首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been documented extensively that body size affects the physiology and musculoskeletal function of organisms. However, less well understood is how body size affects the ecology of organisms through its effects on physiology and performance. We explored the effects of body size on morphology and performance in different ontogenetic classes and sexes of a common Anolis lizard ( A. lineatopus ). Next, we tested whether these morphological and performance differences may affect functional aspects of the diet such as prey size and prey hardness. Our data showed that males, females and juveniles differ significantly in head size, head shape and bite force. Multiple regression models indicated that head shape and bite force are significantly correlated to prey size and hardness. Yet juveniles had relatively large heads and bit disproportionately hard for their size, allowing them to eat prey as large as those of females. However, for a given prey size, males and females ate more robust prey than did juveniles. Additionally, males ate relatively harder prey than did juveniles. These data suggest that: (1) body size affects the dietary ecology of animals through its effect on head size and bite force; (2) changes in head morphology independent of changes in overall size also have important effects on performance and diet.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 89 , 443–454.  相似文献   

2.
The present study quantified microhabitat use, morphology, performance (sprinting, climbing, clinging, and jumping), and escape behaviour of two closely related tropical rock-using lizards. Specifically, the study tested whether: (1) a flatter body and longer limbs enhance performance in rocky habitats; (2) escape behaviour supports predictions based on habitat openness; and (3) there is a trade-off between sprinting and climbing performance. Despite the occupation of generally similar rocky habitats, the habitat of Carlia scirtetis was more open and composed of larger boulders with more regular surfaces, whereas the habitat of Carlia mundivensis was composed of more undergrowth and leaf litter, consisting of smaller boulders with irregular surfaces. The longer legs, flatter body, and greater sprinting and climbing ability of C. scirtetis, supports ecomorphological predictions. By contrast to predictions based on habitat openness, C. scirtetis allowed a potential threat to approach closer and ran further to a refuge than C. mundivensis , suggesting that escape behaviour as determined by performance may be species-specific or decoupled in these two species. The increased sprint speed of C. scirtetis highlighted a performance trade-off, with climbing speed lagging behind that of sprint speed. These results suggest that subtle differences in the structural microhabitat and the degree of habitat openness may ultimately result in substantial differences in morphology, performance, and threat behaviour in closely-related lizard species.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 85–98.  相似文献   

3.
Determining which traits enable organisms to colonize and persist in new environments is key to understanding adaptation and ecological speciation. New environments can present novel selective pressures on colonists' morphology, behaviour, and performance, collectively referred to as ecomorphology. To investigate ecomorphological change during adaptation and incipient ecological speciation, we measured differences in morphology (body shape and size), behaviour (startle response), and performance (sprint speed) in three New Mexican lizard species: Holbrookia maculata, Sceloporus undulatus, and Aspidoscelis inornata. Each species is represented by dark morphs, cryptic on the brown adobe soils of the Chihuahuan Desert, and white morphs, cryptic on the gypsum substrate of White Sands. For each species, we then determined the effects of morphology and startle response on sprint speed on matched and mismatched substrate. For two of the three species, white morphs had larger body size and longer limbs. However, we found no statistical evidence that these morphological differences affected sprint speed. Colour morphs also exhibited different escape responses on the two substrates: in all species, dark morphs were less likely to immediately sprint from a simulated predator on white sand. As a result, escape response had a significant effect on sprint speed for two of the three species. Not surprisingly, all lizards sprinted faster on dark soil, which was probably due to the lizards' more immediate escape response and the higher compaction of dark soil. The relationship between escape response and sprint performance across the dark soil and white sand habitats suggests that behavioural differences may be an important component of adaptation and speciation in new environments. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 169–182.  相似文献   

4.
Island environments differ with regard to numerous features from the mainland and may induce large‐scale changes in most aspects of the biology of an organism. In this study, we explore the effect of insularity on the morphology and performance of the feeding apparatus, a system crucial for the survival of organisms. To this end, we examined the head morphology and feeding ecology of island and mainland populations of the Balkan green lizard, Lacerta trilineata. We predicted that head morphology, performance and diet composition would differ between sexes and habitats as a result of varying sexual and natural selection pressures. We employed geometric morphometrics to test for differences in head morphology, measured bite forces and analysed the diet of 154 adult lizards. Morphological analyses revealed significant differences between sexes and also between mainland and island populations. Relative to females, males had larger heads, a stronger bite and consumed harder prey than females. Moreover, island lizards differed in head shape, but not in head size, and, in the case of males, demonstrated a higher bite force. Islanders had a wider food niche breadth and included more plant material in their diet. Our findings suggest that insularity influences feeding ecology and, through selection on bite force, head morphology. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112 , 469–484.  相似文献   

5.
Flight initiation distance describes the distance at which an animal flees during the approach of a predator. This distance presumably reflects the tradeoff between the benefits of fleeing versus the benefits of remaining stationary. Throughout ontogeny, the costs and benefits of flight may change substantially due to growth-related changes in sprint speed; thus ontogenetic variation in flight initiation distance may be substantial. If escape velocity is essential for surviving predator encounters, then juveniles should either tolerate short flight initiation distances and rely on crypsis, or should have high flight initiation distances to remain far away from their predators. We examined this hypothesis in a small, short-lived lizard (Sceloporus woodi). Flight initiation distance and escape velocity were recorded on an ontogenetic series of lizards in the field. Maximal running velocity was also quantified in a laboratory raceway to establish if escape velocities in the field compared with maximal velocities as measured in the lab. Finally a subset of individuals was used to quantify how muscle and limb size scale with body size throughout ontogeny. Flight initiation distance increased with body size; larger animals had higher flight initiation distances. Small lizards had short flight initiation distances and remained immobile longer, thus relying on crypsis for concealment. Escape velocity in the field did not vary with body size, yet maximum velocity in the lab did increase with size. Hind limb morphology scaled isometrically with body size. Isometric scaling of the hind limb elements and its musculature, coupled with similarities in sprint and escape velocity across ontogeny, demonstrate that smaller S. woodi must rely on crypsis to avoid predator encounters, whereas adults alter their behavior via larger flight initiation distance and lower (presumably less expensive) escape velocities.  相似文献   

6.
Understanding underlying physiological differences between the sexes in circulating androgens and how hormonal variation affects morphology–performance relationships may help clarify the evolution of sexual dimorphism in diverse taxa. Using a widely distributed Australian lizard (Eulamprus quoyii) with weak sexual dimorphism and no dichromatism, we tested whether circulating androgens differed between the sexes and whether they covaried with morphological and performance traits (bite force, sprint speed, endurance). Males had larger head dimensions, stronger bite force, faster sprint speed, and longer endurance compared to females. We found that the sexes did not differ in androgen concentrations and that androgens were weakly associated with both morphological and performance traits. Interestingly, high circulating androgens showed a nonlinear relationship with bite force in males and not females, with this relationship possibly being related to alternative male reproductive tactics. Our results suggest that androgens are not strongly correlated with most performance and morphological traits, although they may play an important organizational role during the development of morphological traits, which could explain the differences in morphology and thus performance between the sexes. Differences in performance between the sexes suggest differential selection on these functional traits between males and females. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111, 834–849.  相似文献   

7.
Sexual dimorphism is usually interpreted in terms of reproductive adaptations, but the degree of sex divergence also may be affected by sex-based niche partitioning. In gape-limited animals like snakes, the degree of sexual dimorphism in body size (SSD) or relative head size can determine the size spectrum of ingestible prey for each sex. Our studies of one mainland and four insular Western Australian populations of carpet pythons ( Morelia spilota ) reveal remarkable geographical variation in SSD, associated with differences in prey resources available to the snakes. In all five populations, females grew larger than males and had larger heads relative to body length. However, the populations differed in mean body sizes and relative head sizes, as well as in the degree of sexual dimorphism in these traits. Adult males and females also diverged strongly in dietary composition: males consumed small prey (lizards, mice and small birds), while females took larger mammals such as possums and wallabies. Geographic differences in the availability of large mammalian prey were linked to differences in mean adult body sizes of females (the larger sex) and thus contributed to sex-based resource partitioning. For example, in one population adult male snakes ate mice and adult females ate wallabies; in another, birds and lizards were important prey types for both sexes. Thus, the high degree of geographical variation among python populations in sexually dimorphic aspects of body size and shape plausibly results from geographical variation in prey availability.  © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 77 , 113–125.  相似文献   

8.
Rock‐dwelling lizards are hypothesized to be highly constrained in the evolution of head morphology and, consequently, bite force. Because the ability to generate a high bite force might be advantageous for a species' dietary ecology, morphological changes in head configuration that allow individuals to maintain or improve their bite force under the constraint of crevice‐dwelling behaviour are to be expected. The present study addressed this issue by examining head morphology, bite force, and a number of dietary traits in the rock‐dwelling cordylid lizards Ouroborus cataphractus and Karusasaurus polyzonus. The results obtained show that O. cataphractus has a larger head and higher bite force than K. polyzonus. In K. polyzonus, head width, lower jaw length, and jaw closing‐in lever are the best predictors of bite force, whereas head height is the main determinant of bite force in O. cataphractus. Although the observed difference in bite force between the species does not appear to be related to dietary patterns or prey handling, the prey spectrum available for intake was greater in O. cataphractus compared to K. polyzonus. We discuss the influence of interspecific differences in anti‐predator morphology on head morphology and bite force in these rock‐dwelling species. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111, 823–833.  相似文献   

9.
In many species of lizards, males attain greater body size and have larger heads than female lizards of the same size. Often, the dimorphism in head size is paralleled by a dimorphism in bite force. However, the underlying functional morphological basis for the dimorphism in bite force remains unclear. Here, we test whether males are larger, and have larger heads and bite forces than females for a given body size in a large sample of Anolis carolinensis . Next, we test if overall head shape differs between the sexes, or if instead specific aspects of skull shape can explain differences in bite force. Our results show that A. carolinensis is indeed dimorphic in body and head size and that males bite harder than females. Geometric morphometric analyses show distinct differences in skull shape between males and females, principally reflecting an enlargement of the jaw adductor muscle chamber. Jaw adductor muscle mass data confirm this result and show that males have larger jaw adductors (but not jaw openers) for a given body and head size. Thus, the observed dimorphism in bite force in A. carolinensis is not merely the result of an increase in head size, but involves distinct morphological changes in skull structure and the associated jaw adductor musculature.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 111–119.  相似文献   

10.
Understanding the relationship between form and function is central to our comprehension of how phenotypic diversity evolves. Traits involved in multiple activities, such as social interactions and ecological resource use, are under the influence of different evolutionary forces potentially acting in opposite directions. Such systems provide the opportunity of understanding how potential constraints on morphological variation may influence whole-organism performance. In this study we examined morphology and bite performance in two closely related species of Podarcis wall lizards with divergent microhabitat preferences, to investigate how natural and sexual selection interact to shape the evolution of head traits. Our results show that although head morphology is markedly different between species and sexes, only sexes differ in bite force, indicating that the ecological differentiation between species is reflected in their morphology but does not constrain performance. Rather, the modification of the relative size of head components between species and a shift in the form-function relationship provide a potential explanation of how equal performance is attained by different morphological configurations. Geometric morphometrics provide a clear, biomechanically meaningful image of how this is achieved and show a bisexual pattern of head shape-bite force association in both species. This, together with a strong allometry of head size on body size and head shape on head size, provides indirect morphological evidence for the importance of sexual selection in shaping morphological and functional patterns. Finally, our findings suggest that the differences observed between species and sexes in head traits and bite performance are not reflected in their dietary ecology, implying that if trophic niche segregation between groups occurs, the reasons behind it are not primarily related to head morphology and functional variation.  相似文献   

11.
Sexual dimorphism has implications for a range of biological and ecological factors, and intersexual morphological differences within a species provide an ideal opportunity for investigating evolutionary influences on phenotypic variation. We investigated sexual size dimorphism (SSD) in an agamid species, Rankinia [Tympanocryptis] diemensis , to determine whether overall size and/or relative morphological trait size differences exist and whether geographic variation in size dimorphism occurs in this species. Relative morphological trait proportions included a range of head, limb, and inter-limb measurements. We found significant overall intersexual adult size differences; females were the larger sex across all sites but the degree of dimorphism between the sexes did not differ between sites. This female-biased size difference is atypical for agamid lizards, which are usually characterized by large male body size. In this species, large female-biased SSD appears to have evolved as a result of fecundity advantages. The size of relative morphological trait also differed significantly between the sexes, but in the opposite direction: relative head, tail, and limb sizes were significantly larger in males than females. This corresponds to patterns in trait size usually found in this taxonomic group, where male head and limb size is important in contest success such as male–male rivalry. There were site-specific morphological differences in hatchlings, including overall body size, tail, inter-limb, thigh, and hindlimb lengths; however, there were no sex-specific differences indicating the body size differences present in the adult form occur during ontogeny.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 699–709.  相似文献   

12.
Most ecomorphological studies use a comparative approach to examine adaptation by studying variation among species. A question of considerable interest is whether ecomorphological patterns observed among species also exist at the population level. We studied variation in morphology, performance, and behaviour in four populations of Leiocephalus personatus and two populations of Leiocephalus barahonensis in the Dominican Republic. We combined these data with measurements of predation intensity and habitat structure to test for convergence at the population level. We predicted that predation intensity would be higher in open habitats and that lizards in these habitats would have traits conferring higher predator evasion capacity (increased wariness, faster sprint speeds, and longer limbs). Principal components analysis suggests that sites tend to differ with respect to the abundance and spacing of low-lying vegetation (i.e. percentage of shrub cover and distance to nearest vegetation), but we did not detect any striking differences among sites in tail-break frequencies or attacks on clay lizard models. Consistent with predictions we find that in open habitats, lizards tend to have longer limbs, faster sprint speeds (relative to body size), and longer approach distances. These patterns corroborate findings in other ground-dwelling lizard species and indicate that they have evolved at least twice among populations of Leiocephalus lizards. The results of this study also suggest that these traits have evolved rapidly despite recent or ongoing gene flow.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 445–456.  相似文献   

13.
Sexual dimorphism in body size and shape in animals is normally linked to sexual selection mechanisms that modify the morphological properties of each sex. However, sexual dimorphism of ecologically relevant traits may be amplified by natural selection and result in the ecological segregation of both sexes. In the present study, we investigated patterns of sexual dimorphism of morphological traits relevant for locomotion in two lacertid lizards, Podarcis bocagei and Podarcis carbonelli, aiming to identify ontogenetic sources of variation. We analysed trunk and limb variation in relation to total body size, as well as the covariation of different traits, aiming to shed light on the proximate causation of adult sexual dimorphism. We find that, although immatures are generally monomorphic, adult females have a longer trunk, and adult males have longer fore and hind limbs. Both sexes differ substantially with respect to their growth trajectories and relationships between traits, whereas, in some cases, there are signs of morphological constraints delimiting the observed patterns. Because of the direct connection between limb size/shape and locomotor performance, which is relevant both for habitat use and escape from predators, the observed patterns of sexual dimorphism are expected to translate into ecological differences between both sexes. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 530–543.  相似文献   

14.
Differences between sexes in physiological performance have received little attention in animals. We tested for sex differences in maximum sprint speed and maximal exertion over a range of temperatures in a population of Platysaurus intermedius wilhelmi lizards. We also examined sex-based differences in selected temperature range, mean field body temperatures (T(b)), and thermal activity limits. Finally, we conducted field studies to quantify male and female responses to a potential predator, which may be affected by their respective performance capabilities. Males were faster than females at all temperatures, and body size had no significant effect on sprint speeds. Males and females also selected similar T(b)'s when placed in a thermal gradient, but in the field, male lizards' T(b)'s were different from those of the females. However, predicted sprint speeds for males and females at their field T(b)'s are similar. No significant differences were found between males and females with regard to maximal exertion. When approached in the field, adult male lizards took refuge significantly earlier than did adult females and also fled over shorter distances, suggesting that females rely on crypsis as an escape strategy.  相似文献   

15.
Locomotion of lizards has clear morphological determinants and is important for developing activities such as feeding, social interaction and predator avoidance. Thus, morphological variation is believed to have fitness consequences through affecting locomotor performance. This paper firstly evaluates the dependence of burst speed on morphology, and secondly examines the movement patterns of free-ranging undisturbed wall lizards ( Podarcis muralis ) engaged in several kinds of activity. Body size was the most important correlate of burst speed as performed at the optimal temperature for running in the laboratory. After removing size effects from performance and morphological traits, the length of some particular limb segments had positive influence on burst speed, but these effects were weak, each trait explaining less than 16% of variance in burst speed. Free-ranging P. muralis exhibited intermittent locomotion, with movement sequences interrupted by frequent short pauses. Field movement patterns greatly differed depending upon the kind of activity and were in most aspects independent of the size and sex of the animal. P. muralis involved in thermoregulation performed short and low-speed displacements; exploratory activities were characterized by frequent, slow and short movements. On the contrary, lizards involved in intraspecific pursuits and predator escape developed comparatively high speeds, although only exceptionally did they attain the size-specific burst speed predicted from the laboratory trials. Speed of escape increased with distance to the refuge and the animals are able to assess predation risks to modulate approach distance, speed and pauses, so maximum exertion is seldom required. The evolution of locomotor capacities exceeding routine needs is discussed in the context of the principle of 'excessive construction'.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 80 , 135–146.  相似文献   

16.
We investigated the potential for ontogenetic resource partitioning within a population of the Texas earless lizard Cophosaurus texanus Results from focal samples, line transects, haphazard observations, and stomach flushes compiled in summer (July 1993) and autumn (September 1995) revealed differences in microhabitat use and diet between adults and juveniles Juveniles use rock perches more frequently than adult males, and consume smaller prey than adults No ontogenetic differences in thermal ecology were observed Diet differences between juveniles and adults may be attributed to the inability of juveniles to handle large prey items Differences between juveniles and adults in prey size and microhabitat use suggest ontogenetic variation in foraging, predator avoidance, and territory defense  相似文献   

17.
Most animals rely on their escape speed to flee from predators. Here, we test several hypotheses on the evolution of escape speed in the lizard Psammodromus algirus. We test that: (1) Longer limbs should improve speed sprint. (2) Heavier lizards should be impaired regarding their sprint speed ability, suggesting a trade-off between fat storage and escape capability. (3) Males should achieve faster speeds due to their higher exposure to predators. (4) Gravid females, with increased body mass, should perform lower speed than non-gravid females. And (5) there are inter-population differences in sprint speed across an elevational gradient. We measured lizards sprint speed in a lineal raceway in the laboratory, filming races in standardized conditions and then calculating their maximal speed. We found that hind limb length greatly determined maximal sprint speed, lizards with longer limbs being faster. In parallel, higher body masses reduced maximal speed, which points to a trade-off between fat storage and escaping capability. Sexual differences also arose, as males were faster than females, as a consequence of males having longer limbs. Regarding females, gravidity did not impair maximal sprint speed, suggesting adaptations which compensate for the increased body mass. Finally, we found no elevational trend in both limbs length and sprint speed. In any case, this study suggests that selection on escape capacity may cast morphological evolution, and affect other life-history traits, such as fat storage and reproduction.  相似文献   

18.
Predation has profound effects on the phenotypes of animal prey and, in lizards, the relationship between coloration and antipredatory behaviour has been studied in depth. However, studies that address the relationships between dorsal patterns and tail coloration with escape behaviour in polymorphic lizards are absent in the literature. We describe dorsal morphs and measured tail coloration and escape behaviour in hatchling Iberian wall lizards, Podarcis hispanicus, a species with a previously undescribed female‐restricted dorsal polymorphism (reticulated‐blotched males, and either striped or reticulated‐blotched females) and juvenile tails with conspicuous blue coloration, which is probably used to divert predator attacks towards the autotomizable tail. Overall we provide evidence for the existence of sexual dimorphism in tail ultraviolet reflectance between reticulated females and males, with striped females being intermediate. We identified sex/dorsal morph, body size and tail brightness as predictors of different aspects of escape behaviour and suggest the existence of two alternative escape strategies between striped and reticulated‐blotched females that may be dependent on dorsal morph differences, independently of sex. Reticulated‐blotched females, and also males (all reticulated‐blotched), ran faster and spent less time paused than striped females, which might reflect an escape behaviour strategy based on endurance in striped females. In addition, lowland males displayed tail waving as a ‘last resort’ antipredator strategy that may be related to fatigue. We concluded that hatchling antipredatory behaviour is influenced by both dorsal pattern and tail conspicuousness. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 1094–1106.  相似文献   

19.
Phenotypic differences among species are known to have functional consequences that in turn allow species to use different habitats. However, the role of behaviour in this ecomorphological paradigm is not well defined. We investigated the relationship between morphology, ecology and escape behaviour among 25 species of the lizard clade Liolaemus in a phylogenetic framework. We demonstrate that the relationship between morphology and characteristics of habitat structure shows little or no association, consistent with a previous study on this group. However, a significant relationship was found between morphology and escape behaviour with the distance a lizard moved from a potential predator correlated with body width, axilla-groin length, and pelvis width. A significant relationship between escape behaviour and habitat structure occupation was found; lizards that occupied tree trunks and open ground ran longer distances from predators and were found greater distances from shelter. Behavioural strategies used by these lizards in open habitats appear to have made unnecessary the evolution of limb morphology that has occurred in other lizards from other clades that are found in open settings. Understanding differences in patterns of ecomorphological relationships among clades is an important component for studying adaptive diversification.  相似文献   

20.
The Carnivora occupy a wide range of feeding niches in concordance with the enormous diversity in their skull and dental form. It is well established that differences in crown morphology are linked to variations in the material properties of the foods ingested and masticated. However, how tooth root form is related to dietary specialization is less well known. In the present study, we investigate the relationship between tooth root morphology and dietary specialization in terrestrial carnivores (canids, felids, hyaenids, and ursids). We specifically address the question of how variation in tooth root surface area is related to bite force potentials as one of the crucial masticatory performance parameters in feeding ecology. We applied computed tomography imaging to reconstruct and quantify dental root surface area in 17 extant carnivore species. Moreover, we computed maximal bite force at several tooth positions based on a dry skull model and assessed the relationship of root surface area to skull size, maximal bite force, food properties, and prey size. We found that postcanine tooth root surface areas corrected for skull size serve as a proxy for bite force potentials and, by extension, dietary specialization in carnivores. Irrespective of taxonomic affinity, species that feed on hard food objects have larger tooth roots than those that eat soft or tough foods. Moreover, carnivores that prey on large animals have larger tooth root surface areas. Our results show that tooth root morphology is a useful indicator of bite force production and allows inferences to be made about dietary ecology in both extant and extinct mammals. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105, 456–471.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号