首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photooxidants accumulated on the water-splitting side of photosystem II in chloroplasts are destabilized by certain membrane active chemicals. In the light and in the presence of oxygen, this destabilization results in a consumption of oxygen and in a lowering of the fluorescence emission from the chloroplasts. It is shown that a close correlation exists between the oxygen uptake and the fluorescence lowering, and that with some of the destabilizing agents photosystem I activity is not required for either process. When electron flow through photosystem I is blocked, the oxygen consumption appears to occur without formation of free oxygen-derived radicals. It is concluded that, in the light, a disturbed water-splitting enzyme may initiate oxygen-dependent photooxidations which the superoxide dismutase of chloroplasts cannot protect against. The fluorescence lowering is attributed to either direct quenching actions of oxygenated reaction products or to a cyclic electron flow between reduced electron carriers and such intermediates.  相似文献   

2.
In this work, we investigated electron transport processes in the cyanobacterium Synechocystis sp. PCC 6803, with a special emphasis focused on oxygen-dependent interrelations between photosynthetic and respiratory electron transport chains. Redox transients of the photosystem I primary donor P700 and oxygen exchange processes were measured by the EPR method under the same experimental conditions. To discriminate between the factors controlling electron flow through photosynthetic and respiratory electron transport chains, we compared the P700 redox transients and oxygen exchange processes in wild type cells and mutants with impaired photosystem II and terminal oxidases (CtaI, CydAB, CtaDEII). It was shown that the rates of electron flow through both photosynthetic and respiratory electron transport chains strongly depended on the transmembrane proton gradient and oxygen concentration in cell suspension. Electron transport through photosystem I was controlled by two main mechanisms: (i) oxygen-dependent acceleration of electron transfer from photosystem I to NADP+, and (ii) slowing down of electron flow between photosystem II and photosystem I governed by the intrathylakoid pH. Inhibitor analysis of P700 redox transients led us to the conclusion that electron fluxes from dehydrogenases and from cyclic electron transport pathway comprise 20-30% of the total electron flux from the intersystem electron transport chain to P700+.  相似文献   

3.
In this work, we investigated electron transport processes in the cyanobacterium Synechocystis sp. PCC 6803, with a special emphasis focused on oxygen-dependent interrelations between photosynthetic and respiratory electron transport chains. Redox transients of the photosystem I primary donor P700 and oxygen exchange processes were measured by the EPR method under the same experimental conditions. To discriminate between the factors controlling electron flow through photosynthetic and respiratory electron transport chains, we compared the P700 redox transients and oxygen exchange processes in wild type cells and mutants with impaired photosystem II and terminal oxidases (CtaI, CydAB, CtaDEII). It was shown that the rates of electron flow through both photosynthetic and respiratory electron transport chains strongly depended on the transmembrane proton gradient and oxygen concentration in cell suspension. Electron transport through photosystem I was controlled by two main mechanisms: (i) oxygen-dependent acceleration of electron transfer from photosystem I to NADP(+), and (ii) slowing down of electron flow between photosystem II and photosystem I governed by the intrathylakoid pH. Inhibitor analysis of P700 redox transients led us to the conclusion that electron fluxes from dehydrogenases and from cyclic electron transport pathway comprise 20-30% of the total electron flux from the intersystem electron transport chain to P700(+).  相似文献   

4.
I. Isolated intact chloroplasts: Photosystem II, but not photosystem I, of the electron transport chain is rapidly photoinactivated even by very low intensities of red light when no large proton gradient can be formed and the electron transport chain becomes over-reduced in the absence of oxygen and other reducable substrates. Electron acceptors including oxygen provide protection against photoinactivation. Nevertheless, photosystem II is rapidly, and photosystem I more slowly, photoinactivated by high intensities of red light when oxygen is the only electron acceptor available. Increased damage is observed at increased oxygen concentrations although catalase is added to destroy H2O2 formed during oxygen reduction in the Mehler reaction. Photoinactivation can be decreased, but not prevented by ascorbate which reduces hydrogen peroxide inside the chloroplasts and increases coupled electron flow. II. Leaves: Simple measurements of chlorophyll fluorescence permit assessment of damage to photosystem II after exposure of leaves to high intensity illumination. In contrast to isolated chloroplasts, chloroplasts suffer more damage in situ at reduced than at elevated oxygen concentrations. The difference in the responses is due to photorespiration which is active in leaves, but not in isolated chloroplasts. After photosynthesis and photorespiration are inhibited by feeding glyceraldehyde to leaves, photoinactivation is markedly increased, although oxygen reduction in the Mehler reaction is not affected by glyceraldehyde. In the presence of reduced CO2 levels, photorespiratory reactions, but not the Mehler reaction, can prevent the overreduction of the electron transport chain. Over-reduction indicates ineffective control of photosystem II activity. Effective control is needed for protection of the electron transport chain against photoinactivation. It is suggested to be made possible by coupled cyclic electron flow around photosystem I which is facilitated by the redox poising resulting from the interplay between photorespiratory carbohydrate oxidation and the refixation of evolved CO2.  相似文献   

5.
Oxygen ist reduced by the electron transport chain of chloroplasts during CO2 reduction. The rate of electron flow to oxygen is low. Since antimycin A inhibited CO2-dependent oxygen evolution, it is concluded that cyclic photophosphorylation contributes ATP to photosynthesis in chloroplasts which cannot satisfy the ATP requirement of CO2 reduction by electron flow to NADP and to oxygen. Inhibition of photosynthesis by antimycin A was more significant at high than at low light intensities suggesting that cyclic photophosphorylation contributes to photosynthesis particularly at high intensities. Cyclic electron flow in intact chloroplasts is under the control of electron acceptors. At low light intensities or under far-red illumination it is decreased by substrates which accept electrons from photosystem I such as oxaloacetate, nitrite or oxygen. Obviously, the cyclic electron transport pathway is sensitive to electron drainage. In the absence of electron acceptors, cyclic electron flow is supported by far-red illumination and inhibited by red light. The inhibition by light exciting photosystem II demonstrated that the cyclic electron transport pathway is accessible to electrons from photosystem II. Inhibition can be relieved by oxygen which appears to prevent over-reduction of electron carriers of the cyclic pathway and thus has an important regulatory function. The data show that cyclic electron transport is under delicate redox control. Inhibition is caused both by excessive oxidation and by over-reduction of electron carriers of the pathway.  相似文献   

6.
The energy distribution, state transitions and photosynthetic electron flow during photoinhibition of Chlamydomonas reinhardtii cells have been studied in vivo using photoacoustics and modulated fluorescence techniques. In cells exposed to 2500 W/m2 light at 21 °C for 90 min, 90% of the oxygen evolution activity was lost while photochemical energy storage as expressed by the parameter photochemical loss (P.L.) at 710–720 nm was not impaired. The energy storage vs. modulation frequency profile indicated an endothermic step with a rate constant of 2.1 ms. The extent of the P.L. was not affected by DCMU but was greatly reduced by DBMIB. The regulatory mechanism of the state 1 to state 2 transition process was inactivated and the apparent light absorption cross section of photosystem II increased during the first 20 min of photoinhibition followed by a significant decrease relative to that of photosystem I. These results are consistent with the inactivation of the LHC II kinase and the presence of an active cyclic electron flow around photosystem I in photoinhibited cells.Abbreviations PS I, PS II Photosystem I and Photosystem II respectively - P.L. photochemical loss - DCMU 3-(3,4-dichlorophenyl-1,1-dimethyl urea - LHC II light harvesting chlorophyll a,b-protein complex of PS II - DBMIB 2,5 dibromo-3-methyl-6-isopropyl-p-benzoquinone  相似文献   

7.
The chlorophyll fluorescence yield in isolated chloroplasts without an added electron acceptor is increased by actinic illumination. The decline in the fluorescence yield when the actinic illumination is extinguished can be accurately represented by three, independent, exponential decays with half-times of approximately 0.8, 5, and 30 sec. These results have been interpreted using Duysens' theory of fluorescence quenching by a compound (Q) on the reducing side of photosystem II. This theory states that changes in fluorescence yield are indicative of electron flow through Q. The most rapid decay is eliminated by an EDTA washing of the chloroplasts and the half-time is increased by uncoupling with ammonia and by added electron acceptors in suboptimal concentrations. Thus, this decay may represent electron flow from Q to intermediates on the oxidizing side of photosystem I. The decay with a half-time of 5 sec is affected in the same manner as the decay with the shortest half-time by the same procedures. However, electron donors to photosystem II lengthen the half-time of the 5 sec decay while eliminating the most rapid decay. This 5 sec decay can be interpreted as electron flow from Q to intermediates either on the reducing side of photosystem II or on the oxidizing side of photosystem I. The decay with the longest half-time is affected only by pH and electron donors to photosystem II. Therefore, this decay may indicate electron flow from Q to intermediates on the oxidizing side of photosystem II which may be connected to the regeneration of the oxygen burst.  相似文献   

8.
The oxygen exchange obtained when isolated chloroplasts of wheat are irradiated, without the addition of a Hill oxidant, has been investigated. Depending on the wavelength, two types of oxygen exchange are obtained. In light absorbed by both photosystems an oxygen gush appears directly upon irradiation. This oxygen evolving reaction is soon replaced by an oxygen uptake which is present until the end of the irradiation period. In light absorbed mainly in photosystem I, no oxygen gush can be observed, instead an oxygen uptake appears directly upon irradiation. An oxygen evolving process can also be observed in irradiations performed with photo-system I light, but this process appears after 10–15 seconds of irradiation. The influence of various external factors on the oxygen gush and the oxygen uptake, e.g. different wavelengths, light intensity, length of the dark periods between irradiations, was studied. The results show that the oxygen evolving reaction appearing upon irradiation with light absorbed by photosystem II and I, reflect the reduction of an oxidant, probably plasto-quinone, in the electron transport chain between the two photosystems. The reoxidation of this oxidant can be brought about after irradiating with light absorbed in photosystem I, or by prolonging the dark period between irradiations, or through some unknown process connected to photosystem II. The oxygen uptake which consists of two components, one appearing directly upon irradiation and the other one appearing after about 10 seconds of irradiation, confirms earlier observations that oxygen can be reduced in photosystem I. The electrons for the oxygen uptake appearing directly upon irradiation, are obtained from the reduced intermediates in the electron transport chain between the two photosystems. The electrons for the other oxygen uptake process are obtained from a reductant in the chloroplasts with access to the carrier chain between the photosystems. Whether the two oxygen uptake reactions reflect two sites of interaction of oxygen with the electron transport chain or only one site is discussed.  相似文献   

9.
Oxygen reduction in a photosynthetic electron-transport chain (PETC) was studied in isolated pea thylakoids in the presence of either ferredoxin, or ferredoxin + NADP+, or cytochrome c. The contribution of the electron flow through ferredoxin to the total oxygen reduction was evaluated by comparing the rate of oxygen reduction and the rate of oxidation of reduced ferredoxin in the light. It was found that at ferredoxin concentrations optimal for NADP+ reduction, 30-50% of electrons transferred to oxygen went through ferredoxin both in the absence and presence of NADP+. However, the absolute rate of oxygen reduction by membrane components of PETC in the presence of NADP+ was 3-4 times less than that in the presence of ferredoxin alone and close to the rate of oxygen reduction in the presence of cytochrome c. It was assumed that a Photosystem I component, whose role in this process depends on the rate of electron outflow from terminal acceptors of this photosystem, participates in oxygen reduction, and this component is phylloquinone.  相似文献   

10.
Etioplasts lack thylakoid membranes and photosystem complexes. Light triggers differentiation of etioplasts into mature chloroplasts, and photosystem complexes assemble in parallel with thylakoid membrane development. Plastids isolated at various time points of de‐etiolation are ideal to study the kinetic biogenesis of photosystem complexes during chloroplast development. Here, we investigated the chronology of photosystem II (PSII) biogenesis by monitoring assembly status of chlorophyll‐binding protein complexes and development of water splitting via O2 production in plastids (etiochloroplasts) isolated during de‐etiolation of barley (Hordeum vulgare L.). Assembly of PSII monomers, dimers and complexes binding outer light‐harvesting antenna [PSII‐light‐harvesting complex II (LHCII) supercomplexes] was identified after 1, 2 and 4 h of de‐etiolation, respectively. Water splitting was detected in parallel with assembly of PSII monomers, and its development correlated with an increase of bound Mn in the samples. After 4 h of de‐etiolation, etiochloroplasts revealed the same water‐splitting efficiency as mature chloroplasts. We conclude that the capability of PSII to split water during de‐etiolation precedes assembly of the PSII‐LHCII supercomplexes. Taken together, data show a rapid establishment of water‐splitting activity during etioplast‐to‐chloroplast transition and emphasize that assembly of the functional water‐splitting site of PSII is not the rate‐limiting step in the formation of photoactive thylakoid membranes.  相似文献   

11.
The obligate phototrophic green alga Chlamydobotrys stellata does not evolve oxygen when grown in CO2-free atmosphere on acetate. With the application of the lipophilic acceptor 2,6-dichloro-p-benzoquinone it was investigated whether this phenomenon is caused by the inactivation of the water-splitting system or by an inhibition of the electron transport chain. It was found that in the presence of DCQ, the photoheterotrophic alga exhibited a normal period-4 flash oxygen pattern, but the steady state yield was only 25% of that measured in the autotrophic cells. After DCQ addition, the initial distribution of S-states and the values of the transition probabilities proved to be the same in the autotrophic and photoheterotrophic algae. These results indicate that photoheterotrophic growth conditions inhibit the electron transport of Chl. stellata behind the acceptor site of DCQ, but the water-splitting system remains active with a reduced oxygen evolving capacity.Abbreviations Chl chlorophyll - DCQ 2,6-dichloro-p-benzoquinone - DCMU 3-(3,4)-dichlorophenyl)-1,1-dimethylurea - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - pBQ 1,4-benzoquinone - PS I photosystem I - PS II photosystem II  相似文献   

12.
Scenedesmus obliquus and Chlorella vulgaris cells had active hydrogenase after dark anaerobic adaptation. Illumination of these algae with visible light led to an initial production of small quantities of hydrogen gas which soon ceased owing to production of oxygen by photolysis of water. The presence of oxygen-absorbing systems in a separate chamber, not in contact with the algae, gave only a slight stimulation of hydrogen production. Addition of sodium dithionite directly to the algae led to an extensive light-dependent production of hydrogen. This stimulation was due to oxygen removal by dithionite and not to its serving as an electron donor. 3-(3,4-Dichlorophenyl)-1,1-dimethylurea, an inhibitor of photosystem II, abolished all hydrogen photoproduction. Hydrogen evolution was not accompanied by CO2 production and little difference was noted between autotrophically and heterotrophically grown cells. Hydrogen was not produced in a photosystem II mutant of Scenedesmus even in the presence of dithionite, establishing that water was the source of hydrogen via photosystems II and I. Hydrogen production was stimulated by the presence of glucose and glucose oxidase as an oxygen-absorbing system. Oxygen inhibited hydrogen photoproduction, even if oxygen was undetectable in the gas phase, if the algal solution did not contain an oxygen absorber. It was demonstrated that under these conditions hydrogenase was still active and the inability to produce hydrogen was probably due to oxidation of the coupling electron carrier.  相似文献   

13.
Thomas Roach  Anja Krieger-Liszkay 《BBA》2012,1817(12):2158-2165
The PsbS protein is recognised in higher plants as an important component in dissipating excess light energy via its regulation of non-photochemical quenching. We investigated photosynthetic responses in the arabidopsis npq4 mutant, which lacks PsbS, and in a mutant over-expressing PsbS (oePsbS). Growth under low light led to npq4 and wild-type plants being visibly indistinguishable, but induced a phenotype in oePsbS plants, which were smaller and had shorter flowering spikes. Here we report that chloroplasts from npq4 generated more singlet oxygen (1O2) than those from oePsbS. This accompanied a higher extent of photosystem II photoinhibition of leaves from npq4 plants. In contrast, oePsbS was more damaged by high light than npq4 and the wild-type at the level of photosystem I. The plastoquinone pool, as measured by thermoluminescence, was more oxidised in the oePsbS than in npq4, whilst the amount of photo-oxidisable P700, as probed with actinic light or saturating flashes, was higher in oePsbS compared to wild-type and npq4. Taken together, this indicates that the level of PsbS has a regulatory role in cyclic electron flow. Overall, we show that under high light oePsbS plants were more protected from 1O2 at the level of photosystem II, whereas lack of cyclic electron flow rendered them susceptible to damage at photosystem I. Cyclic electron flow is concluded to be essential for protecting photosystem I from high light stress.  相似文献   

14.
Photosynthetic electron flow, driven by photosystem I and II, provides chemical energy for carbon fixation. In addition to a linear mode a second cyclic route exists, which only involves photosystem I. The exact contributions of linear and cyclic transport are still a matter of debate. Here, we describe the development of a method that allows quantification of electron flow in absolute terms through photosystem I in a photosynthetic organism for the first time. Specific in-vivo protocols allowed to discern the redox states of plastocyanin, P700 and the FeS-clusters including ferredoxin at the acceptor site of PSI in the cyanobacterium Synechocystis sp. PCC 6803 with the near-infrared spectrometer Dual-KLAS/NIR. P700 absorbance changes determined with the Dual-KLAS/NIR correlated linearly with direct determinations of PSI concentrations using EPR. Dark-interval relaxation kinetics measurements (DIRKPSI) were applied to determine electron flow through PSI. Counting electrons from hydrogen oxidation as electron donor to photosystem I in parallel to DIRKPSI measurements confirmed the validity of the method. Electron flow determination by classical PSI yield measurements overestimates electron flow at low light intensities and saturates earlier compared to DIRKPSI. Combination of DIRKPSI with oxygen evolution measurements yielded a proportion of 35% of surplus electrons passing PSI compared to PSII. We attribute these electrons to cyclic electron transport, which is twice as high as assumed for plants. Counting electrons flowing through the photosystems allowed determination of the number of quanta required for photosynthesis to 11 per oxygen produced, which is close to published values.  相似文献   

15.
In this study, we evaluated how cadmium inhibitory effect on photosystem II and I electron transport may affect light energy conversion into electron transport by photosystem II. To induce cadmium effect on the photosynthetic apparatus, we exposed Chlamydomonas reinhardtii 24 h to 0–4.62 μM Cd2+. By evaluating the half time of fluorescence transients O–J–I–P at different temperatures (20–30°C), we were able to determine the photosystem II apparent activation energies for different reduction steps of photosystem II, indicated by the O–J–I–P fluorescence transients. The decrease of the apparent activation energies for PSII electron transport was found to be strongly related to the cadmium-induced inhibition of photosynthetic electron transport. We found a strong correlation between the photosystem II apparent activation energies and photosystem II oxygen evolution rate and photosystem I activity. Different levels of cadmium inhibition at photosystem II water-splitting system and photosystem I activity showed that photosystem II apparent activation energies are strongly dependent to photosystem II donor and acceptor sides. Therefore, the oxido-reduction state of whole photosystem II and I electron transport chain affects the conversion of light energy from antenna complex to photosystem II electron transport.  相似文献   

16.
The water-soluble chemical modifier, diazonium benzene-sulfonic acid, significantly inhibited photosystem II-dependent water oxidation (oxygen evolution) when the compound was reacted with chloroplast membranes in the light but not in the dark. The photochemistry of photosystem II was not affected by the diazonium treatment, shown by complete restoration of photosystem II-dependent electron flow from the alternate electron donor diphenylcarbazide.Paralleling the inhibition of oxygen evolution the illuminated chloroplasts bound significantly more diazonium reagent than did chloroplasts treated in the dark. Both the inhibition of oxygen evolution and the increased binding of the diazonium to the membranes were dependent on photosystem II electron flux, which could not be replaced by photosystem I cyclic electron flow. A dark base to acid or acid to base transition resulted in a similar inhibition of water oxidation and increased diazonium binding.The results suggest a membrane conformational change associated with photosystem II electron flow that exposes otherwise buried diazo reactive groups at the external grana membrane surface.  相似文献   

17.
Effects of oxygen on the electron transport chain of photosynthesis   总被引:1,自引:0,他引:1  
U. Heber  C. S. French 《Planta》1968,79(2):99-112
Summary Oxygen was taken up by both intact and broken chloroplasts when catalase was posioned. In confirmation of other work we found that oxygen enters the electron transport chain of isolated chloroplasts by oxidizing the primary photoreductant of system I. In isolated intact chloroplasts this reaction proceeds in addition to oxygen evolution by PGA reduction. The reductant produced by photosystem II does not react with oxygen at a significant rate.In normal leaves oxygen depresses chlorophyll fluorescence. However, this depression does not take place in DCMU poisoned leaves or in a mutant having a nonfunctional photosystem II; furthermore, another mutant with a weakly functioning photosystem I gave only a very small fluorescence depression with oxygen. This shows that the site of interaction of oxygen is at the reducing end of the electron transport chain. This view is supported by the extent of the fluorescence depression in leaves as a function of oxygen concentration which is very similar to the oxygen dependence of oxygen uptake by isolated chloroplasts.An oxygen requirement of isolated intact chloroplasts reducing PGA and nitrate was indicated by lower reaction rates and faster decay of activity under nitrogen than under air.Dedicated to Prof. Harder on his eightieth birthday.  相似文献   

18.
The addition of digitonin to chloroplasts stimulated the rate of oxygen evolution followed by a gradual inhibition. The effect of digitonin was dependent on the digitonin to chlorophyll ratio and on temperature and time. The initial stimulation of oxygen evolution appeared to be a result of uncoupling as digitonin did not stimulate oxygen evolution by uncoupled chloroplasts. The stimulatory effect occurred more rapidly at high digitonin to chlorophyll ratios but the extent of stimulation was low and inhibition occurred soon after addition of the detergent. The inhibition of electron flow by digitonin was due to a site of action near photosystem II which resembled the inhibition reported for tris buffer and resulted in photobleaching. However, digitonin inhibition could not be recovered by washing with reducing agents and was only partially recovered by the addition of artificial electron donors to photosystem II. Electron flow mediated by photosystem I was unaffected by the addition of digitonin but was decreased when the chloroplasts were separated by subsequent centrifuging. This suggested that digitonin solubilizes photosystem I components which remain active in the soluble form.  相似文献   

19.
The effect of thylakoid phosphorylation on noncyclic electron transport in spinach chloroplasts was investigated by measuring both the reduction of nicotinamide adenine dinucleotide phosphate (NADP) and the steady-state redox level of the primary electron acceptor quinone of photosystem II (Q) during electron flow to NADP. These data are compared with the theoretical predictions for an electron transport model which relates both the redox levels of Q and the photosystem II optical cross section to the overall velocity of noncyclic electron flow. It is demonstrated that transfer of 15-20% of the photosystem II antenna to photosystem I may stimulate electron flow to NADP only if Q is less than 60-70% oxidized (this condition exists with our thylakoids, even at extremely low absorption fluxes, when the illumination is not specifically enriched in photosystem I absorbed wavelengths); in phosphorylated thylakoids the steady-state redox level Q is substantially shifted to a more oxidized one (measurements of this parameter using light of different wavelengths quantitatively support the idea that thylakoid phosphorylation leads to increased photosystem I and decreased photosystem II cross sections); thylakoid phosphorylation leads to stimulated noncyclic electron flow to NADP only when the increased photosystem I antenna is able to bring about large increases in the steady-state level of oxidized Q.  相似文献   

20.
Photophobic reactions of the red alga Porphyridium cruentum have been studied by single cell observations and by population experiments with the light trap method. In white light traps photoaccumulation is saturated at about 6000 lx. Experiments with monochromatic light demonstrate the necessity of carefully separating the three basic light reactions, viz. phototaxis, photokinesis and photophobic response by an appropriate experimental set-up: In single-beam experiments trap wavelengths >695 nm cause photodispersal which is not due to photophobic entrance reactions, but is exclusively due to the positive photokinetic effect of the trap light. This photodispersal can be cancelled by a photokinetically active background light. In the short wavelength range not only photokinesis, but also phototaxis interferes with photophobic reactions thus affecting the density of photoaccumulations in the light trap. Phototactic and photokinetic interference can be avoided by a blue background light. The action spectrum measured this way indicates activity of photosystem I and photosystem II pigments in the perception of the step-down photophobic stimulus. Varying the wavelength of the background light at constant trap light absorbed mainly by photosystem I or photosystem II respectively, efficient spill-over of light energy from photosystem II to the light reaction of photosystem I could be demonstrated. From the results it is concluded that phobic reactions are induced by a decrease of the electron flow rate in the linear electron transport chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号