首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uncertainty regarding viral chemokine function is mirrored by an incomplete knowledge of host chemokine receptor usage by the virally encoded proteins. One such molecule is vMIP-I, a C-C type chemokine of undefined function and binding specificity, encoded by the Kaposi's sarcoma herpesvirus HHV-8. We report here that vMIP-I binds to and induces cytosolic [Ca(2+)] signals in human T cells selectively through CCR8, a CC chemokine receptor associated with Th2 lymphocytes. Furthermore, using a panel of 65 different human, viral, and rodent chemokines, we have established a comprehensive ligand binding "fingerprint" for CCR8. The receptor exhibits marked "high" affinity (K(d) < 15 nM) only for four chemokines, three of them of viral origin: vMIP-I, vMIP-II, vMCC-I, and human I-309. A previously unreported second class of lower affinity ligands includes MCP-3 and possibly two other viral chemokines. vMIP-I and I-309 appear to act as CCR8 agonists: binding to and inducing cytosolic [Ca(2+)] elevation through the receptor. By contrast, vMIP-II and vMCC-I act as potent antagonists: binding without inducing signaling, and blocking the effects of I-309 and vMIP-I. These results suggest a ligand hierarchy for CCR8, identifying vMIP-I as a selective viral chemokine agonist. CCR8 may thus engage a specific subset of chemokines with the potential to regulate each other during viral infection and immune regulation.  相似文献   

2.
We describe here the interactions of CCR8 with its ligands using both CCR8 transfectants and a T-cell line expressing the receptor endogenously. Of the CCR8 agonists reported previously, only CCL1 and vMIP-I exhibited potency in assays of intracellular calcium flux, chemotaxis, and receptor internalization, this latter mechanism being dependent upon the expression of beta-arrestins 1 and 2 but independent of Galpha(i) signaling. NH(2)-terminal extension of the mature CCL1 sequence by a serine residue (Ser-CCL1) resulted in a partial agonist with a reduced affinity for CCR8, suggesting that the NH(2) terminus of the ligand plays a role in ligand binding to an intrahelical site. Attempts to identify key residues within this site revealed that the conserved glutamic acid residue in transmembrane helix 7, Glu-286, is crucial for trafficking of the receptor to the cell surface, while Asp-97 of transmembrane helix 2 is dispensable. CCL7 was found to inhibit both Ser-CCL1 and vMIP-I responses but not those of CCL1 itself. Similarly, vMIP-I responses were more than 2 orders of magnitude more sensitive to the specific CCR8 antagonist MC148 than those induced by CCL1, which is difficult to reconcile with the reported affinities for the receptor. Collectively, these data suggest that the CCR8 ligands are allotropic, binding to distinct sites within CCR8 and that the human immune system may have evolved to use CCL7 as a selective antagonist of viral chemokine activity at CCR8 but not those of the host ligand.  相似文献   

3.
Natural killer (NK) cells are innate immune cells able to rapidly kill virus-infected and tumor cells. Two NK cell populations are found in the blood; the majority (90%) expresses the CD16 receptor and also express the CD56 protein in intermediate levels (CD56Dim CD16Pos) while the remaining 10% are CD16 negative and express CD56 in high levels (CD56Bright CD16Neg). NK cells also reside in some tissues and traffic to various infected organs through the usage of different chemokines and chemokine receptors. Kaposi''s sarcoma-associated herpesvirus (KSHV) is a human virus that has developed numerous sophisticated and versatile strategies to escape the attack of immune cells such as NK cells. Here, we investigate whether the KSHV derived cytokine (vIL-6) and chemokines (vMIP-I, vMIP-II, vMIP-III) affect NK cell activity. Using transwell migration assays, KSHV infected cells, as well as fusion and recombinant proteins, we show that out of the four cytokine/chemokines encoded by KSHV, vMIP-II is the only one that binds to the majority of NK cells, affecting their migration. We demonstrate that vMIP-II binds to two different receptors, CX3CR1 and CCR5, expressed by naïve CD56Dim CD16Pos NK cells and activated NK cells, respectively. Furthermore, we show that the binding of vMIP-II to CX3CR1 and CCR5 blocks the binding of the natural ligands of these receptors, Fractalkine (Fck) and RANTES, respectively. Finally, we show that vMIP-II inhibits the migration of naïve and activated NK cells towards Fck and RANTES. Thus, we present here a novel mechanism in which KSHV uses a unique protein that antagonizes the activity of two distinct chemokine receptors to inhibit the migration of naïve and activated NK cells.  相似文献   

4.
The chemokine receptors CCR5 and CXCR4 are the major coreceptors for human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). At least 12 other chemokine receptors or close relatives support infection by particular HIV and SIV strains on CD4(+) transformed indicator cell lines in vitro. However, the role of these alternative coreceptors in vivo is presently thought to be insignificant. Infection of cell lines expressing high levels of recombinant CD4 and coreceptors thus does not provide a true indication of coreceptor use in vivo. We therefore tested primary untransformed cell cultures that lack CCR5 and CXCR4, including astrocytes and brain microvascular endothelial cells (BMVECs), for naturally expressed alternative coreceptors functional for HIV and SIV infection. An adenovirus vector (Ad-CD4) was used to express CD4 in CD4(-) astrocytes and thus confer efficient infection if a functional coreceptor is present. Using a large panel of viruses with well-defined coreceptor usage, we identified a subset of HIV and SIV strains able to infect two astrocyte cultures derived from adult brain tissue. Astrocyte infection was partially inhibited by several chemokines, indicating a role for the chemokine receptor family in the observed infection. BMVECs were weakly positive for CD4 but negative for CCR5 and CXCR4 and were susceptible to infection by the same subset of isolates that infected astrocytes. BMVEC infection was efficiently inhibited by the chemokine vMIP-I, implicating one of its receptors as an alternative coreceptor for HIV and SIV infection. Furthermore, we tested whether the HIV type 1 and type 2 strains identified were able to infect peripheral blood mononuclear cells (PBMCs) via an alternative coreceptor. Several strains replicated in Delta32/Delta32 CCR5 PBMCs with CXCR4 blocked by AMD3100. This AMD3100-resistant replication was also sensitive to vMIP-I inhibition. The nature and potential role of this alternative coreceptor(s) in HIV infection in vivo is discussed.  相似文献   

5.
Parody TR  Stone MJ 《Cytokine》2004,27(1):38-46
The specificity of leukocyte trafficking in inflammation is controlled by the interactions of chemokines with chemokine receptors. Reliable structure-function studies of chemokine-receptor interactions would benefit from cell lines that express consistent high levels of chemokine receptors. We describe herein two new Chinese hamster ovary (CHO) cell lines in which the genes for chemokine receptors CCR2 and CCR3 have been incorporated into identical positions in the host genome. CCR2 is the primary receptor for the chemokine monocyte chemoattractant protein-1 (MCP-1) whereas CCR3 is the primary receptor for the chemokines eotaxin-1, eotaxin-2 and eotaxin-3. Both receptors are expressed at >5,000,000 copies per cell, substantially higher levels than in previous cell lines, and both are competent for binding and activation by the cognate chemokines for these receptors. Using these cell lines we confirm that eotaxin-1 and eotaxin-3 can act as an agonist and an antagonist, respectively, of CCR2. In addition, we show that eotaxin-2 is an antagonist of CCR2 and MCP-1 is an agonist of CCR3. Comparison of the chemokine sequences reveals several positions that are identical in MCP-1 and eotaxin-1 but different in eotaxin-2 and eotaxin-3, suggesting that these amino acids play a role in CCR2 activation.  相似文献   

6.
The aim of this study was to learn more on the role of chemokines in the regulation of human megakryopoiesis. Normal human megakaryoblasts were expanded in serum-free liquid cultures and subsequently (1) phenotyped for expression of various chemokine receptors, (2) evaluated if chemokine receptors which they express are functional after stimulation by chemokines (calcium flux assay, chemotaxis, phosphorylation of MAPK-p42/44 and AKT proteins), and (3) investigated for expression and secretion of selected chemokines by employing RT-PCR and ELISA assays, respectively. In addition we also phenotyped peripheral blood platelets for expression of chemokine receptors and chemokines. We found that while human megakaryoblasts express several chemokine receptors (CXCR4, CCR6, CCR8, CCR5, CCR2 and CXCR3), CXCR4 was the only receptor detectable by FACS on human platelets. Moreover, among various chemokines tested, only SDF-1 (CXCR4 ligand) stimulated calcium flux and chemotaxis in normal human megakaryoblasts and phosphorylated MAPK-p42/44 and AKT in these cells. Although mRNAs for several chemokines were detectable by RT-PCR in normal human megakaryoblasts, only RANTES, IL-8, MCP-1 and PF-4 were found to be secreted by these cells. Finally we noticed that no chemokine tested in this study affected CFU-Meg colony formation by human CD34+ cells in serum-free cultures. We conclude that from all the chemokine receptor-chemokine axes tested, only SDF-1-CXCR4 axis was functional in assays employed in our studies, which further support the view that this axis plays a privileged role in regulating normal human megakaryopoiesis.  相似文献   

7.
Human herpesvirus-8 (HHV-8) is the infectious agent responsible for Kaposi's sarcoma and encodes a protein, macrophage inflammatory protein-II (vMIP-II), which shows sequence similarity to the human CC chemokines. vMIP-II has broad receptor specificity that crosses chemokine receptor subfamilies, and inhibits HIV-1 viral entry mediated by numerous chemokine receptors. In this study, the solution structure of chemically synthesized vMIP-II was determined by nuclear magnetic resonance. The protein is a monomer and possesses the chemokine fold consisting of a flexible N-terminus, three antiparallel beta strands, and a C-terminal alpha helix. Except for the N-terminal residues (residues 1-13) and the last two C-terminal residues (residues 73-74), the structure of vMIP-II is well-defined, exhibiting average rmsd of 0.35 and 0.90 A for the backbone heavy atoms and all heavy atoms of residues 14-72, respectively. Taking into account the sequence differences between the various CC chemokines and comparing their three-dimensional structures allows us to implicate residues that influence the quaternary structure and receptor binding and activation of these proteins in solution. The analysis of the sequence and three-dimensional structure of vMIP-II indicates the presence of epitopes involved in binding two receptors CCR2 and CCR5. We propose that vMIP-II was initially specific for CCR5 and acquired receptor-binding properties to CCR2 and other chemokine receptors.  相似文献   

8.
Yang JY  Togni M  Widmer U 《Cytokine》1999,11(1):1-7
CC chemokine receptor 5 (CCR5) is a cell entry cofactor for macrophage-tropic isolates of human immunodeficiency virus 1 (HIV-1). An inactive CCR5 allele with a 32-nucleotide deletion (CCR5Delta32) has been described that confers resistance to HIV-1 infection in homozygotes and slows the rate of progression to AIDS in heterozygotes. We found the allele CCR5Delta32 to be not rare in 399 Swiss blood donors with a frequency of 0.080. To assess the influence of defective CCR5 on production of its ligands we determined the capacity to produce the chemokines macrophage inflammatory protein (MIP)-1alpha, MIP-1beta and RANTES in comparison with the production of the CXC chemokine IL-8 which does not bind to CCR5. Production of chemokines was determined during endotoxin stimulation of whole-blood samples ex vivo. Both, basal and LPS-induced chemokine production in 32 blood donors heterozygous for CCR5Delta32 were not significantly different when compared with 55 blood donors who were homozygous for the wild type CCR5 allele.  相似文献   

9.
The D6 heptahelical membrane protein, expressed by lymphatic endothelial cells, is able to bind with high affinity to multiple proinflammatory CC chemokines. However, this binding does not allow D6 to couple to the signaling pathways activated by typical chemokine receptors such as CC-chemokine receptor-5 (CCR5). Here, we show that D6, like CCR5, can rapidly internalize chemokines. However, D6-internalized chemokines are more effectively retained intracellularly because they more readily dissociate from the receptor during vesicle acidification. These chemokines are then degraded while the receptor recycles to the cell surface. Interestingly, D6-mediated chemokine internalization occurs without bringing about a reduction in cell surface D6 levels. This is possible because unlike CCR5, D6 is predominantly localized in recycling endosomes capable of trafficking to and from the cell surface in the absence of ligand. When chemokine is present, it can enter the cells associated with D6 already destined for internalization. By this mechanism, D6 can target chemokines for degradation without the necessity for cell signaling, and without desensitizing the cell to subsequent chemokine exposure.  相似文献   

10.
Lymphotactin is unique among chemokines in that it contains only two of four conserved cysteines and may possess a structure less constrained than other chemokines. The viral chemokine vMIP-II, which presumably has a structure similar to that of CC chemokines has been shown to inhibit many chemokine receptors, but its activity at GPR5/XCR1 has not been described. Interestingly, vMIP-II (but not vMIP-I) was found to be a potent antagonist of lymphotactin activity at GPR5/XCR1, extending the range of chemokine classes that this viral protein is known to inhibit to include the C class chemokine. In addition, we have extended previous analyses of GPR5/XCR1 expression and show that this receptor is expressed in leukocyte cells previously shown to be responsive to lymphotactin.  相似文献   

11.
NK cells respond to various chemokines, suggesting that they express receptors for these chemokines. In this paper, we show that IL-2-activated NK (IANK) cells express CC chemokine receptor 4 (CCR4) and CCR8, as determined by flow cytometric, immunoblot, and RNase protection assays. Macrophage-derived chemokine (MDC), the ligand for CCR4, induces the phosphorylation of CCR4 within 0.5 min of activating IANK cells with this ligand. This is corroborated with the recruitment of G protein-coupled receptor kinases 2 and 3 and their association with CCR4 in IANK cell membranes. Also, CCR4 is internalized between 5 and 45 min but reappears in the membranes after 60 min of stimulation with MDC. MDC, thymus and activation-regulated chemokine (TARC), and I-309 induce the chemotaxis of IANK cells, an activity that is inhibited upon pretreatment of these cells with pertussis toxin, suggesting that receptors for these chemokines are coupled to pertussis toxin-sensitive G proteins. In the calcium release assay, cross-desensitization experiments showed that TARC completely desensitizes the calcium flux response induced by MDC or I-309, whereas both MDC and I-309 partially desensitize the calcium flux response induced by TARC. These results suggest that TARC utilizes CCR4 and CCR8. Our results are the first to show that IL-2-activated NK cells express CCR4 and CCR8, suggesting that these receptors are not exclusive for Th2 cells.  相似文献   

12.
We have investigated the chemokine receptor expression and migratory behavior of a new subset of nickel-specific skin-homing regulatory CD4(+) T cells (Th(IL-10)) releasing high levels of IL-10, low IFN-gamma, and undetectable IL-4. These cells inhibit in a IL-10-dependent manner the capacity of dendritic cells to activate nickel-specific Tc1 and Th1 lymphocytes. RNase protection assay and FACS analysis revealed the expression of a vast repertoire of chemokine receptors on resting Th(IL-10), including the Th1-associated CXCR3 and CCR5, and the Th2-associated CCR3, CCR4, and CCR8, the latter at higher levels compared with Th2 cells. The most active chemokines for resting Th(IL-10), in terms of calcium mobilization and in vitro migration, were in order of potency: CCL2 (monocyte chemoattractant protein-1, CCR2 ligand), CCL4 (macrophage-inflammatory protein-1beta, CCR5 ligand), CCL3 (macrophage-inflammatory protein-1alpha, CCR1/5 ligand), CCL17 (thymus and activation-regulated chemokine, CCR4 ligand), CCL1 (I-309, CCR8 ligand), CXCL12 (stromal-derived factor-1, CXCR4), and CCL11 (eotaxin, CCR3 ligand). Consistent with receptor expression down-regulation, activated Th(IL-10) exhibited a reduced or absent response to most chemokines, but retained a significant migratory capacity to I-309, monocyte chemoattractant protein-1, and thymus and activation-regulated chemokine. I-309, which was ineffective on Th1 lymphocytes, attracted more efficiently Th(IL-10) than Th2 cells. I-309 and CCR8 mRNAs were not detected in unaffected skin and were up-regulated at the skin site of nickel-allergic reaction, with an earlier expression kinetics compared with IL-10 and IL-4. Results indicate that skin-homing regulatory Th(IL-10) lymphocytes coexpress functional Th1- and Th2-associated chemokine receptors, and that CCR8/I-309-driven recruitment of both resting and activated Th(IL-10) cells may be critically involved in the regulation of Th1-mediated skin allergic disorders.  相似文献   

13.
The focus of this study was to determine which chemokine receptors are present on oral fibroblasts and whether these receptors influence proliferation, migration, and/or the release of wound healing mediators. This information may provide insight into the superior wound healing characteristics of the oral mucosa. The gingiva fibroblasts expressed 12 different chemokine receptors (CCR3, CCR4, CCR6, CCR9, CCR10, CXCR1, CXCR2, CXCR4, CXCR5, CXCR7, CX3CR1, and XCR1), as analyzed by flow cytometry. Fourteen corresponding chemokines (CCL5, CCL15, CCL20, CCL22, CCL25, CCL27, CCL28, CXCL1, CXCL8, CXCL11, CXCL12, CXCL13, CX3CL1, and XCL1) were used to study the activation of these receptors on gingiva fibroblasts. Twelve of these fourteen chemokines stimulated gingiva fibroblast migration (all except for CXCL8 and CXCL12). Five of the chemokines stimulated proliferation (CCL5/CCR3, CCL15/CCR3, CCL22/CCR4, CCL28/CCR3/CCR10, and XCL1/XCR1). Furthermore, CCL28/CCR3/CCR10 and CCL22/CCR4 stimulation increased IL‐6 secretion and CCL28/CCR3/CCR10 together with CCL27/CCR10 upregulated HGF secretion. Moreover, TIMP‐1 secretion was reduced by CCL15/CCR3. In conclusion, this in‐vitro study identifies chemokine receptor‐ligand pairs which may be used in future targeted wound healing strategies. In particular, we identified the chemokine receptors CCR3 and CCR4, and the mucosa specific chemokine CCL28, as having an predominant role in oral wound healing by increasing human gingiva fibroblast proliferation, migration, and the secretion of IL‐6 and HGF and reducing the secretion of TIMP‐1.  相似文献   

14.
The CC chemokine eotaxin plays a predominant role in eosinophil trafficking in vivo by specifically activating the chemokine receptor CCR3. We have screened a series of synthetic peptides corresponding to extracellular regions of CCR3 for their ability to bind eotaxin. A peptide corresponding to the N terminus of CCR3 (CCR3-(1-35)) bound to eotaxin with a dissociation constant of 80 +/- 38 micrometer. However, linear or cyclic peptides derived from the first and third extracellular loops of CCR3 did not bind to eotaxin. Linear and cyclic peptides derived from the second extracellular loop precipitated upon addition of eotaxin. (1)H-(15)N correlation NMR spectroscopy indicated that an extended groove in the eotaxin surface, whose edges are defined by the N-loop, 3(10)-helical turn, and beta(2)-beta(3) hairpin, is the most likely binding surface for CCR3-(1-35). NMR assignments for CCR3-(1-35) were obtained using two-dimensional and three-dimensional homonuclear NMR experiments. (15)N-Filtered TOCSY spectra indicated that the central region of CCR3-(1-35), surrounding the DDYY sequence, is involved in the interaction with eotaxin. This was supported by the observation that a truncated N-terminal peptide (CCR3-(8-23)) binds to eotaxin with a dissociation constant of 136 +/- 23 micrometer, only slightly weaker than the full-length N-terminal peptide. Taken together with previous studies, these results suggest that interactions between the N-loop/beta(3) regions of chemokines and the N-terminal regions of their receptors may be a conserved feature of chemokine-receptor complexes across the CC, CXC, and C chemokine subfamilies. However, the low affinity of the interactions observed in these studies suggests the existence of additional binding regions in both the chemokines and the receptors.  相似文献   

15.
We isolated cDNAs for a chemokine receptor-related protein having the database designation GPR-9-6. Two classes of cDNAs were identified from mRNAs that arose by alternative splicing and that encode receptors that we refer to as CCR9A and CCR9B. CCR9A is predicted to contain 12 additional amino acids at its N terminus as compared with CCR9B. Cells transfected with cDNAs for CCR9A and CCR9B responded to the chemokine CC chemokine ligand 25 (CCL25)/thymus-expressed chemokine (TECK)/chemokine beta-15 (CK beta-15) in assays for both calcium flux and chemotaxis. No other chemokines tested produced responses specific for the cDNA-transfected cells. mRNA for CCR9A/B is expressed predominantly in the thymus, coincident with the expression of CCL25, and highest expression for CCR9A/B among thymocyte subsets was found in CD4+CD8+ cells. mRNAs encoding the A and B forms of the receptor were expressed at a ratio of approximately 10:1 in immortalized T cell lines, in PBMC, and in diverse populations of thymocytes. The EC50 of CCL25 for CCR9A was lower than that for CCR9B, and CCR9A was desensitized by doses of CCL25 that failed to silence CCR9B. CCR9 is the first example of a chemokine receptor in which alternative mRNA splicing leads to proteins of differing activities, providing a mechanism for extending the range of concentrations over which a cell can respond to increments in the concentration of ligand. The study of CCR9A and CCR9B should enhance our understanding of the role of the chemokine system in T cell biology, particularly during the stages of thymocyte development.  相似文献   

16.
The recruitment of bone marrow CD34- mesenchymal stem- and progenitor cells (MSC) and their subsequent differentiation into distinct tissues is the precondition for in situ tissue engineering. The objective of this study was to determine the entire chemokine receptor expression profile of human MSC and to investigate their chemotactic response to the selected chemokines CCL2, CXCL8 and CXCL12. Human MSC were isolated from iliac crest bone marrow aspirates and showed a homogeneous population presenting a typical MSC-related cell surface antigen profile (CD14-, CD34-, CD44+, CD45-, CD166+, SH-2+). The expression profile of all 18 chemokine receptors was determined by real-time PCR and immunohistochemistry. Both methods consistently demonstrated that MSC express CC, CXC, C and CX(3)C receptors. Gene expression and immunohistochemical analysis documented that MSC express chemokine receptors CCR2, CCR8, CXCR1, CXCR2 and CXCR3. A dose-dependent chemotactic activity of CXCR4 and CXCR1/CXCR2 ligands CXCL12 and CXCL8 (interleukin-8) was demonstrated using a 96-well chemotaxis assay. In contrast, the CCR2 ligand CCL2 (monocyte chemoattractant protein-1, MCP-1) did not recruited human MSC. In conclusion, we report that the chemokine receptor expression profile of human MSC is much broader than known before. Furthermore, for the first time, we demonstrate that human MSC migrate upon stimulation with CXCL8 but not CCL2. In combination with already known data on MSC recruitment and differentiation these are promising results towards in situ regenerative medicine approaches based on guiding of MSC to sites of degenerated tissues.  相似文献   

17.
CCR5 is a functional receptor for MIP-1alpha, MIP-1beta, RANTES (regulated on activation normal T cell expressed), MCP-2, and MCP-4 and constitutes the main coreceptor for macrophage tropic human and simian immunodeficiency viruses. By using CCR5-CCR2b chimeras, we have shown previously that the second extracellular loop of CCR5 is the major determinant for chemokine binding specificity, whereas the amino-terminal domain plays a major role for human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus coreceptor function. In the present work, by using a panel of truncation and alanine-scanning mutants, we investigated the role of specific residues in the CCR5 amino-terminal domain for chemokine binding, functional response to chemokines, HIV-1 gp120 binding, and coreceptor function. Truncation of the amino-terminal domain resulted in a progressive decrease of the binding affinity for chemokines, which correlated with a similar drop in functional responsiveness. Mutants lacking residues 2-13 exhibited fairly weak responses to high concentrations (500 nM) of RANTES or MIP-1beta. Truncated mutants also exhibited a reduction in the binding affinity for R5 Env proteins and coreceptor activity. Deletion of 4 or 12 residues resulted in a 50 or 80% decrease in coreceptor function, respectively. Alanine-scanning mutagenesis identified several charged and aromatic residues (Asp-2, Tyr-3, Tyr-10, Asp-11, and Glu-18) that played an important role in both chemokine and Env high affinity binding. The overlapping binding site of chemokines and gp120 on the CCR5 amino terminus, as well as the involvement of these residues in the epitopes of monoclonal antibodies, suggests that these regions are particularly exposed at the receptor surface.  相似文献   

18.
The CCL15 is a human CC chemokine that activates the receptors, CCR1 and CCR3. Unlike other chemokines, it contains an unusually long N-terminal domain of 31 amino acids preceding the first cysteine residue and a third disulfide bond. To elucidate the functional role of distinct structural determinants, a series of sequential amino-terminal truncated and point-mutated CCL15 derivatives as well as mutants lacking the third disulfide bond and the carboxy-terminal alpha-helix were synthesized using 9-fluorenylmethoxycarbonyl (Fmoc) chemistry. We demonstrate that a truncation of 24 amino acid residues (delta24-CCL15) converts the slightly active 92-residue delta0-CCL15 into a potent agonist of CC chemokine receptor 1 (CCR1) and a weak agonist of CCR3 in cell-based assays. The biological activity decreases from delta24-CCL15 to delta29-CCL15, and re-increases from delta29-CCL15 to delta30-CCL15. Thus, an exocyclic N-terminal region of only one amino acid residue is sufficient for efficient CCR1 activation. As none of the peptides investigated except for delta24-CCL15 activates CCR3, we suggest that CCR1 is the major receptor for CCL15 in vivo. Further we demonstrate that the third disulfide bond of CCL15 and an exchange of tyrosine in position 70 by a leucine residue, which is conserved in CXC chemokines, do not alter the interaction with CCR1. In contrast, a CCL15 derivative lacking the carboxy-terminal alpha-helix exhibits a complete loss of tertiary structure and hence loss of CCR1 agonistic and binding activity. This study demonstrates that specific protein residues in chemokines, which contribute to receptor-ligand interaction, vary significantly between chemokines and cannot be extrapolated using data from functionally related chemokines.  相似文献   

19.
Kaposi's sarcoma (KS) is an angiogenic tumor of mixed cellularity most commonly found in homosexual men infected with HIV. Both molecular and epidemiologic evidence has linked a newly described herpesvirus to this disease. This virus, Kaposi's sarcoma-associated herpesvirus (KSHV), encodes a number of cellular homologues, including two genes that share remarkable similarity to the human chemokine macrophage inhibitory factor-1α. Recently, studies have begun to shed light on the roles these viral chemokines (vMIP-I and vMIP-II) may play in the complex pathogenesis of KS.1–3 The vMIP peptides may contribute to the formation of new blood vessels (neovascularization), inhibit infection by certain strains of HIV-1 and modify the cellular immune response. BioEssays 20 :367–370, 1998.© 1998 John Wiley & Sons Inc.  相似文献   

20.
Attraction of mononuclear cells to sites of inflammation requires a close interplay of the inflammatory signal presented via chemokines and specific receptors on effector cells. First studies on acute renal transplant rejection demonstrated the involvement of CC-chemokines, such as RANTES, MIP-1alpha, MIP-1beta and MCP-1, as well as CXC-chemokines such as IL-8 and IP-10, correlating with expression of the corresponding chemokine receptors, CCR1, CCR5 and CCR2 as well as CXCR3. Since then, the pathophysiologic relevance has been extended to chronic allograft nephropathy and transplant glomerulopathy. Chemokine expression can be triggered by different stimuli, e.g. brain death, ischemia, HLA-mismatch and infection. Furthermore, anti-inflammatory chemokines have been identified. Chemokine receptor 7, e.g. enhances homing of lymphocytes to lymphatic tissues and the Duffy antigen receptor, DARC, a non-specific receptor that binds and inactivates different chemokines. While measurement of chemokine expression in clinical transplantation may facilitate the differential diagnosis of allograft dysfunction, knowledge of the chemokine network has also widened the understanding of transplant rejection and opened novel therapeutic approaches. Observations from humans with mutations of the chemokine network as well as transplantation of animals with targeted deletions in this system suggest that manipulations of chemokine signalling may improve the success rates of transplantation. Blocking chemokines unselectively with Met-RANTES or specifically with small molecule inhibitors of various chemokine receptors has lead to improved outcome in animal models. Currently, first human trials are under way to investigate drugs that stimulate lymphocyte homing. Inhibitors of CCR1 and CCR5 are being tested for other human diseases and may eventually be available in transplantation. Nonetheless, chemokine blockade my rather serve as an adjunct in the management of transplant recipients than a new "magic bullet".  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号