by AFLP showed two populations in the north and the other two in the south are closely related each other.  相似文献   

9.
The use of DNA markers to evaluate genetic diversity is an important component of the management of animal genetic resources. The Food and Agriculture Organisation of the United Nations (FAO) has published a list of recommended microsatellite markers for such studies; however, other markers are potential alternatives. This paper describes results obtained with a set of amplified fragment length polymorphism (AFLP) markers as part of a genetic diversity study of European pig breeds that also utilized microsatellite markers. Data from 148 AFLP markers genotyped across samples from 58 European and one Chinese breed were analysed. The results were compared with previous analyses of data from 50 microsatellite markers genotyped on the same animals. The AFLP markers had an average within-breed heterozygosity of 0.124 but there was wide variation, with individual markers being monomorphic in 3-98% of the populations. The biallelic and dominant nature of AFLP markers creates a challenge for their use in genetic diversity studies as each individual marker contains limited information and AFLPs only provide indirect estimates of the allelic frequencies that are needed to estimate genetic distances. Nonetheless, AFLP marker-based characterization of genetic distances was consistent with expectations based on breed and regional distributions and produced a similar pattern to that obtained with microsatellites. Thus, data from AFLP markers can be combined with microsatellite data for measuring genetic diversity.  相似文献   

10.
Krauss SL 《Molecular ecology》2000,9(9):1241-1245
Three procedures for the estimation of null allele frequencies and gene diversity from dominant multilocus data were empirically tested in natural populations of the outcrossing angiosperm Persoonia mollis (Proteaceae). The three procedures were the square root transform of the null homozygote frequency, the Lynch & Milligan procedure, and the Bayesian method. Genotypes for each of 116 polymorphic loci generated by amplified fragment length polymorphism (AFLP) were inferred from segregation patterns in progeny arrays. Therefore, for the plus phenotype (band present), heterozygotes were distinguished from homozygotes. In contrast to previous studies, all three procedures produced very similar mean estimates of heterozygosity, which were in turn accurate estimators of the direct value (HO = 0.28). A second population of P. mollis displayed markedly lower levels of heterozygosity (HO = 0.20) but approximately twice as many polymorphic loci (284). These AFLP results show that biases in estimates of average null allele frequency and heterozygosity are largely eliminated in highly polymorphic dominant marker data sets displaying a J-shaped beta distribution with a high percentage of loci containing more than three null homozygotes and relatively few loci with no null homozygotes. This distribution may be typical of outcrossing angiosperms.  相似文献   

11.
AFLP-based genetic linkage map for the red flour beetle (Tribolium castaneum)   总被引:11,自引:0,他引:11  
The red flour beetle (Tribolium castaneum) is a major pest of stored grain and grain products and a popular model species for a variety of ecological, evolutionary, and developmental biology studies. Development of a linkage map based on reproducible and highly polymorphic molecular markers would greatly facilitate research in these disciplines. We have developed a genetic linkage map using 269 amplified fragment length polymorphism (AFLP) markers. Ten previously known random amplified polymorphic DNA (RAPD) markers were used as anchor markers for linkage group assignment. The linkage map was constructed through genotyping two independent F(2) segregating populations with 48 AFLP primer combinations. Each primer combination generated an average of 4.6 AFLP markers eligible for linkage mapping. The length of the integrated map is 573 cM, giving an average marker resolution of 2.0 cM and an average physical distance per genetic distance of 350 kb/cM. A cluster of loci on linkage group 3 exhibited significant segregation distortion. We have also identified six X-linked and two Y-linked markers. Five mapped AFLP fragments were sequenced and converted to sequence-tagged site (STS) markers.  相似文献   

12.
Eight primer combinations were used to investigate the application of amplified fragment length polymorphism (AFLP) markers in catfish for genetic analysis. Intraspecific polymorphism was low among channel catfish or blue catfish strains. Interspecific AFLP polymorphism was high between the channel catfish and blue catfish. Each primer combination generated from 70 to more than 200 bands, of which 38.6–75.7% were polymorphic between channel catfish and blue catfish. On average, more than 20 polymorphic bands per primer combination were produced as quality markers suitable for genetic analysis. All AFLP markers were transmitted into channel catfish × blue catfish F1 hybrids, except rare markers that were heterozygous in the parents and therefore were segregating in F1 hybrids. The two reciprocal channel catfish × blue catfish F1 hybrids (channel catfish female × blue catfish male; blue catfish female × channel catfish male) produced identical AFLP profiles. The AFLP markers were inherited and segregated in expected Mendelian ratios. At two loci, E8-b9 and E8-b2, markers were found at significantly lower frequencies than expected with F2 and backcross hybrids which had been selected for increased growth rates. The reproducibility of AFLP was excellent. These characteristics of the catfish AFLP markers make them highly useful for genetic analysis of catfish, especially for construction of genetic linkage and quantitative trait loci maps, and for marker-assisted selection. Received: 10 September 1997 / Accepted: 10 December 1997  相似文献   

13.
We compared the genetic variation of Pinus pinaster populations using amplified fragment length polymorphism (AFLP) and chloroplast simple-sequence repeat (cpSSR) loci. Populations' levels of diversity within groups were found to be similar with AFLPs, but not with cpSSRs. The high interlocus variance associated with the AFLP loci could account for the lack of differences in the former. Although AFLPs revealed much lower genetic diversity than cpSSRs, the levels of among-population differentiation found with the two types of marker were similar, provided that loci showing fewer than four null-homozygotes, in any population, were pruned from the AFLP data. Moreover, the French and Portuguese populations were clearly differentiated from each other, with both markers. The Mantel test showed that the genetic distance matrix calculated using the AFLP data was correlated with the matrix derived from the cpSSRs. Because of the concordance found between markers we conclude that gene flow was indeed the predominant force shaping nuclear and chloroplastic genetic variation of the populations within regions, at the geographical scale studied.  相似文献   

14.
Genetic diversity of Carica papaya as revealed by AFLP markers.   总被引:4,自引:0,他引:4  
Genetic relationships among Carica papaya cultivars, breeding lines, unimproved germplasm, and related species were established using amplified fragment length polymorphism (AFLP) markers. Seventy-one papaya accessions and related species were analyzed with nine EcoRI-MseI primer combinations. A total of 186 informative AFLP markers was generated and analyzed. Cluster analysis suggested limited genetic variation in papaya, with an average genetic similarity among 63 papaya accessions of 0.880. Genetic diversity among cultivars derived from the same or similar gene pools was smaller, such as Hawaiian Solo hermaphrodite cultivars and Australian dioecious cultivars with genetic similarity at 0.921 and 0.912, respectively. The results indicated that self-pollinated hermaphrodite cultivars were as variable as open-pollinated dioecious cultivars. Genetic diversity between C. papaya and six other Carica species was also evaluated. Carica papaya shared the least genetic similarity with these species, with an average genetic similarity of 0.432; the average genetic similarity among the six other species was 0.729. The results from AFLP markers provided detailed estimates of the genetic variation within and among papaya cultivars, and supported the notion that C. papaya diverged from the rest of Carica species early in the evolution of this genus.  相似文献   

15.
Brasenia schreberi J.F. Gmelin is a declared endangered species found in the lakes and ponds of South Korea. For planning its conservation strategy, we examined the genetic diversity within and among six populations, using randomly amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP). Polymorphisms were more frequently detected per loci with AFLP (69.3%) than RAPD (36.8%). High genetic diversity was recognized within populations: polymorphic loci (PPL) values ranged from 36.3% in the CJM population to 74.5% in the GGT population, with a mean value of 47.8% based on AFLP markers. Great genetic differentiation (θB) was detected among the six populations (0.670 on RAPD and 0.196 on AFLP), and we calculated a low rate of gene flow (Nem), i.e., 0.116 on RAPD and 0.977 on AFLP. Furthermore, a Mantel test revealed that no correlation existed between genetic distances and geographical distances among the six local populations, based on RAPD or AFLP markers. These results are attributed to a number of factors, including an insufficient length of time for genetic diversity to be reduced following a natural decline in population size and isolation, adaptation of the genetic system to small population conditions, and a restricted gene flow rate. Based on both its genetic diversity and population structure, we suggest that a strategy for conserving and restoringB. schreberi must focus on maintaining historical processes, such as high levels of outbreeding, while monitoring increased gene flow among populations. This is because a reduction in genetic diversity as a result of genetic drift is undesirable.  相似文献   

16.
Genetic relationships among eight populations of domesticated carp (Cyprinus carpio L.), a species with a partially duplicated genome, were studied using 12 microsatellites and 505 AFLP bands. The populations included three aquacultured carp strains and five ornamental carp (koi) variants. Grass carp (Ctenopharyngodon idella) was used as an outgroup. AFLP-based gene diversity varied from 5% (grass carp) to 32% (koi) and reflected the reasonably well understood histories and breeding practices of the populations. A large fraction of the molecular variance was due to differences between aquacultured and ornamental carps. Further analyses based on microsatellite data, including cluster analysis and neighbor-joining trees, supported the genetic distinctiveness of aquacultured and ornamental carps, despite the recent divergence of the two groups. In contrast to what was observed for AFLP-based diversity, the frequency of heterozygotes based on microsatellites was comparable among all populations. This discrepancy can potentially be explained by duplication of some loci in Cyprinus carpio L., and a model that shows how duplication can increase heterozygosity estimates for microsatellites but not for AFLP loci is discussed. Our analyses in carp can help in understanding the consequences of genotyping duplicated loci and in interpreting discrepancies between dominant and co-dominant markers in species with recent genome duplication.  相似文献   

17.
Two hundred and thirty-six mitochondrial DNA nucleotide sequences were used in combination with polymorphism at four nuclear microsatellite loci to assess the amount and distribution of genetic variation within and between African savannah elephants. They were sampled from 11 localities in eastern, western and southern Africa. In the total sample, 43 haplotypes were identified and an overall nucleotide diversity of 2.0% was observed. High levels of polymorphism were also observed at the microsatellite loci both at the level of number of alleles and gene diversity. Nine to 14 alleles per locus across populations and 44 alleles in the total sample were found. The gene diversity ranged from 0.51 to 0.72 in the localities studied. An analysis of molecular variance showed significant genetic differentiation between populations within regions and also between regions. The extent of subdivision between populations at the mtDNA control region was approximately twice as high as shown by the microsatellite loci (mtDNA F(ST) = 0.59; microsatellite R(ST) = 0.31). We discuss our results in the light of Pleistocene refugia and attribute the observed pattern to population divergence in allopatry accompanied by a recent population admixture following a recent population expansion.  相似文献   

18.
We analyzed genetic structure and diversity among eight populations of popcorn, using SSR loci as genetic markers. Our objectives were to select SSR loci that could be used to estimate genetic diversity within popcorn populations, and to analyze the genetic structure of promising populations with high levels of heterozygosity that could be used in breeding programs. Fifty-seven alleles (3.7 alleles per locus) were detected; the highest effective number of alleles (4.21) and the highest gene diversity (0.763) were found for the Umc2226 locus. A very high level of population differentiation was found (F(ST) = 0.3664), with F(ST) for each locus ranging from 0.1029 (Umc1664) to 0.6010 (Umc2350). This analysis allowed us to identify SSR loci with high levels of heterozygosity and heterozygous varieties, which could be selected for production of inbred lines and for developing new cultivars.  相似文献   

19.
Le Corre V  Kremer A 《Genetics》2003,164(3):1205-1219
Genetic variability in a subdivided population under stabilizing and diversifying selection was investigated at three levels: neutral markers, QTL coding for a trait, and the trait itself. A quantitative model with additive effects was used to link genotypes to phenotypes. No physical linkage was introduced. Using an analytical approach, we compared the diversity within deme (H(S)) and the differentiation (F(ST)) at the QTL with the genetic variance within deme (V(W)) and the differentiation (Q(ST)) for the trait. The difference between F(ST) and Q(ST) was shown to depend on the relative amounts of covariance between QTL within and between demes. Simulations were used to study the effect of selection intensity, variance of optima among demes, and migration rate for an allogamous and predominantly selfing species. Contrasting dynamics of the genetic variability at markers, QTL, and trait were observed as a function of the level of gene flow and diversifying selection. The highest discrepancy among the three levels occurred under highly diversifying selection and high gene flow. Furthermore, diversifying selection might cause substantial heterogeneity among QTL, only a few of them showing allelic differentiation, while the others behave as neutral markers.  相似文献   

20.
AFLP markers are becoming one of the most popular tools for genetic analysis in the fields of evolutionary genetics and ecology and conservation of genetic resources. The technique combines a high-information content and fidelity with the possibility of carrying out genomewide scans. However, a potential problem with this technique is the lack of homology of bands with the same electrophoretic mobility, what is known as fragment-size homoplasy. We carried out a theoretical analysis aimed at quantifying the impact of AFLP homoplasy on the estimation of within- and between-neutral population genetic diversity in a model of a structured finite population with migration among subpopulations. We also investigated the performance of a currently used method (DFDIST software) to detect selective loci from the comparison between genetic differentiation and heterozygosis of dominant molecular markers, as well as the impact of AFLP homoplasy on its effectiveness. The results indicate that the biases produced by homoplasy are: (1) an overestimation of the frequency of the allele determining the presence of the band, (2) an underestimation of the degree of differentiation between subpopulations, and (3) an overestimation or underestimation of the heterozygosis, depending on the allele frequency of the markers. The impact of homoplasy is quickly diminished by reducing the number of fragments analyzed per primer combination. However, substantial biases on the expected heterozygosity (up to 15-25%) may occur with approximately 50-100 fragments per primer combination. The performance of the DFDIST software to detect selective loci from dominant markers is highly dependent on the number of selective loci in the genome and their average effects, the estimate of genetic differentiation chosen to be used in the analysis, and the critical bound probability used to detect outliers. Overall, the results indicate that the software should be used with caution. AFLP homoplasy can produce a reduction of up to 15% in the power to detect selective loci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号