首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a multispecies seed sowing experiment, we investigated the roles of seed and microsite limitation in constraining the restoration of native prairie diversity and ecosystem function in an abandoned upland hayfield in northeastern Kansas. Seeds of 32 native and naturalized plant species from the regional pool were sown into undisturbed and experimentally disturbed field plots. After six growing seasons, experimental sowing led to major shifts in species and functional group composition, increases in native species abundance and floristic quality, declines in abundance of non‐native species, and increases in plant diversity. These changes in community structure led to significant changes at the ecosystem level including increases in light capture, peak biomass, primary production, litter biomass, root biomass, and C storage in roots. Our findings reveal the importance of seed limitations in constraining the natural recovery of prairie vegetation, biodiversity, and ecosystem functioning in this grassland and confirm broadcast sowing as a useful tool for the restoration of upland hayfield sites.  相似文献   

2.
Questions: The assembly of arable weed communities is the result of local filtering by agricultural management and crop competition. Therefore, soil seed banks can reflect the effects of long‐term cumulative field management and crop sequences on weed communities. Moreover, soil seed banks provide strong estimates of future weed problems but also of potential arable plant diversity and associated ecological functions. For this, we evaluated the effects of different long‐term farming systems under the same crop rotation sequence on the abundance, diversity and community assembly of weed seed bank, as well as on the functional diversity and composition. Location: DOK (biodynamic [D], bioorganic [O], conventional [K]) long‐term trial, Therwil, Switzerland. Methods: The effects of long‐term contrasted farming systems (i.e., biodynamic, organic, conventional, mineral and unfertilised systems) and last crop sown (i.e., wheat and maize) were evaluated on different indicators of species and functional diversity and composition of the weed soil seed bank. Results: The results showed significant influences of 40 years of contrasted farming systems on the diversity and composition of the seed bank, with higher diversities being found in unfertilised and organic farming systems, but also higher abundances than those found under conventional systems. Organic farming also allowed higher functional richness, dispersion and redundancy. Different farming systems triggered shifts in species and functional assemblies. Conclusions: The results highlight the importance of organic management for the maintenance of a diverse arable plant community and its functions. However, such results emphasise the need for appropriate yearly management to reduce the abundance of settled weediness and prevent affecting crop production. The farm management filtered community composition based on functional traits. Although the soil seed bank buffers the long‐term farming and crop sequence, the last crop sown and, thus, the yearly management were important determinants of seed bank composition.  相似文献   

3.
Questions: How is succession on ex‐arable land affected by sowing high and low diversity mixtures of grassland species as compared to natural succession? How long do effects persist? Location: Experimental plots installed in the Czech Republic, The Netherlands, Spain, Sweden and the United Kingdom. Methods: The experiment was established on ex‐arable land, with five blocks, each containing three 10 m × 10 m experimental plots: natural colonization, a low‐ (four species) and high‐diversity (15 species) seed mixture. Species composition and biomass was followed for eight years. Results: The sown plants considerably affected the whole successional pathway and the effects persisted during the whole eight year period. Whilst the proportion of sown species (characterized by their cover) increased during the study period, the number of sown species started to decrease from the third season onwards. Sowing caused suppression of natural colonizing species, and the sown plots had more biomass. These effects were on average larger in the high diversity mixtures. However, the low diversity replicate sown with the mixture that produced the largest biomass or largest suppression of natural colonizers fell within the range recorded at the five replicates of the high diversity plots. The natural colonization plots usually had the highest total species richness and lowest productivity at the end of the observation period. Conclusions: The effect of sowing demonstrated dispersal limitation as a factor controlling the rate of early secondary succession. Diversity was important primarily for its‘insurance effect’: the high diversity mixtures were always able to compensate for the failure of some species.  相似文献   

4.
Species richness of plant communities has been demonstrated to provide resistance to invasion by unsown species, though the relationship with resource availability varies between studies. The present work involved five grassland species grown in monocultures and in four-species mixtures sown in accordance with a simplex design. The species used represented different functional groups (i.e. grasses, legumes and non-N(2)-fixing species), each of which differed internally in terms of competitiveness. I hypothesized that sown diversity would negatively affect invader performance by decreasing the availability of light and soil nitrogen (N) for invading species, and that functional composition of the sown diversity would affect the functional composition of the invading flora. The experimental plots were harvested for two years, and were fertilized with 100 kg N ha(-1) each year. The number of unsown species (classified into four functional groups) invading each plot and their proportion of the biomass harvested were recorded. The penetration of incoming light through the canopy, the apparent N uptake by the sown species from the soil, and the mineral N content in the soil were measured. I found that diverse communities captured more resources both above- and belowground, and the number of invading species and their biomass production were smaller in mixed than in monoculture plots. However, the sampling effect of one grass was also strong. These results suggest that increased resource use in diverse communities can reduce invasion.  相似文献   

5.
Cadotte MW  Strauss SY 《PloS one》2011,6(5):e19363

Background

Evolutionary history has provided insights into the assembly and functioning of plant communities, yet patterns of phylogenetic community structure have largely been based on non-dynamic observations of natural communities. We examined phylogenetic patterns of natural colonization, extinction and biomass production in experimentally assembled communities.

Methodology/Principal Findings

We used plant community phylogenetic patterns two years after experimental diversity treatments (1, 2, 4, 8 or 32 species) were discontinued. We constructed a 5-gene molecular phylogeny and statistically compared relatedness of species that colonized or went extinct to remaining community members and patterns of aboveground productivity. Phylogenetic relatedness converged as species-poor plots were colonized and speciose plots experienced extinctions, but plots maintained more differences in composition than in phylogenetic diversity. Successful colonists tended to either be closely or distantly related to community residents. Extinctions did not exhibit any strong relatedness patterns. Finally, plots that increased in phylogenetic diversity also increased in community productivity, though this effect was inseparable from legume colonization, since these colonists tended to be phylogenetically distantly related.

Conclusions

We found that successful non-legume colonists were typically found where close relatives already existed in the sown community; in contrast, successful legume colonists (on their own long branch in the phylogeny) resulted in plots that were colonized by distant relatives. While extinctions exhibited no pattern with respect to relatedness to sown plotmates, extinction plus colonization resulted in communities that converged to similar phylogenetic diversity values, while maintaining differences in species composition.  相似文献   

6.
The capacity of local communities to control introduced plants is called biotic resistance. Biotic resistance has been almost exclusively tested for plant competition and above ground herbivores and pathogens, while neglecting root herbivores and soil pathogens. Here, we present biotic resistance by above- and below ground herbivores in concert, and relate the abundance of the plant enemies to the species diversity of the local plant communities. The study was carried out in a 7-year-old biodiversity field experiment. We used creeping thistle (Cirsium arvense) as a model, and quantified sap-sucking herbivores: above ground aphids, their antagonists, and root-feeding nematodes. As plant diversity treatments, we used field plots sown with high (15 plant species, HSD) or low (4 plant species, LSD) diverse seed mixtures in 1996 and that were not weeded. Creeping thistle became established spontaneously at the start of the experiment. In 2002, in HSD plots, 90 % of the plant community was made up by 11 species, compared to seven species in LSD plots. No differences were found for C. arvense abundance or biomass. Above ground, three aphid species were found on C. arvense-Uroleucon cirsii, Aphis fabae, and Macrosiphum euphorbiae, but the latter was found only in low densities. Significantly more aphid species were found on individual plants in HSD plots. Moreover, in HSD plots, on average 10 % of aphids were parasitized, while no parasitism was observed in LSD plots. In the root zone of C. arvense, significantly more nematodes were found in HSD than in LSD plots, and a significantly higher proportion of those nematodes were plant parasites. The dominant plant parasitic nematode in both treatments was Paratylenchus. We conclude that biotic resistance by natural enemies may be enhanced by plant species diversity, but that above- and below ground sap-sucking herbivores do not necessarily have to respond similarly to the diversity of the surrounding plant community.  相似文献   

7.
So far, seed limitation as a local process, and dispersal limitation as a regional process have been largely neglected in biodiversity–ecosystem functioning research. However, these processes can influence both local plant species diversity and ecosystem processes, such as biomass production. We added seeds of 60 species from the regional species pool to grassland communities at 20 montane grassland sites in Germany. In these sites, plant species diversity ranged from 10 to 34 species m−2 and, before manipulation, diversity was not related to aboveground biomass, which ranged from 108 to 687 g m−2. One year after seed addition, local plant species richness had increased on average by six species m−2 (29%) compared with control plots, and this increase was highest in grasslands with intermediate productivity. The increased diversity after adding seeds was associated with an average increase of aboveground biomass of 36 g m−2 (14.8%) compared with control plots. Thus, our results demonstrate that a positive relationship between changes in species richness and productivity, as previously reported from experimental plant communities, also holds for natural grassland ecosystems. Our results show that local plant communities are dispersal limited and a hump‐shaped model appears to be the limiting outline of the natural diversity–productivity relationship. Hence, the effects of dispersal on local diversity can substantially affect the functioning of natural ecosystems.  相似文献   

8.
《Plant Ecology & Diversity》2013,6(5-6):495-507
Background: Intensive farming affects farmland biodiversity, and some arable plants in particular. Increasing crop genetic diversity can increase crop productivity or resilience and could also benefit rare arable plants.

Aims: We examined whether barley presence, sowing density and genetic diversity impacted the rare plant Valerianella rimosa and explored possible underlying mechanisms.

Methods: In a field study near Dundee, Scotland, we sowed plots of five single barley genotypes, and all five genotypes combined, at three densities; we also had barley-free plots. Valerianella seeds were sown into half of all plots. Measured responses included early-season cover and harvest biomass of barley and common weeds, abiotic parameters (soil moisture, light) and establishment, biomass and seed production by V. rimosa.

Results: Barley presence promoted V. rimosa establishment early in the growing season, but without barley density or genetic diversity effects. By harvest, the impact of barley presence on V. rimosa abundance was lost; there were no effects on Valerianella seed production. Barley negatively impacted common weeds, but V. rimosa did not benefit from any indirect facilitation by barley, being bigger without barley.

Conclusions: Early beneficial effects of barley on V. rimosa abundance appear offset by late-season competition. However, limited impacts of barley on V. rimosa reproductive success, and negative impacts on common weeds, indicate crops might play a role in conservation management of rare arable plants by creating space in the weed community.  相似文献   

9.
The link between species and ecosystem functioning is a central issue in ecology. In natural plant communities, the dominant species determine most of the productivity-related processes but what is the function of minor species? A recent hypothesis suggests that after disturbance, minor species facilitate the recruitment and abundance of dominants during re-colonization, thus indirectly determining ecosystem function. We tested this hypothesis using a long-term dataset of annual plant communities in a semiarid shrubland by comparing plant density and biomass from plots in which all vegetation had been removed; plots from which only the dominant (the annual grass Stipa capensis) had been removed, and control plots. In the absence of vegetation, the dominant failed to re-establish during the following growing season. After being removed the dominant re-established similarly to the controls. An ant exclosure experiment excluded the possibility that this was due to seed predation. In an experiment with individual dispersal units of S. capensis, we demonstrated the mechanism by which minor species can control the dominant’s abundance. Minor species indirectly govern ecosystem processes by providing structures facilitating seed soil penetration and thus recruitment of the dominant.  相似文献   

10.
Plant diversity drives changes in the soil microbial community which may result in alterations in ecosystem functions. However, the governing factors between the composition of soil microbial communities and plant diversity are not well understood. We investigated the impact of plant diversity (plant species richness and functional group richness) and plant functional group identity on soil microbial biomass and soil microbial community structure in experimental grassland ecosystems. Total microbial biomass and community structure were determined by phospholipid fatty acid (PLFA) analysis. The diversity gradient covered 1, 2, 4, 8, 16 and 60 plant species and 1, 2, 3 and 4 plant functional groups (grasses, legumes, small herbs and tall herbs). In May 2007, soil samples were taken from experimental plots and from nearby fields and meadows. Beside soil texture, plant species richness was the main driver of soil microbial biomass. Structural equation modeling revealed that the positive plant diversity effect was mainly mediated by higher leaf area index resulting in higher soil moisture in the top soil layer. The fungal-to-bacterial biomass ratio was positively affected by plant functional group richness and negatively by the presence of legumes. Bacteria were more closely related to abiotic differences caused by plant diversity, while fungi were more affected by plant-derived organic matter inputs. We found diverse plant communities promoted faster transition of soil microbial communities typical for arable land towards grassland communities. Although some mechanisms underlying the plant diversity effect on soil microorganisms could be identified, future studies have to determine plant traits shaping soil microbial community structure. We suspect differences in root traits among different plant communities, such as root turnover rates and chemical composition of root exudates, to structure soil microbial communities.  相似文献   

11.
High‐diversity mixtures of native tallgrass prairie vegetation should be effective biomass feedstocks because of their high productivity and low input requirements. These diverse mixtures should also enhance several of the ecosystem services provided by the traditional monoculture feedstocks used for bioenergy. In this study, we compared biomass production, year‐to‐year variation in biomass production, and resistance to weed invasion in four prairie biomass feedstocks with different diversity: one species – a switchgrass monoculture; five species – a mix of C4 grasses; 16 species – a mix of grasses, forbs, and legumes; and 32 species – a mix of grasses, forbs, legumes, and sedges. Each diversity treatment was replicated four times on three soil types for a total of 48 research plots (0.33–0.56 ha each). We measured biomass production by harvesting all plant material to ground level in ten randomly selected quadrats per plot. Weed biomass was measured as a subset of total biomass. We replicated this design over a five‐year period (2010–2014). Across soil types, the one‐, 16‐, and 32‐species treatments produced the same amount of biomass, but the one‐species treatment produced significantly more biomass than the five‐species treatment. The rank order of our four diversity treatments differed between soil types suggesting that soil type influences treatment productivity. Year‐to‐year variation in biomass production did not differ between diversity treatments. Weed biomass was higher in the one‐species treatment than the five‐, 16‐, and 32‐species treatments. The high productivity and low susceptibility to weed invasion of our 16‐ and 32‐species treatments supports the hypothesis that high‐diversity prairie mixtures would be effective biomass feedstocks in the Midwestern United States. The influence of soil type on relative feedstock performance suggests that seed mixes used for biomass should be specifically tailored to site characteristics for maximum productivity and stand success.  相似文献   

12.
The effect of plant species diversity on productivity and competitive ability was studied in an experiment carried out simultaneously in five European countries: Czech Republic (CZ), the Netherlands (NL), Sweden (SE), Spain (SP), and United Kingdom (UK). The aim was to separate the ‘chance’ or ‘sampling effect’ (increasing the number of sown species increases the probability that a species able ‘to do a job’ will be included) from the complementarity effect (species‐rich communities are better able to exploit resources and to take care of ecosystem functions than species‐poor communities). In the experiment, low diversity (LD) and high diversity (HD) mixtures of grassland species were sown into fields taken out of arable cultivation. The HD mixture consisted of five grass species, five legumes and five other forbs. The LD mixtures consisted of two grasses, one legume and one other forb, with different plant species combinations in each replicate block. The design of the experiment was constructed in such a way that the total number of seeds of each species over all the replications was exactly the same in HD and LD treatments, and the total number of grass seeds, leguminous seeds and other forb seeds were the same in both LD and HD. The responses measured were the total above‐ground biomass (as a measure of productivity) and the average number of naturally establishing species in a plot (as a measure of the competitive ability of the mixture), both measured in the third year of the experiment.
The results show that, on average, the HD plots performed better (i.e., attained higher biomass, had better weed suppression), but that the best LD mixture was as good as the best HD mixture. On the contrary, the worst LD mixture was always less successful than the worst HD replicate. The performance of particular species in the HD mixtures was a good predictor of the success of a certain species combination in a LD mixture (explaining 61% of variability between particular LD mixtures). In all sites, the LD mixture composed of species which were the most abundant in HD mixtures was as efficient in suppressing weeds as the HD mixture itself. It is argued that the performance of a species assemblage is influenced mostly by the identity of species and the diversity effect is mainly due to the ‘chance’ or ‘sampling’ effect: with increasing number of species the probability that an important species will be included in the mixture increases. Caution is urged in interpreting experiments with manipulated diversity and the possible limitations of such experiments are discussed.  相似文献   

13.
Succession is one of the most studied processes in ecology and succession theory provides strong predictability. However, few attempts have been made to influence the course of succession thereby testing the hypothesis that passing through one stage is essential before entering the next one. At each stage of succession ecosystem processes may be affected by the diversity of species present, but there is little empirical evidence showing that plant species diversity may affect succession. On ex-arable land, a major constraint of vegetation succession is the dominance of perennial early-successional (arable weed) species. Our aim was to change the initial vegetation succession by the direct sowing of later-successional plant species. The hypothesis was tested that a diverse plant species mixture would be more successful in weed suppression than species-poor mixtures. In order to provide a robust test including a wide range of environmental conditions and plant species, experiments were carried out at five sites across Europe. At each site, an identical experiment was set up, albeit that the plant species composition of the sown mixtures differed from site to site. Results of the 2-year study showed that diverse plant species mixtures were more effective at reducing the number of natural colonisers (mainly weeds from the seed bank) than the average low-diversity treatment. However, the effect of the low-diversity treatment depended on the composition of the species mixture. Thus, the effect of enhanced species diversity strongly depended on the species composition of the low-diversity treatments used for comparison. The effects of high-diversity plant species mixtures on weed suppression differed between sites. Low-productivity sites gave the weakest response to the diversity treatments. These differences among sites did not change the general pattern. The present results have implications for understanding biological invasions. It has been hypothesised that alien species are more likely to invade species-poor communities than communities with high diversity. However, our results show that the identity of the local species matters. This may explain, at least partly, controversial results of studies on the relation between local diversity and the probability of being invaded by aliens. Received: 13 July 1999 / Accepted: 4 February 2000  相似文献   

14.
Invasions by alien plants significantly affect native biodiversity and ecosystem functioning. We conducted a 5-year field experiment to investigate potential effects of the annual invasive plant Impatiens glandulifera on both the native above-ground vegetation and the soil seed bank in a deciduous forest in Switzerland. Eight years after the establishment of I. glandulifera, we set up plots in patches invaded by the alien plant, in plots from which the invasive plant had been manually removed and in plots which were not yet colonized by the invasive plant. We examined plant species richness, diversity and plant species composition in the above-ground vegetation and soil seed bank in all plots one year and five years after the initiation of the experiment. The 36 plots (3 plot types × 6 replicates × 2 sites) were equally distributed over two forest sites. Neither the native above-ground vegetation nor the soil seed bank was influenced by the presence of I. glandulifera one year after the start of the field experiment. After five years, however, plant species richness of both the above-ground vegetation and the soil seed bank was reduced by 25% and 30%, respectively, in plots invaded by the alien plant compared to plots from which I. glandulifera had been removed or uninvaded plots. Furthermore, plots invaded by the alien plant had a lower total seedling density (reduction by 60%) and an altered plant species composition in the soil seed bank compared to control plots. Our field experiment indicates that negative effects of the annual invasive plant on the native above-ground vegetation and soil seed bank of deciduous forests become visible with a delay of several years.  相似文献   

15.
Questions: Can seed addition enhance the success of establishing species‐rich grassland on former arable land? Are sowing date and cutting regime important in determining success? Location: Aberdeen and Elgin, northeast Scotland, United Kingdom. Methods: A field experiment was conducted at two sites to assess the effect of seed addition, sowing date and cutting regime on the vegetation developing on former arable land, the aim being to compare the success of different treatments at producing a species‐rich grassland. Results: Sowing a seed mix resulted in the establishment of vegetation very distinct from the species‐poor vegetation dominated by perennial grasses which otherwise developed, though establishment success of the sown grassland species was highly variable between sites. Where establishment of the sown species was poor, sowing date had no significant effect on species composition, whereas the cutting regime was very important. Cutting the vegetation significantly increased both the number and abundance of sown species compared with the uncut control. Conversely, where establishment had been good, the cutting regime in the first year had little effect on species composition. Cutting the vegetation at least twice a year appeared to be the most effective management over the length of the experiment. Conclusions: Sowing a seed mixture significantly reduced the abundance and number of naturally colonising species, effectively controlling problem weed species such as Senecio jacobaea and Cirsium vulgare, highlighting the agronomic value of sowing seed mixtures on fallow farmland. The sowing of a seed mix on former arable land has demonstrated that it is feasible to create vegetation similar in character to that of species‐rich grasslands.  相似文献   

16.
Random reductions in plant diversity can affect ecosystem functioning, but it is still unclear which components of plant diversity (species number – namely richness, presence of particular plant functional groups, or particular combinations of these) and associated biotic and abiotic drivers explain the observed relationships, particularly for soil processes. We assembled grassland communities including 1 to 16 plant species with a factorial separation of the effects of richness and functional group composition to analyze how plant diversity components influence soil nitrifying and denitrifying enzyme activities (NEA and DEA, respectively), the abundance of nitrifiers (bacterial and archaeal amoA gene number) and denitrifiers (nirK, nirS and nosZ gene number), and key soil environmental conditions. Plant diversity effects were largely due to differences in functional group composition between communities of identical richness (number of sown species), though richness also had an effect per se. NEA was positively related to the percentage of legumes in terms of sown species number, the additional effect of richness at any given legume percentage being negative. DEA was higher in plots with legumes, decreased with increasing percentage of grasses, and increased with richness. No correlation was observed between DEA and denitrifier abundance. NEA increased with the abundance of ammonia oxidizing bacteria. The effect of richness on NEA was entirely due to the build-up of nitrifying organisms, while legume effect was partly linked to modified ammonium availability and nitrifier abundance. Richness effect on DEA was entirely due to changes in soil moisture, while the effects of legumes and grasses were partly due to modified nitrate availability, which influenced the specific activity of denitrifiers. These results suggest that plant diversity-induced changes in microbial specific activity are important for facultative activities such as denitrification, whereas changes in microbial abundance play a major role for non-facultative activities such as nitrification.  相似文献   

17.
Few field experiments have examined the effects of both resource availability and propagule pressure on plant community invasibility. Two non-native forest species, a herb and a shrub ( Hesperis matronalis and Rhamnus cathartica , respectively), were sown into 60 1-m2 sub-plots distributed across three plots. These contained reconstructed native plant communities in a replaced surface soil layer in a North American forest interior. Resource availability and propagule pressure were manipulated as follows: understorey light level (shaded/unshaded), nutrient availability (control/fertilized), and seed pressures of the two non-native species (control/low/high). Hesperis and Rhamnus cover and the above-ground biomass of Hesperis were significantly higher in shaded sub-plots and at greater propagule pressures. Similarly, the above-ground biomass of Rhamnus was significantly increased with propagule pressure, although this was a function of density. In contrast, of species that seeded into plots from the surrounding forest during the growing season, the non-native species had significantly greater cover in unshaded sub-plots. Plants in these unshaded sub-plots were significantly taller than plants in shaded sub-plots, suggesting a greater fitness. Total and non-native species richness varied significantly among plots indicating the importance of fine-scale dispersal patterns. None of the experimental treatments influenced native species. Since the forest seed bank in our study was colonized primarily by non-native ruderal species that dominated understorey vegetation, the management of invasions by non-native species in forest understoreys will have to address factors that influence light levels and dispersal pathways.  相似文献   

18.
In the Midwestern USA, current biofuel production systems rely on high input monoculture crops that do little to support native biodiversity. The University of Northern Iowa??s Tallgrass Prairie Center is investigating the feasibility of cultivating and harvesting diverse mixes of native prairie vegetation for use as a sustainable biofuel in a manner that also conserves biodiversity and protects soil and water resources. In 2009, we established 48 research plots on three soil types at an Iowa site with a uniform history of row crop production. We seeded each plot with one of four treatments of native prairie vegetation: (1) switchgrass monoculture, (2) warm-season grass mix (5 grass species), (3) biomass mix (16 species of grasses, legumes, and forbs), or (4) prairie mix (32 species of grasses, legumes, forbs, and sedges). In 2010, we measured vegetation characteristics and studied butterfly use of the plots to investigate the hypothesis that more diverse plant communities would support a greater abundance and diversity of butterflies. Habitat characteristics varied significantly among the plots by treatment and soil type, and butterflies responded rapidly to variation in floral abundance and richness. Averaged over the entire growing season, butterflies were six times more abundant and twice as species rich in the biomass and prairie mix plots compared to the warm-season grass and switchgrass plots. Our results suggest that implementation of biomass production using diverse mixes of native prairie vegetation on marginal lands could have positive effects on the maintenance of butterfly populations in agricultural landscapes.  相似文献   

19.
Abstract. Minsmere is a large nature reserve in East Anglia UK, owned and managed by the Royal Society for the Protection of Birds (RSPB). Two blocks of land, which were farmed commercially until 1990, have been bought in an attempt to link existing patches of heathland and acid grassland, thus creating a larger area for conservation. This paper discusses methods for the creation of acid grasslands. Previous studies of the arable soils in these fields identified three constraints ‐a depauperate seed bank, a high pH and vigorous growth of ruderal species after the fields were abandoned. Accordingly, experiments were set up to test the effects of (1) adding seed of species typical of acid grasslands and (2) adding amendments (elemental sulphur, litter of Pteridium aquilinum and pine chippings) to acidify the soil. The results confirmed that ruderal growth was high on unamended plots, but this could be reduced by addition of acidic amendments. Where the cover of ruderals was reduced, the cover of the sown species increased. The sown species colonized adjacent unsown subplots naturally and this was most pronounced where the acidity had been reduced by treatment. The most effective treatment was 21 S/ha, which gave the optimal reduction in soil pH, controlled ruderal growth and provided a reasonable cover of the sown species. The addition of Pteridium litter or pine chippings gave good establishment of sown species, but control of the ruderals was less effective.  相似文献   

20.
Aims Environmental heterogeneity is a primary mechanism explaining species coexistence and extant patterns of diversity. Despite strong theoretical support and ample observational evidence, few experimental studies in plant communities have been able to demonstrate a causal link between environmental heterogeneity and plant diversity. This lack of experimental evidence suggests that either fine-scale heterogeneity has weak effects on plant diversity or previous experiments have been unable to effectively manipulate heterogeneity. Here, we utilize a unique soil manipulation to test whether fine-scale soil heterogeneity will increase plant richness through species sorting among experimental patch types.Methods This experiment was conducted in the tallgrass prairie region of south-central Kansas, USA. We utilized the inherent variation found in the vertical soil profile, which varied in both biotic and abiotic characteristics, and redistributed these strata into either homogeneous or heterogeneous spatial arrangements in 2.4×2.4 m plots. After the soil manipulation, 34 native prairie species were sown into all plots. We conducted annual censuses at peak biomass to quantify species composition and plant density by species within the experimental communities.Important findings After 2 years, species richness was significantly higher in heterogeneous relative to homogeneous plots and this pattern was independent of total plant density. In the heterogeneous plots, 13 species had higher establishment in a specific patch type representing one of the three soil strata. Conversely, no species had greater establishment in the mixed stratum, which comprised the homogeneous plots, relative to the heterogeneous strata. These species sorting patterns suggest that fine-scale heterogeneity creates opportunities for plant establishment due to niche differences, which translates into increased plant diversity at the plot scale. Species richness was more strongly related to plant density among patches comprising homogenous plots—where fine-scale heterogeneity was minimized, but weak in heterogeneous plots. This pattern is consistent with the idea that richness–density relationships dominate when neutral processes are important but are weak when niche processes operate. Unlike many previous attempts, our results provide clear, experimental evidence that fine-scale soil heterogeneity increases species richness through species sorting during community assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号