首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 100 毫秒
1.
Summary In this study, double labelling for major histocompatability complex (MHC) class I and class II molecules and for MHC molecules and the lysosomal membrane protein lamp-1 on ultrathin cryosections of dendritic cells isolated from human peripheral blood was performed. The plasma membrane proved to be positive for both MHC class I and MHC class II molecules and was labelled for only a very few lamp-1 molecules. MHC class I and MHC class II molecules did not co-localize intracellularly except in some peripherally located vesicles. However, many MHC class II-labelled vesicles were present in a juxtanuclear position but only some of them were co-labelled for lamp-1. These results indicate the presence of a separate, non-lysosomal compartment for class II molecules in dendritic cells.  相似文献   

2.
In the present study, we examined the modulation of MHC class II and class I gene products on BALB/c macrophages infected with the obligate intracellular protozoan Leishmania donovani. Our findings indicated that this organism suppressed macrophage expression of both classes of MHC antigens. These effects varied somewhat, depending on whether cells were in the basal state or were stimulated with interferon-gamma. Thus, class II density on interferon-gamma-treated infected macrophages was suppressed by as much as 90%, relative to lymphokine-stimulated control cells. Induction of H-2K and H-2D by lymphokine treatment of infected macrophages was also markedly reduced. In the basal (non-lymphokine-treated) state, infected cells also showed reduced expression of H-2K and H-2D, but not I-A or I-E. The latter result was related to minimal levels of class II molecules on normal, in vitro cultured macrophages. Suppression of MHC gene products correlated with both the duration and intensity of leishmania infection and could not be overcome by increasing doses of interferon-gamma. Culture of cells under conditions of cyclooxygenase inhibition completely abolished elevated synthesis of prostaglandin E2 by infected macrophages and augmented their responsiveness to lymphokine induction of class II antigens by 60 to 80%. These results indicate that L. donovani is capable of subverting a critical macrophage accessory function required for the induction of T lymphocyte immunity. This mechanism could account, at least in part, for defective parasite-specific cell-mediated immunity seen during infections with this protozoan.  相似文献   

3.
Murine T lymphocytes recognize nominal Ag presented by class I or class II MHC molecules. Most CD8+ T cells recognize Ag presented in the context of class I molecules, whereas most CD4+ cells recognize Ag associated with class II molecules. However, it has been shown that a proportion of T cells recognizing class I alloantigens express CD4 surface molecules. Furthermore, CD4+ T cells are sufficient for the rejection of H-2Kbm10 and H-2Kbm11 class I disparate skin grafts. It has been suggested that the CD4 component of an anti-class I response can be ascribed to T cells recognizing class I determinants in the context of class II MHC products. To examine the specificity and effector functions of class I-specific HTL, CD4+ T cells were stimulated with APC that differed from them at a class I locus. Specifically, a MLC was prepared involving an allogeneic difference only at the Ld region. CD4+ clones were derived by limiting dilution of bulk MLC cells. Two clones have been studied in detail. The CD4+ clone 46.2 produced IL-2, IL-3, and IFN-gamma when stimulated with anti-CD3 mAb, whereas the CD4+ clone 93.1 secreted IL-4 in addition to IL-2, IL-3, and IFN-gamma. Cloned 46.2 cells recognized H-2Ld directly, whereas recognition of Ld by 93.1 apparently was restricted by class II MHC molecules. Furthermore, cytolysis by both clones 46.2 and 93.1 was inhibited by the anti-CD4 mAb GK1.5. These results demonstrate that CD4+ T cells can respond to a class I difference and that a proportion of CD4+ T cells can recognize class I MHC determinants directly as well as in the context of class II MHC molecules.  相似文献   

4.
Dendritic cells and macrophages were examined in dental pulp during the postnatal development of mouse mandibular first molars, by immuno- and enzyme histochemistry. F4/80 antibody against dendritic cells and macrophages demonstrated labeled cells predominantly in and around the odontoblastic layer during tooth development from postnatal day 0 (PN0) to PN5. Labeling with Mac-1, Mac-2, and MOMA-2 antibodies against macrophages showed varied distribution patterns. Mac-1-positive cells were not detected in the dental pulp. Mac-2-positive cells appeared in the dental pulp at PN0, but not in or around the odontoblastic layer, and disappeared by PN3. A few MOMA-2-positive cells were detected in the dental pulp during the period examined. The F4/80-positive cells in and around the odontoblastic layer did not exhibit acid phosphatase or non-specific esterase activities. In addition, the F4/80-positive cells showed continued expression of Fcγ receptor, but not class II major histocompatibility complex (MHC). Other antibodies against dendritic cells (NLDC-145, MIDC-8, and 33D1) did not label the F4/80-positive cells. We concluded that the F4/80-positive and class II MHC-negative cells in and around the odontoblastic layer may be immature dendritic cells in the early stages before eruption, weaning, and crucial exposure to antigenic stimuli. They may not only act primarily as immunosurveillance cells, but also play a role in a regulatory function and differentiation of odontoblasts. Accepted: 8 June 1999  相似文献   

5.
Protozoa and bacteria infect various types of phagocytic cells including macrophages, monocytes, dendritic cells and eosinophils. However, it is not clear which of these cells process and present microbial antigens in vivo and in which cellular compartments parasite peptides are loaded onto Major Histocompatibility Complex molecules. To address these issues, we have infected susceptible BALB/c (H-2d) mice with a recombinant Leishmania major parasite expressing a fluorescent tracer. To directly visualize the antigen presenting cells that present parasite-derived peptides to CD4+ T cells, we have generated a monoclonal antibody that reacts to an antigenic peptide derived from the parasite LACK antigen bound to I-Ad Major Histocompatibility Complex class II molecule. Immunogold electron microscopic analysis of in vivo infected cells showed that intracellular I-Ad/LACK complexes were present in the membrane of amastigote-containing phagosomes in dendritic cells, eosinophils and macrophages/monocytes. In both dendritic cells and macrophages, these complexes were also present in smaller vesicles that did not contain amastigote. The presence of I-Ad/LACK complexes at the surface of dendritic cells, but neither on the plasma membrane of macrophages nor eosinophils was independently confirmed by flow cytometry and by incubating sorted phagocytes with highly sensitive LACK-specific hybridomas. Altogether, our results suggest that peptides derived from Leishmania proteins are loaded onto Major Histocompatibility Complex class II molecules in the phagosomes of infected phagocytes. Although these complexes are transported to the cell surface in dendritic cells, therefore allowing the stimulation of parasite-specific CD4+ T cells, this does not occur in other phagocytic cells. To our knowledge, this is the first study in which Major Histocompatibility Complex class II molecules bound to peptides derived from a parasite protein have been visualized within and at the surface of cells that were infected in vivo.  相似文献   

6.
The dendritic cells and related antigen-presenting cells (APCs) that activate lymphocytes for acquired immunity in the female reproductive tract are not well characterized. The aim of the present study was to examine heterogeneity among uterine APCs in mice and, specifically, to determine whether phenotypically and functionally distinct subpopulations of dendritic cells and macrophages can be identified. Using immunohistochemistry, abundant cells expressing APC-restricted molecules major histocompatibility complex (MHC) class II, F4/80, class A scavenger receptor, macrosialin, and sialoadhesin were evident in estrous mice. Cells expressing the costimulatory molecule B7-2 were rarely observed. Flow cytometric analysis revealed three subpopulations of uterine APCs. Undifferentiated macrophages were F4/80-positive (+), MHC class II-negative (-) cells, of which 70-80% expressed CD11b, but few expressed class A scavenger receptor, macrosialin, or sialoadhesin. Mature macrophages were F4/80+/MHC class II+ cells, of which approximately 50% expressed CD11b, class A scavenger receptor, macrosialin, and sialoadhesin. Uterine dendritic cells were F4/ 80-/MHC class II+ cells, with stimulatory immunoaccessory function relative to uterine macrophages and heterogeneous expression of dendritic markers 33D1, DEC205, CD11c, and CD1. Experiments in ovariectomized mice showed that undifferentiated macrophages were steroid hormone dependent but that mature macrophages and dendritic cells persisted after depletion of ovarian steroid hormones, although with altered phenotypes. In summary, our findings identify three discrete populations of APCs inhabiting the murine uterus and suggest that both mature macrophages and dendritic cells differentiate from undifferentiated macrophage precursor cells. Plasticity in the ontogenetic and functional relationships between uterine dendritic cells and macrophages likely is critical in regulating immune responses conducive to reproductive success.  相似文献   

7.
Like EBV-infected humans with infectious mononucleosis, mice infected with the rodent gammaherpesvirus MHV-68 develop a profound increase in the number of CD8+ T cells in the circulation. In the mouse model, this lymphocytosis consists of highly activated CD8+ T cells strikingly biased toward V beta 4 TCR expression. Moreover, this expansion of V beta 4+CD8+ T cells does not depend on the MHC haplotype of the infected animal. Using a panel of lacZ-inducible T cell hybridomas, we have detected V beta 4-specific T cell stimulatory activity in the spleens of MHV-68-infected mice. We show that the appearance and quantity of this activity correlate with the establishment and magnitude of latent viral infection. Furthermore, on the basis of Ab blocking studies as well as experiments with MHC class II, beta2-microglobulin (beta2m) and TAP1 knockout mice, the V beta 4-specific T cell stimulatory activity does not appear to depend on conventional presentation by classical MHC class I or class II molecules. Taken together, the data indicate that during latent infection, MHV-68 may express a T cell ligand that differs fundamentally from both conventional peptide Ags and classical viral superantigens.  相似文献   

8.
Immune responses appropriate for control of an intracellular pathogen are generated in mice infected with Brucella abortus, shown by the ability of T cells to adoptively transfer resistance to naive mice. The infection nevertheless persists for months. It was hypothesized that one factor in maintaining the infection despite the presence of immune T cells was suboptimal expression of major histocompatibility complex (MHC) molecules on macrophages containing brucellae. This would allow B. abortus to elude detection by the host's immune system. To test this, B. abortus organisms expressing green fluorescent protein (GFP-Brucella) were constructed and three-color flow cytometry used to evaluate MHC expression on macrophages following in vitro or in vivo infection. When infected in vitro, the levels of MHC class I and class II expression on J774 macrophages containing GFP-Brucella were the same or higher than on macrophages without GFP-Brucella in the same cultures. Similarly, the MHC expression was higher on GFP(+) peritoneal exudate cells following infection or phagocytosis of heat-killed GFP-Brucella than it was on uninfected peritoneal exudate cells. Following in vivo infection of mice the level of MHC class I and II expression on GFP(+) cells in their spleens (the main site of infection) also tended to be as high as or higher than that on the GFP-negative cells. The only in vivo GFP(+) cells that showed a decreased MHC expression was a population of splenic Mac1(+) cells recovered from interferon-gamma gene-disrupted mice at the time of their death due to an overwhelming number of bacteria per spleen. Overall, it was concluded that decreased MHC expression is not a general principle associated with brucella infection of macrophages and thus not likely to contribute to maintenance of the chronic infection.  相似文献   

9.
We have developed cell-based cancer vaccines that activate anti-tumor immunity by directly presenting endogenously synthesized tumor antigens to CD4+ T helper lymphocytes via MHC class II molecules. The vaccines are non-conventional antigen-presenting cells because they express MHC class II, do not express invariant chain or H-2M, and preferentially present endogenous antigen. To further improve therapeutic efficacy we have studied the intracellular trafficking pathway of MHC class II molecules in the vaccines using endoplasmic reticulum-localized lysozyme as a model antigen. Experiments using endocytic and cytosolic pathway inhibitors (chloroquine, primaquine, and brefeldin A) and protease inhibitors (lactacystin, LLnL, E64, and leupeptin) indicate antigen presentation depends on the endocytic pathway, although antigen degradation is not mediated by endosomal or proteasomal proteases. Because H2-M facilitates presentation of exogenous antigen via the endocytic pathway, we investigated whether transfection of vaccine cells with H-2M could potentiate endogenous antigen presentation. In contrast to its role in conventional antigen presentation, H-2M had no effect on endogenous antigen presentation by vaccine cells or on vaccine efficacy. These results suggest that antigen/MHC class II complexes in the vaccines may follow a novel route for processing and presentation and may produce a repertoire of class II-restricted peptides different from those presented by professional APC. The therapeutic efficacy of the vaccines, therefore, may reside in their ability to present novel tumor peptides, consequently activating tumor-specific CD4+ T cells that would not otherwise be activated.  相似文献   

10.
Specificity of T cell receptor (TCR) and its interaction with coreceptor molecules play decisive role in successful passing of T lymphocytes via check-points during their development and finally determine the efficiency of adaptive immunity. Genes encoding alpha- and beta-chains of TCR hybridoma 1D1 have been cloned. The hybridoma 1D1 was established by the fusion of BWZ.36CD8alpha cell line with CD8+ memory cells specific to MHC class I H-2Kb molecule. Exploiting retroviral transduction of thymoma 4G4 cells with TCR genes and coreceptors CD4 and CD8, variants of this cell line expressing on the surface CD3/TCR complex and coreceptors, separately or simultaneously have been obtained. The main function of CD4 is stabilization of interaction between TCR and MHC class II molecule. Nevertheless, we have found that CD4 could successfully participate in the activation of transfectants via TCR specific to MHC class I molecule H-2Kb. Moreover, coreceptor CD4 dominates CDS, because the response of transfectants CD4+CD8+ is blocked by antibodies to CD4 and MHC Class II Ab molecule but not to coreceptor CD8. The response of CD4+ cells was not due to cross-reaction between TCR 1D1 with MHC class II molecules, because transfectants do not respond to splenocytes of H-2b knockouted mice with impaired assembly of TCR/beta2-microglobulin/peptide complexes resulting in their absence on the cell surphace. The effect of domination was not due to sequestration of kinase p56lck, because truncated CD4 with the loss of binding motif for p56lck remained functional in 4G4 cells. Results obtained can explain the number of features of intrathymic selection and represent experimental basis for development of new methods of cancer gene therapy.  相似文献   

11.
We examined the role of MHC class II molecules in transducing signals to activated human T cells. Cross-linking of MHC class II molecules synergized with submitogenic amounts of anti-CD3 mAb in causing proliferation and secretion of the cytokines IL-2, IL-3, IFN-gamma, and TNF-alpha by MHC class II-alloreactive T cell lines. Signaling via MHC class II molecules in T cells resulted in activation of tyrosine kinases, in generation of inositol phosphates, and in Ca2+ mobilization that was abrogated by the tyrosine kinase inhibitor herbimycin A. Thus, like signaling via TCR/CD3, signaling via MHC class II molecules involved tyrosine kinase-dependent activation of phospholipase C, resulting in phosphoinositol turnover and Ca2+ flux. However the signaling pathways coupled to MHC class II molecules and to TCR/CD3 differed, because engagement of the transmembrane phosphatase CD45 inhibited Ca2+ fluxes triggered via TCR/CD3 but not Ca2+ fluxes triggered via MHC class II molecules.  相似文献   

12.

Background

Major histocompatibility complex (MHC) class II molecules play crucial roles in immune activation by presenting foreign peptides to antigen-specific T helper cells and thereby inducing adaptive immune responses. Although adaptive immunity is a highly effective defense system, it takes several days to become fully operational and needs to be triggered by danger-signals generated during the preceding innate immune response. Here we show that MHC class II molecules synergize with Toll-like receptor (TLR) 2 and TLR4 in inducing an innate immune response.

Methodology/Principal Findings

We found that co-expression of MHC class II molecules and TLR2 or TLR4 in human embryonic kidney (HEK) cells 293 leads to enhanced production of the anti-microbial peptide human-β-defensin (hBD) 2 after treatment with TLR2 stimulus bacterial lipoprotein (BLP) or TLR4 ligand lipopolysaccharide (LPS), respectively. Furthermore, we found that peritoneal macrophages of MHC class II knock-out mice show a decreased responsiveness to TLR2 and TLR4 stimuli compared to macrophages of wild-type mice. Finally, we show that MHC class II molecules are physically and functionally associated with TLR2 in lipid raft domains of the cell membrane.

Conclusions/Significance

These results demonstrate that MHC class II molecules are, in addition to their central role in adaptive immunity, also implicated in generating optimal innate immune responses.  相似文献   

13.
14.
Some MHC class II genes provide dominant resistance to certain autoimmune diseases via mechanisms that remain unclear. We have shown that thymocytes bearing a highly diabetogenic, I-Ag7-restricted beta-cell-reactive TCR (4.1-TCR) undergo negative selection in diabetes-resistant H-2g7/x mice by engaging several different antidiabetogenic MHC class II molecules on thymic (but not peripheral) hemopoietic cells, independently of endogenous superantigens. Here we have investigated 1) whether this TCR can also engage protective MHC class II molecules (I-Ab) on cortical thymic epithelial cells in the absence of diabetogenic (I-Ag7) molecules, and 2) whether deletion of 4.1-CD4+ thymocytes in I-Ab-expressing mice might result from the ability of I-Ab molecules to present the target beta-cell autoantigen of the 4.1-TCR. We show that, unlike I-Ag7 molecules, I-Ab molecules can restrict neither the positive selection of 4.1-CD4+ thymocytes in the thymic cortex nor the presentation of their target autoantigen in the periphery. Deletion of 4.1-CD4+ thymocytes by I-Ab molecules in the thymic medulla, however, is a peptide-specific process, since it can be triggered by hemopoietic cells expressing heterogeneous peptide/I-Ab complexes, but not by hemopoietic cells expressing single peptide/I-Ab complexes. Thus, unlike MHC-autoreactive or alloreactive TCRs, which can engage deleting MHC molecules in the thymic cortex, thymic medulla, and peripheral APCs, the 4.1-TCR can only engage deleting MHC molecules (I-Ab) in the thymic medulla. We therefore conclude that this form of MHC-induced protection from diabetes is based on the presentation of an anatomically restricted, nonautoantigenic peptide to highly diabetogenic thymocytes.  相似文献   

15.
The early stages of tumor progression were modelled by intraperitoneally injecting BALB/c mice daily with exponentially increasing numbers of mitomycin C-treated, syngeneic MPC-11 tumor cells. At various stages of this regime, mesenteric lymph node (MLN) and spleen cells were assessed for regulatory activity on the induction of cytotoxic T lymphocytes (CTL) in vitro. Cells present in both MLN and spleens of mice whose daily tumor dose had reached 102,400 MPC-11 cells impaired the generation of CTL specific for MPC-11 and specific for oncofetal antigen(s) shared between MPC-11 and Day 14-15 syngeneic fetal liver cells. Depletion of Thy-1+ cells from the regulatory cell populations removed the suppressive activity. The regulatory cells did not affect the induction of CTL specific for H-2b antigens in the context of H-2d (i.e., BALB/c) class I MHC.  相似文献   

16.
A successful Th cell response to bacterial infections is induced by mature MHC class II molecules presenting specific Ag peptides on the surface of macrophages. In recent studies, we demonstrated that infection with the conventional vaccine Mycobacterium bovis bacillus Calmette-Guérin (BCG) specifically blocks the surface export of mature class II molecules in human macrophages by a mechanism dependent on inhibition of cathepsin S (Cat S) expression. The present study examined class II expression in macrophages infected with a rBCG strain engineered to express and secrete biologically active human Cat S (rBCG-hcs). Cat S activity was completely restored in cells ingesting rBCG-hcs, which secreted substantial levels of Cat S intracellularly. Thus, infection with rBCG-hcs, but not parental BCG, restored surface expression of mature MHC class II molecules in response to IFN-gamma, presumably as result of MHC class II invariant chain degradation dependent on active Cat S secreted by the bacterium. These events correlated with increased class II-directed presentation of mycobacterial Ag85B to a specific CD4(+) T cell hybridoma by rBCG-hcs-infected macrophages. Consistent with these findings, rBCG-hcs was found to accelerate the fusion of its phagosome with lysosomes, a process that optimizes Ag processing in infected macrophages. These data demonstrated that intracellular restoration of Cat S activity improves the capacity of BCG-infected macrophages to stimulate CD4(+) Th cells. Given that Th cells play a major role in protection against tuberculosis, rBCG-hcs would be a valuable tuberculosis vaccine candidate.  相似文献   

17.
18.
Staphylococcal enterotoxins (SE) are known to be potent T cell activators, stimulating +/- proliferation and lymphokine production. These toxins have recently have been termed "superantigens" because of their ability to bind directly to class II molecules forming a ligand that interacts with particular V beta gene elements within the TCR complex. This interaction between SE and MHC class II molecules plays a central role in toxin-induced mitogenesis. In the present study we have examined the effect of polymorphism on the ability of MHC class II molecules to bind and present SE. Through the use of H-2 congenic mouse strains, it was possible to look directly at haplotype differences within the MHC and their effect on SE presentation to a panel of responsive V beta-bearing T cells. The results demonstrate that toxin presentation by class II-bearing accessory cells to murine T cells is greatly affected by polymorphisms within the H-2 complex. Toxin-pulsed accessory cells obtained from mice of an H-2k and H-2u haplotype were found to be less efficient in activating a variety of T cell clones and hybridomas. However, one T cell clone responded similarly to the enterotoxins presented on all H-2 haplotypes, suggesting that differences in responses of T cells are not simply a function of the degree of binding of these toxins to various class II molecules. Neutralization analysis with monoclonal anti-class II antibodies demonstrates that both I-A and I-E molecules play a significant role in SEA and SEB presentation to murine T cells. These results suggest that the differential activation of T cells by a particular enterotoxin may reflect a difference in recognition of an SE:class II ligand by a surface T cell receptor complex.  相似文献   

19.
The contribution of CD4+ T cells to dendritic cell (DC) activation and to the induction of CD8+ T cell responses in vivo was investigated using a model of antitumor immune responses. Immunization with peptide-loaded MHC class II-deficient (MHC class II-/-) DC induced the activation of Ag-specific CD8+ T cells and their accumulation in the lymph nodes and spleens of immunized mice. The accumulation induced by MHC class II-/- DC immunization was lower than the accumulation observed after immunization with MHC class II+/+ DC. Similarly, immunization with peptide-loaded, MHC class II-/- DC induced some degree of protection against tumor challenge, but this protection was lower than the protection achieved after immunization with MHC class II+/+ DC. Incubation with a membrane-associated form of CD40 ligand resulted in the up-regulation of costimulatory molecules on MHC class II-/- DC and fully rescued their ability to induce antitumor immunity. We conclude that CD4+ T cells play a critical role in the generation of antitumor immune responses through their capacity to induce the activation of DC via CD40/CD40 ligand interaction, and thus maximize CD8+ T cell responses.  相似文献   

20.
CD8+ T cells are important for immunity to the intracellular bacterial pathogen Chlamydia pneumoniae (Cpn). Recently, we reported that type 1 CD8+ (Tc1) from Cpn-infected B6 mice recognize peptides from multiple Cpn Ags in a classical MHC class Ia-restricted fashion. In this study, we show that Cpn infection also induces nonclassical MHC class Ib-(H2-M3)-restricted CD8+ T cell responses. H2-M3-binding peptides representing the N-terminal formylated sequences from five Cpn Ags sensitized target cells for lysis by cytolytic effectors from the spleens of infected B6 mice. Of these, only peptides fMFFAPL (P1) and fMLYWFL (P4) stimulated IFN-gamma production by infection-primed splenic and pulmonary CD8+ T cells. Studies with Cpn-infected Kb-/-/Db-/- mice confirmed the Tc1 cytokine profile of P1- and P4-specific CD8+ T cells and revealed the capacity of these effectors to exert in vitro H2-M3-restricted lysis of Cpn-infected macrophages and in vivo pulmonary killing of P1- and P4-coated splenocytes. Furthermore, adoptive transfer of P1- and P4-specific CD8+ T cells into naive Kb-/-/Db-/- mice reduced lung Cpn loads following challenge. Finally, we show that in the absence of MHC class Ia-restricted CD8+ T cell responses, CD4+ T cells are largely expendable for the control of Cpn growth, and for the generation, memory maintenance, and secondary expansion of P1- and P4-specific CD8+ T cells. These results suggest that H2-M3-restricted CD8+ T cells contribute to protective immunity against Cpn, and that chlamydial Ags presented by MHC class Ib molecules may represent novel targets for inclusion in anti-Cpn vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号