首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims Brain ischemia–reperfusion injury remains incompletely understood but appears to involve a complex series of interrelated biochemical pathways caused mainly by a burst of reactive oxygen species (ROS). In the present work we studied the impact of postischemic condition in the early phase of reperfusion on plasma and blood cells. Methods Transient forebrain ischemia was induced in Wistar rats by four-vessel occlusion model. Blood samples collected during postischemic reperfusion 20, 40, 60, 90, and 120 min after ischemia were used for assessing breaks of lymphocyte DNA, fluorimetric measurement of whole blood glutamate concentration, and spectrophotometrical determination of SOD activity in plasma and blood cells. Results Our results showed the most interesting changes of all observed parameters mainly at 40 and 120 min of reperfusion, when we observed peak DNA damage of lymphocytes and highest glutamate level and total and Cu/Zn SOD activity. At those time points, Mn SOD activity was low in plasma, as well as in blood cells. On the contrary, at 60 and 90 min, all studied parameters were approximately at the level of control. Conclusion Ischemia/reperfusion injury has influence on blood cells and has at least two waves of impact on DNA damage of peripheral lymphocytes, affects activity of major antioxidant enzymes SODs, as well as blood glutamic acid level. Elevation of Mn SOD activity probably plays an important role in the processes of elimination of postischemic damage in blood cells.  相似文献   

2.
Increased formation of reactive oxygen species (ROS) on reperfusion after ischemia underlies ischemia-reperfusion (I/R) damage. We measured, in real time, oxygen tension in both microvessels and tissue and oxidant stress during postischemic reperfusion in the hamster cheek pouch microcirculation. We measured Po2 by using phosphorescence quenching microscopy and ROS production in the systemic blood. We evaluated the effects of a nitric oxide synthase inhibitor (NG-monomethyl-L-arginine, L-NMMA) and SOD on the oxidative stress during reperfusion. Microvascular injury was assessed by measuring diameter change, the perfused capillary length (PCL), and leukocyte adhesion. During early reperfusion, arteriolar Po2 was significantly lower than baseline, whereas capillary Po2 varied between 7 and 0 mmHg. Arterial blood flow did not regain baseline values, whereas Po2 returned to baseline in arterioles and tissue after 30 min of reperfusion. During 5 and 15 min of reperfusion, ROS increased by 72 and 89% versus baseline, respectively, and declined to baseline after 30 min of reperfusion. Pretreatment with SOD maintained ROS at normal levels, increased arteriolar diameter, blood flow, and PCL, and decreased leukocyte adhesion (P < 0.05). L-NMMA decreased ROS only within 5 min of reperfusion, which increased significantly by 72% later during reperfusion. L-NMMA worsened leukocyte adhesion (P < 0.05). In conclusion, our results show that the early reperfusion is characterized by low Po2 linked to increased production of ROS. At early reperfusion both SOD and L-NMMA decreased ROS production, whereas only SOD reduced it during later reperfusion. We suggest that low-flow hypoxia profoundly affects vascular endothelial damage during reperfusion through changes in ROS and nitric oxide production.  相似文献   

3.
The ability of mild hypothermia (MH; 34 degrees C) to protect against postischemic endothelial injury and decrease reactive oxygen species' (ROS) formation was studied using lucigenin and luminol enhanced chemiluminescence (CL). Lucigenin CL is largely specific for superoxide, while luminol reacts with many ROS. Isolated rat livers perfused under constant flow in a non-recirculating system were exposed to 2.5 h of ischemia after 0.5 h perfusion with Krebs-Henseleit buffer at either normothermia (38 degrees C) or mild hypothermia (34 degrees C) (n = 5, all groups). CL (cps), vascular resistance (Woods units), O2 consumption, and potassium efflux were measured at the end of perfusion, and at 0 min reperfusion, and every 30 min during reperfusion. For both the lucigenin and luminol groups, CL and vascular resistance increased significantly (repeat measures ANOVA, P <0.05) for normothermia (NT, 38 degrees C) but not mild hypothermia. Potassium efflux did not change significantly for the mild hypothermia groups. In the luminol enhanced group, oxygen consumption was greater in the mildly hypothermic group at 1 h and 1.5 h of reperfusion. Mild hypothermia decreased postischemic ROS production. Increased vascular resistance in the normothermia group may indicate an endothelial injury. Mild hypothermia appears to protect against this injury.  相似文献   

4.
Summary Activation of polymorphonuclear (PMN) leukocytes is known to generate oxygen free radicals (OFR). However the fate of activated PMN leukocytes is not known. We investigated the OFR producing (chemiluminescence) activity and the survival of the activated PMN leukocytes. The study was divided into two groups. Group I, In vivo study (n = 7): zymosan (8.4 mg/kg) was administered intravenously in the anesthetized dogs and the blood samples were collected before and after 5, 15, 30, 60 and 120 min of zymosan administration. This group represents the in vivo pre-stimulated PMN leukocytes; Group II, In vitro study (n = 7): the blood were collected from dogs and further divided into two groups. Group A (n = 7): non-stimulated, without any added zymosan and group B (n = 7): zymosan was added to stimulate PMN leukocytes. Blood samples from group A and B were also collected at various time intervals similar to in vivo studies. Oxygen free radical producing activity of PMN leukocytes was monitored by measuring luminoldependent chemiluminescence (CL). Opsonized zymosan was used to activate PMN leukocytes. The studies in which the PMN leukocytes were stimulated in in vivo, both oxygen derived free radicals and superoxide dismutase (SOD) inhibitable oxygen free radical CL decreased significantly for 60 min and tended to reach thereafter to the pre-stimulated values. The resting chemiluminescence (chemiluminescence without zymosan stimulation in the assay medium) increased significantly for 15 min reaching to pre-stimulated values at 30 min and thereafter. In in vitro studies, oxygen derived free radicals CL of pre-stimulated PMN leukocytes (Group B) was depressed for the whole duration of investigation while SOD inhibitable CL was depressed for only 60 min. There was approximately a two-fold increase in the resting CL within 5 min of PMN leukocyte activation and it remained high for the whole duration of study. The chemiluminescence of non-stimulated PMN leukocytes in vitro (group A) remained practically normal throughout the period of observation. In in vivo studies, total white blood cells (WBC) and PMN leukocyte counts decreased initially and tended to approach towards pre-stimulated values at the end of the protocol. There were no changes in these counts in in vitro studies. These results indicate that the capacity to generate OFR is decreased in the in vivo and in vitro pre-stimulated PMN leukocytes. However this activity recovers with time. This study also suggests that the activated PMN leukocytes are not destroyed.  相似文献   

5.
The purpose of this study was to follow up the changes in antioxidative adaptive mechanisms induced by various periods of small intestinal ischemia in Wistar rats. The superior mesenteric artery was occluded for 15, 30, 45, 60 and 90 min. After the respective ischemic intervals, a reperfusion was set for 120 min. Samples of the serum and intestinal mucosa were taken at the end of ischemia or at the end of reperfusion. Total radical-trapping antioxidant parameter (TRAP) of the serum and the oxidative burst of neutrophils were evaluated using luminol-enhanced chemiluminescence. Individual antioxidants in the serum and the concentration of thiobarbituric acid reactive substances (TBARs) in both serum and intestinal mucosa were measured spectrophotometrically. Increased activation of circulating neutrophils was found after the reperfusion irrespective of the duration of ischemia. TRAP of the serum was increased at the end of the ischemia lasting from 30 to 90 min. This effect was further enhanced by the subsequent reperfusion period. Ascorbate and urate contributed considerably to the TRAP value especially after reperfusion following 60 and 90 min of ischemia. On the other hand, no significant changes in albumin and bilirubin serum concentrations were observed. Contrary to the mobilized antioxidative mechanisms, increased lipid peroxidation was observed in both serum and mucosa samples.  相似文献   

6.
Abstract

The ability of mild hypothermia (MH; 34°C) to protect against postischemic endothelial injury and decrease reactive oxygen species' (ROS) formation was studied using lucigenin and luminol enhanced chemiluminescence (CL). Lucigenin CL is largely specific for superoxide, while luminol reacts with many ROS.

Isolated rat livers perfused under constant flow in a non-recirculating system were exposed to 2.5 h of ischemia after 0.5 h perfusion with Krebs-Henseleit buffer at either normothermia (38°C) or mild hypothermia (34°C) (n = 5, all groups). CL (cps), vascular resistance (Woods units), O2 consumption, and potassium efflux were measured at the end of perfusion, and at 0 min reperfusion, and every 30 min during reperfusion.

For both the lucigenin and luminol groups, CL and vascular resistance increased significantly (repeat measures ANOVA, P <0.05) for normothermia (NT, 38°C) but not mild hypothermia. Potassium efflux did not change significantly for the mild hypothermia groups. In the luminol enhanced group, oxygen consumption was greater in the mildly hypothermic group at 1 h and 1.5 h of reperfusion.

Mild hypothermia decreased postischemic ROS production. Increased vascular resistance in the normothermia group may indicate an endothelial injury. Mild hypothermia appears to protect against this injury.  相似文献   

7.
The sequence of changes in circulating immune cells and in free radical production was studied during the small intestine reperfusion. Rat small intestine ischemia/reperfusion was induced by a 45 min superior mesenteric artery occlusion followed by a 4-hour reperfusion. Samples of peripheral blood were collected every 20 min during reperfusion. While the number of polymorphonuclear leukocytes increased significantly both in the sham-operated controls and the experimental group (about 400 per cent at the end of reperfusion), a decrease in lymphocyte counts to 60 per cent was observed in the experimental group only. Although there were no changes in the counts of total T lymphocytes, a significant reduction in B cell counts was observed. Flow-cytometrical measurements showed no changes in the Tc subpopulation, while the Th subpopulation increased in the experimental group only. Free radical generation in blood (luminometric measurements) increased gradually and reached an eight-fold level by the end of reperfusion in both groups. Thus, it has been shown that the increase in free radical production is mainly due to the increased number of polymorphonuclear leukocytes mobilized already at the initial stages of reperfusion. The reduction in B lymphocyte population is probably due to homing mechanisms  相似文献   

8.
The objectives of this study were to characterize endothelin (ET)-3-induced alterations in intestinal hemodynamics and to evaluate whether ET-3 administration alters the tissue levels of polymorphonuclear leukocytes (PMNs) and modulates the epithelial barrier function of the small intestine. ET-3 (100 pmol/kg/min) was infused into the superior mesenteric artery (SMA) for 10 min, and tissue samples were obtained 30 min after terminating the infusion. SMA blood flow was significantly decreased throughout the experiment following ET-3 infusion. Pretreatment with bosentan (ET-A and ET-B receptor antagonist), ET-B receptor antagonist BQ-788 or ET-A receptor antagonist BQ-485 completely inhibited the ET-3-induced decrease in the SMA blood flow. Similar results were obtained from the resistance data, in which ET-3-induced increases in SMA resistance were significantly reduced by all ET receptor antagonists. ET-3 administration significantly elevated tissue MPO activity, blood-to-lumen clearance of (51)Cr-EDTA and caused a marked microscopic damage in the intestinal mucosa. ET-3-induced elevations in tissue PMN infiltration and mucosal damage were significantly inhibited by pretreatments with ET-A or ET-B receptor antagonists. Overall, our data indicate that ET-3 causes microscopic damage, PMN infiltration and mucosal dysfunction in the rat small intestine. In addition, ET-3-induced hemodynamic alterations as well as tissue PMN infiltration and mucosal damage are mediated by both ET-A and ET-B receptors.  相似文献   

9.
We examined the role of C activation in ischemia reperfusion injury by inhibiting C activation in a rat model of mesenteric arterial occlusion. In anesthetized rats, 60 min of mesenteric arterial occlusion was followed by 3 h of reperfusion. PBS alone or containing soluble C receptor 1 (3 or 6 mg) was administered i.v. Controls underwent laparotomy without ischemia. Relative serum C activities were assessed by hemolytic assay, neutrophil (polymorphonuclear leukocyte) sequestration by tissue content of myeloperoxidase (MPO) activity, intestinal mucosal injury by histologic grading, lung vascular permeability by the ratio of bronchoalveolar lavage to blood concentration of radiolabeled BSA, and endothelial cell injury was quantified by measurement of plasma factor VIII-related Ag. After reperfusion, PBS-treated animals had increased intestinal MPO (0.048 +/- 0.007 U/g) compared to sham (0.022 +/- 0.005 U/g (p less than 0.05)) and intestinal mucosal injury score (2.490 +/- 0.221) compared to sham (0.331 +/- 0.045 (p less than 0.05)). Treatment with 6 mg soluble C receptor 1 15 min before reperfusion reduced intestinal MPO (0.017 +/- 0.003 U/g (p less than 0.05)) and mucosal injury (1.733 +/- 0.168 (p less than 0.05)) compared to PBS control. PBS-treated animals also demonstrated increased lung MPO (0.314 +/- 0.025 U/g vs 0.085 +/- 0.018 in sham (p less than 0.05)) and increased lung permeability (bronchoalveolar lavage/blood cpm 11.32 +/- 1.35 x 10(-3) vs sham 2.22 +/- 0.19 x 10(-3) (p less than 0.05)). Treatment with 6 mg soluble C receptor 1 15 min before reperfusion or at reperfusion reduced the lung permeability (bronchoalveolar lavage/blood cpm 3.90 +/- 0.79 x 10(-3) and 5.08 +/- 0.75, respectively (both p less than 0.05)) compared to PBS control, but did not reduce lung MPO (0.342 +/- 0.031 U/g and 0.246 +/- 0.025), respectively. Treatment with sCR1 also reduced the release of factor VIII-related Ag, 5-day mortality, and C hemolytic activity. In this model, C is a major mediator of intestinal injury and extraintestinal injury.  相似文献   

10.
We investigated leukocyte involvement in uterine hypoperfusion and intrauterine fetal growth retardation (IUGR) induced by ischemia-reperfusion (I/R) in Sprague-Dawley rats. On day 17 of gestation, leukocyte accumulation in the uterus and placenta subjected to 30 min of ischemia, followed by reperfusion, was assessed by measuring myeloperoxidase (MPO) activity. Uterine MPO activity was significantly higher after 1 h of reperfusion than it was before ischemia (P < 0.05), without any increase in placental MPO activity. Immunohistochemical staining showed leukocyte accumulation in the uterus subjected to I/R. The effects of treatment with monoclonal antibodies against CD11a (WT1) and CD18 (WT3) at a dose of 0.8 mg/kg on uterine blood flow and IUGR were investigated. Laser-Doppler flowmetry demonstrated that uterine hypoperfusion at 2 h after ischemia (blood flow, -51.7 +/- 1.2%; P < 0.01) was inhibited by WT1 and WT3 treatment. I/R-induced IUGR at full term (P < 0.05 vs. nonischemic horn) was prevented by WT1 and WT3 treatment on day 17. These results indicate that leukocyte accumulation may play an important role in the pathogenesis of uterine hypoperfusion and IUGR induced by I/R in pregnant rats.  相似文献   

11.
BACKGROUND: Methionine has shown protective effects in experimental models of myocardial infarction and is highly reactive to oxidative compounds produced by polymorphonuclear leukocytes (PMN), which in turn have been associated with myocardial damage. We have investigated the effect of methionine administration on spontaneous leukocyte peroxidative activity in myocardial ischemia and reperfusion. METHODS: In anesthetized dogs, with coronary occlusion (90 min) and reperfusion (90 min), PMN activation was measured by flow cytometric determination of H(2)O(2) with dihydrorhodamine 123, and correlated to hemodynamic parameters and infarct presence. To assess a possible direct effect of methionine, H(2)O(2) and superoxide were measured by flow cytometry in dog leukocyte suspensions following in vitro stimulation with f-MLP. RESULTS: PMN peroxidative activity in saline-treated dogs increased significantly after coronary occlusion and after reperfusion. These changes were greater in coronary venous blood than in femoral blood. Methionine administration (150 mg/kg, i.v.) before occlusion totally suppressed PMN activation, both after occlusion and reperfusion. CONCLUSIONS: PMN are promptly activated in myocardial ischemia, and methionine administration prevents such activation. However, methionine has no direct effect on spontaneous peroxidative activity, and f-MLP induced peroxidative activity. These in vivo effects of methionine, may additionally contribute to explain its protective role in experimental -788-877-7QQ8-8-7-88-8-8778--8Q78-----8--8-Q-7-Q7----- --------------8888 888888-7777777777777777777777777777777----------------888888888888888888 8877777--87--------8-----------------7-8888-887-----------8----8-8-87777 7777777------------------------------------------------------T7OW  相似文献   

12.
Impaired microvascular function during myocardial ischemia and reperfusion is associated with recruitment of polymorphonuclear neutrophils (PMN) and has been attributed to decreased bioavailability of nitric oxide (NO). Whereas myeloperoxidase (MPO), a highly abundant, PMN-derived heme protein facilitates oxidative NO consumption and impairs vascular function in animal models of acute inflammation, its capacity to function in this regard during human myocardial ischemia and reperfusion remains unknown. Plasma samples from 30 consecutive patients (61 +/- 14 years, 80% male) presenting with acute myocardial infarction were collected 9 +/- 4 h after vessel recanalization and compared to plasma from healthy control subjects (n = 12). Plasma levels of MPO were higher in patients than in control subjects (1.4 +/- 0.9 vs 0.3 +/- 0.2 ng/mg protein, respectively, p < 0.0001). The addition of hydrogen peroxide to patient plasma resulted in accelerated rates of NO consumption compared to control subjects (0.53 +/- 0.25 vs 0.068 +/- 0.039 nM/s/mg protein, respectively, p < 0.0001). Myocardial tissue from patients with the same pathology revealed intense recruitment of MPO-positive PMN localized along infarct-related vessels as well as diffuse endothelial distribution of non-PMN-associated MPO immunoreactivity. Endothelium-dependent microvascular function, as assessed by an acetylcholine-dependent increase in forearm blood flow in 75 patients with symptomatic coronary artery disease, inversely correlated with MPO plasma levels (r = -0.75, p < 0.005). Plasma from patients undergoing myocardial reperfusion contained increased levels of MPO, which catalytically consumed NO in the presence of H(2)O(2). Given the correlation between intravascular MPO levels and forearm vasomotor function in patients with coronary artery disease, MPO appears to be an important modulator of vasomotor function in inflammatory vascular disease and a potential therapeutic target for treatment.  相似文献   

13.
The aim of the present study was to assess the role of endothelin (ET) in ischemia-reperfusion (I/R)-induced mucosal injury. Mucosal permeability ((51)Cr-EDTA clearance) and tissue myeloperoxidase (MPO) activity were significantly increased after 30 min of ischemia followed by 30 min of reperfusion. The I/R-induced increases in mucosal permeability and polymorphonuclear leukocyte (PMN) infiltration were significantly attenuated by pretreatments with ET(A) (BQ-485) and/or ET(B) (BQ-788) receptor antagonists. Monoclonal antibody (MAb) directed against intercellular adhesion molecule-1 (ICAM-1; MAb 1A29) and superoxide dismutase (SOD) pretreatments significantly attenuated the increased mucosal permeability and PMN infiltration in a similar manner as with ET receptor antagonists. Superior mesenteric artery blood flow was significantly reduced during the reperfusion period. Both ET receptor antagonists caused a significant rise in blood flow compared with an untreated I/R group. In conclusion, our data suggest that ET(A) and/or ET(B) receptors, ICAM-1, and superoxide play an important role in I/R-induced mucosal dysfunction and PMN infiltration. Furthermore, ET is involved in the pathogenesis of post-reperfusion-induced damage and beneficial effects of ET receptor antagonism are related to an improvement of disturbed blood flow during the reperfusion period.  相似文献   

14.
研究观察失血性休克复合内毒素血症时血和组织髓过氧化物酶的变化规律。将雄性wistar大白鼠随机分为对照组、缺血组、缺血再灌流组和缺血再灌流复合内毒素组。用改良的髓过氧化物酶 (MPO)测定方法 ,测定血、肺和小肠组织MPO及相关指标的变化。结果显示肺组织MPO活性从失血性休克末开始升高 ,致内毒素血症时出现峰值 ;小肠组织MPO的活性在失血再灌流后显著升高 ,但在失血性休克复合内毒素血症后显著降低 ;血MPO活性于失血性休克和失血再灌流后均无显著性变化 ,复合内毒素后显著降低。结果表明失血再灌流后肺组织PMN扣留、聚集显著增加 ,内毒素血症促进PMN在肺中的扣留 ,这些变化与PMN上CD11b和CD18表达上调有关 ,提示失血再灌注复合内毒素时组织细胞损伤与PMN的粘附、扣留、激活有关。  相似文献   

15.
Hesperidin is a naturally common flavonoid. It is an abundant and cheap by-product of citrus cultivation. It is reported to have antioxidative, anti-inflammatory and anticarcinogenic effects. This work was performed to investigate the possible protective role of hesperidin in ameliorating the effect of experimentally induced intestinal ischemia/reperfusion injury (I/R) on lung tissue, histologically, immunohistochemically and biochemically. Thirty male Wistar adult albino rats were randomized into three groups named: group I (control group); group II (I/R); and group III (I/R with hesperidin). Intestinal I/R was induced by occluding the superior mesenteric artery for 60 min, followed by 120 min of reperfusion period. Animals were given hesperidin orally 1 h before the onset of ischemia. At the end of the reperfusion period the lung tissues were extracted for histopathological examination and immunohistochemical detection of the distribution of inducible nitric oxide synthase (iNOS). Pulmonary edema was evaluated by lung tissue wet/dry weight ratios. The levels of malondialdehyde (MDA, a biomarker of oxidative damage), myeloperoxidase (MPO, an index of the degree of neutrophil accumulation) and glutathione (GSH, a biomarker of protective oxidative injury) were also determined in all dissected tissues. Pretreatment with hesperidin (in group III) alleviated lung morphological changes noticed in I/R group and the levels of MDA and MPO were significantly decreased whereas those of GSH were significantly increased. Immunohistochemical study revealed a significant decrease in the iNOS. Hesperidin also significantly alleviated the formation of pulmonary edema as evidenced by the decreased organ wet/dry weight ratios. Hesperidin exerts a protective effect against lung damage induced by intestinal I/R injury in rats by reducing oxidative stress.  相似文献   

16.
This study analyzed the effects of L-arginine and non-specific nitric oxide (NO) synthase blocker (L-NAME) on structural and metabolic changes in experimental ischemia/reperfusion injury in the rat. Histopathological evaluation of rat tissues after reperfusion was also performed. The animals were divided into four groups: [1] nonischemic control, [2] ischemia 4 hrs/repefusion 30, 60, 120 min, [3] ischemia/reperfusion after L-arginine administration, [4] ischemia/reperfusion, after L-arginine, and L-NAME. L-arginine (500 mg/kg) and L-NAME (75 micromol/rat/day) were administrated orally for 5 days before experiment. Concentrations of free radicals, CD-62P, CD-54 and malonyl dialdehyde (MDA) in tissues, and MDA and NO levels in sera were determined. Free radical levels significantly increased in reperfused skeletal muscle, small and large intestines. In large bowel, reperfusion increased MDA levels and evoked a rise of endotoxin level while NO levels decreased. Histological studies showed an increase in the number of lymphocytes in both intestines. Administration of L-arginine reduced leukocyte adherence associated with ischemia-repefusion injury, decreased the levels of free radicals and MDA in the examined tissues, and inhibited the release of endotoxins into blood. L-arginine-treated animals showed higher serum NO levels and reduced leukocyte bowel infiltration. Concomitant L-NAME administration reduced serum NO and tissue free radical [corrected] levels, but did not affect intestinal leukocyte infiltration. L-arginine could ameliorate intestinal ischemia/reperfusion injury and constitute a possible protective mechanism by decreasing neutrophil-endothelial interactions, stimulating free radical scavenging and reducing lipid peroxidation.  相似文献   

17.
Intestinal ischemia/reperfusion (I/R) produces reactive oxygen species (ROS) activating signal transduction and apoptosis. The aim of this study was to evaluate the effect of (-)-epigallocatechin-3-gallate (EGCG) administration in inhibition of apoptosis by attenuating the expression of NF-kB, c-Jun and caspace-3 in intestinal I/R. Thirty male wistar rats were used. Group A sham operation, B I/R, C I/R-EGCG 50 mg/kg ip. Intestinal ischemia was induced for 60 min by clamping the superior mesenteric artery. Malondialdehyde (MDA), myeloperoxidase (MPO), light histology, Fragment End Labelling of DNA (TUNEL), immunocytochemistry for NF-kB, c-Jun and caspace-3 analysis in intestinal specimens were performed 120 min after reperfusion. Apoptosis as indicated by TUNEL and Caspace-3, NF-kB and c-Jun was widely expressed in I/R group but only slightly expressed in EGCG treated groups. MDA and MPO showed a marked increase in the I/R group and a significant decrease in the EGCG treated group. Light histology showed preservation of architecture in the EGCG treated group. In conclusion, EGCG pre-treatment is likely to inhibit intestinal I/R-induced apoptosis by down-regulating the expression of NF-kB, c-Jun and caspase-3.  相似文献   

18.
Intestinal ischemia/reperfusion (I/R) produces reactive oxygen species (ROS) activating signal transduction and apoptosis. The aim of this study was to evaluate the effect of (?)-epigallocatechin-3-gallate (EGCG) administration in inhibition of apoptosis by attenuating the expression of NF-kB, c-Jun and caspace-3 in intestinal I/R. Thirty male wistar rats were used. Group A sham operation, B I/R, C I/R-EGCG 50 mg/kg ip. Intestinal ischemia was induced for 60 min by clamping the superior mesenteric artery. Malondialdehyde (MDA), myeloperoxidase (MPO), light histology, Fragment End Labelling of DNA (TUNEL), immunocytochemistry for NF-kB, c-Jun and caspace-3 analysis in intestinal specimens were performed 120 min after reperfusion. Apoptosis as indicated by TUNEL and Caspace-3, NF-kB and c-Jun was widely expressed in I/R group but only slightly expressed in EGCG treated groups. MDA and MPO showed a marked increase in the I/R group and a significant decrease in the EGCG treated group. Light histology showed preservation of architecture in the EGCG treated group. In conclusion, EGCG pre-treatment is likely to inhibit intestinal I/R-induced apoptosis by down-regulating the expression of NF-kB, c-Jun and caspase-3.  相似文献   

19.
A substantial body of evidence suggests that nicotine adversely affects cerebral blood flow and the blood-brain barrier and is a risk factor for stroke. The present study investigated the effect of nicotine on cerebrovascular endothelium under basal and ischemia/reperfusion injury under in vivo condition. Nicotine (2 mg/kg sc) was administered to mice over 14 days, which resulted in plasma nicotine levels of ~100 ng/ml, reflecting plasma concentrations in average to heavy smokers. An analysis of the phenotype of isolated brain microvessels after nicotine exposure indicated higher expression of inflammatory mediators, cytokines (IL-1β, TNF-α, and IL-18), chemokines (CCL2 and CX(3)CL1), and adhesion molecules (ICAM-1, VCAM-1, and P-selectins), and this was accompanied by enhanced leukocyte infiltration into brain during ischemia/reperfusion (P < 0.01). Nicotine had a profound effect on ischemia/reperfusion injury; i.e., increased brain infarct size (P < 0.01), worse neurological deficits, and a higher mortality rate. These experiments illuminate, for the first time, how nicotine regulates brain endothelial cell phenotype and postischemic inflammatory response at the brain-vascular interface.  相似文献   

20.
目的:研究肢体缺血预处理对大鼠肝缺血/再灌注损伤是否具有保护作用。方法:雄性SD大鼠32只,随机分为对照组(S组);缺血/再灌注组(I/R组);经典缺血预处理组(IPC组);肢体缺血预处理组(远端缺血预处理组,RPC组)。S组仅行开腹,不作其他处理;IPC组以肝缺血5min作预处理;RPC组以双后肢缺血5min,反复3次作预处理,2个预处理组及I/R组均行肝缺血1h再灌注3h。取血用于血清谷丙转氨酶(ALT)与血清谷草转氨酶(AST)检测。切取肝组织用于测定湿干比(W/D)、中性粒细胞(PMN)计数及观察显微、超微结构的变化。结果:与I/R组比较,IPC组,RPC组ALT,AST,W/D值,及PMN计数均明显降低(P〈0.01),肝脏的显微及超微结构损伤减轻。结论:肢体缺血预处理对大鼠肝脏I/R损伤有明显的保护作用,强度与经典缺血预处理相当,其机制可能与抑制肝脏炎症反应、减轻肝脏水肿、改善肝组织微循环有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号