首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Benign prostatic hyperplasia (BPH) is mainly caused by increased prostatic smooth muscle (SM) tone and volume. SM myosin (SMM) and non‐muscle myosin (NMM) play important roles in mediating SM tone and cell proliferation, but these molecules have been less studied in the prostate. Rat prostate and cultured primary human prostate SM and epithelial cells were utilized. In vitro organ bath studies were performed to explore contractility of rat prostate. SMM isoforms, including SM myosin heavy chain (MHC) isoforms (SM1/2 and SM‐A/B) and myosin light chain 17 isoforms (LC17a/b), and isoform ratios were determined via competitive RT‐PCR. SM MHC and NM MHC isoforms (NMMHC‐A, NMMHC‐B and NMMHC‐C) were further analysed via Western blotting and immunofluorescence microscopy. Prostatic SM generated significant force induced by phenylephrine with an intermediate tonicity between phasic bladder and tonic aorta type contractility. Correlating with this kind of intermediate tonicity, rat prostate mainly expressed LC17a and SM1 but with relatively equal expression of SM‐A/SM‐B at the mRNA level. Meanwhile, isoforms of NMMHC‐A, B, C were also abundantly present in rat prostate with SMM present only in the stroma, while NMMHC‐A, B, C were present both in the stroma and endothelial. Additionally, the SMM selective inhibitor blebbistatin could potently relax phenylephrine pre‐contracted prostate SM. In conclusion, our novel data demonstrated the expression and functional activities of SMM and NMM isoforms in the rat prostate. It is suggested that the isoforms of SMM and NMM could play important roles in BPH development and bladder outlet obstruction.  相似文献   

2.
The intrinsic ability of vascular smooth muscle cells (VSMCs) within arterial resistance vessels to respectively contract and relax in response to elevation and reduction of intravascular pressure is essential for appropriate blood flow autoregulation. This fundamental mechanism, referred to as the myogenic response, is dependent on apposite control of myosin regulatory light chain (LC20) phosphorylation, a prerequisite for force generation, through the coordinated activity of myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP). Here, we highlight the molecular basis of the smooth muscle contractile mechanism and review the regulatory pathways demonstrated to participate in the control of LC20 phosphorylation in the myogenic response, with a focus on the Ca2+-dependent and Rho-associated kinase (ROK)-mediated regulation of MLCK and MLCP, respectively.  相似文献   

3.
4.
Three-dimensional reconstructions of “barbed” and “blunted” arrowheads (Craig et al., 1980) show that these two forms arise from arrangement of scallop myosin subfragments (S1) that appear about 40 Å longer in the presence of the regulatory light chain than in its absence. A similar difference in apparent length is indicated by images of single myosin subfragments in partially decorated filaments. The extra mass is located at the end of the subfragment furthest from actin, and probably comprises part of the regulatory light chain as well as a segment of the myosin heavy chain. The fact that barbed arrowheads are also formed by myosin subfragments from vertebrate striated and smooth muscles implies that the homologous light chains in these myosins have locations similar to that of the scallop light chain.The scallop light chain probably does not extend into the actin-binding site on the myosin head, and is therefore unlikely to interfere physically with binding. Rather, regulation of actin-myosin interaction by light chains may involve Ca2+-dependent changes in the structure of a region near the head-tail junction of myosin.The reconstructions suggest locations for actin and tropomyosin relative to myosin that are similar to those proposed by Taylor & Amos (1981) and are consistent with a revised steric blocking model for regulation by tropomyosin. The identification of actin from these reconstructions is supported by images of partially decorated filaments that display the polarity of the actin helix relative to that of bound myosin subfragments.  相似文献   

5.
We investigated in vivo expression of myosin heavy chain (MHC) isoforms, 17 kDa myosin light chain (MLC17), and phosphorylation of the 20 kDa MLC (MLC20) as well as mechanical performance of chemically skinned fibers of normal and hypertrophied smooth muscle (SM) of human myometrium. According to their immunological reactivity, we identified three MHC isoenzymes in the human myometrium: two SM-MHC (SM1 with 204 kDa and SM2 with 200 kDa), and one non-muscle specific MHC (NM with 196 kDa). No cross-reactivity was detected with an antibody raised against a peptide corresponding to a seven amino acid insert at the 25K/50K junction of the myosin head (a-25K/50K) in both normal and hypertrophied myometrium. In contrast, SM-MHC of human myomatous tissue strongly reacted with a-25K/50K. Expression of SM1/SM2/NM (%) in normal myometrium was 31.7/34.7/33.6 and 35.1/40.9/24 in hypertrophied myometrium. The increased SM2 and decreased NM expression in the hypertrophied state was statistically significant (P < 0.05). MHC isoform distribution in myomatous tissue was similar to normal myometrium (35.3/35.3/29.4). In vivo expression of MLC17a increased from 25.5% in normal to 44.2% in hypertrophied (P < 0.001) myometrium. Phosphorylation levels of MLC20 upon maximal Ca20-calmodulin activation of skinned myometrial fibers were the same in normal and hypertrophied myometrial fibers. Maximal force of isometric contraction of skinned fibers (pCa 4.5, slack-length) was 2.85 mN/mm2 and 5.6 mN/mm2 in the normal and hypertrophied state, respectively (P < 0.001). Apparent maximal shortening velocity (Vmaxapp, extrapolated from the force-velocity relation) of myometrium rose from 0.13 muscle length s 1 (ML/s) in normal to 0.24 ML/s in hypertrophied fibers (P < 0.001). J. Cell. Biochem, 64:171–181. © 1997 Wiley-Liss, Inc.  相似文献   

6.
Cardiac myosin light chain 2 (MLC‐2) plays a key role in heart development, contraction, and embryo and adult heart maintenance. In some animals, defects in the function of cardiac MLC‐2 cause hypertrophic cardiomyopathy. To illuminate the functions of cardiac MLC‐2 in embryonic heart formation and contraction, and into the evolution of MLC‐2, we characterized the expression and requirement for medaka cardiac MLC‐2 gene in the developing heart. Medaka cardiac MLC‐2 cDNA (mcmlc2) was isolated and its gene expression pattern was determined. The mcmlc2 was found to be expressed in the bilateral cardiac mesoderm, the formed heart tube, and in both the differentiated ventricle and atrium. Knockdown of mcmlc2 function caused severe cardiac disorders, including edema in the atrium and sinus venosus. Using phylogenetic analysis, we found that physiological variations in the MLC‐2 molecules evolved due to amino acid changes in the Ca2+ binding domain during molecular evolution. Our findings concerning the function and expression of mcmlc2 are nearly identical with those of other MLC‐2 genes, and our phylogenetic analysis suggests that during evolution, the variations in physiological function within the MLC‐2 gene family have arisen from a change in the amino acids in the Ca2+ binding domain in the MLC‐2 molecule.  相似文献   

7.
Skeletal muscle myosin light chain kinase (skMLCK) is a dedicated Ca2+/calmodulin-dependent serine–threonine protein kinase that phosphorylates the regulatory light chain (RLC) of sarcomeric myosin. It is expressed from the MYLK2 gene specifically in skeletal muscle fibers with most abundance in fast contracting muscles. Biochemically, activation occurs with Ca2+ binding to calmodulin forming a (Ca2+)4•calmodulin complex sufficient for activation with a diffusion limited, stoichiometric binding and displacement of a regulatory segment from skMLCK catalytic core. The N-terminal sequence of RLC then extends through the exposed catalytic cleft for Ser15 phosphorylation. Removal of Ca2+ results in the slow dissociation of calmodulin and inactivation of skMLCK. Combined biochemical properties provide unique features for the physiological responsiveness of RLC phosphorylation, including (1) rapid activation of MLCK by Ca2+/calmodulin, (2) limiting kinase activity so phosphorylation is slower than contraction, (3) slow MLCK inactivation after relaxation and (4) much greater kinase activity relative to myosin light chain phosphatase (MLCP). SkMLCK phosphorylation of myosin RLC modulates mechanical aspects of vertebrate skeletal muscle function. In permeabilized skeletal muscle fibers, phosphorylation-mediated alterations in myosin structure increase the rate of force-generation by myosin cross bridges to increase Ca2+-sensitivity of the contractile apparatus. Stimulation-induced increases in RLC phosphorylation in intact muscle produces isometric and concentric force potentiation to enhance dynamic aspects of muscle work and power in unfatigued or fatigued muscle. Moreover, RLC phosphorylation-mediated enhancements may interact with neural strategies for human skeletal muscle activation to ameliorate either central or peripheral aspects of fatigue.  相似文献   

8.
Fajmut A  Brumen M  Schuster S 《FEBS letters》2005,579(20):4361-4366
Active Ca2+/calmodulin (CaM)-dependent myosin light chain kinase (MLCK) plays an important role in the process of MLC phosphorylation and consecutive smooth muscle contraction. Here, we propose a mathematical model of a detailed kinetic scheme describing interactions among Ca2+, CaM and MLCK and taking into account eight different aggregates. The main model result is the prediction of the Ca2+ dependent active form of MLCK, which is in the model taken as proportional to the concentration of Ca4CaM · MLCK complex. Wegscheider’s condition is additionally applied as a constraint enabling the prediction of some parameter values that have not yet been obtained by experiments.  相似文献   

9.
Many non-muscle cells including chromaffin cells contain actin and myosin. The 20,000 dalton light chain subunits of myosin can be phosphorylated by a Ca2+/calmodulin-dependent enzyme, myosin light chain kinase. In tissues other than striated muscle, light chain phosphorylation is required for actin-induced myosin ATPase activity. The possibility that actin and myosin are involved in catecholamine secretion was investigated by determining whether increased phosphorylation in the presence of [-32P]ATP of myosin light chain by myosin light chain kinase enhances secretion from digitonin-treated chromaffin cells. In the absence of exogenous myosin light chain kinase, 1 M Ca2+ caused a 30–40% enhancement of the phosphorylation of a 20 kDa protein. This protein was identified on 2-dimensional gels as myosin light chain by its comigration with purified myosin light chain. Purified myosin light chain kinase (400 g/ml) in the presence of calmodulin (10 M) caused little or no enhancement of myosin light chain phosphorylation in the absence of Ca2+ in digitonin-treated cells. In the presence of 1 M Ca2+, myosin light chain kinase (400 g/ml) caused an approximately two-fold increase in myosin light chain phosphorylation in digitonin-treated cells in 5 min. The phosphorylation required permeabilization of the cells by digitonin and occurred within the cells rather than in the medium. Myosin light chain kinase-induced phosphorylation of myosin light chain was maximal at 1 M. Ca2+. Under identical conditions to those of the phosphorylation experiments, secretion was unaltered by myosin light chain kinase. The experiments indicate that the phosphorylation of myosin light chain by myosin light chain kinase is not a limiting factor in secretion in digitonin-treated chromaffin cells and suggest that the activation of myosin is not directly involved in secretion from the cells. The experiments also demonstrate the feasibility of investigation of effects of exogenously added proteins on secretion in digitonin-treated cells.Abbreviations EGTA ethyleneglycol-bis-(-aminoethyl ether)-N,N,N,N-tetraacetic acid - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - KGEPM solution containing potassium glutamate, EGTA, PIPES and MgCl2 - NE norepinephrine - PIPES piperazine-N,-N-bis-(2-ethanesulfonic acid) - PSS physiological salt solution  相似文献   

10.
The contraction of smooth muscle is regulated primarily by intracellular Ca2+ signal. It is well established that the elevation of the cytosolic Ca2+ level activates myosin light chain kinase, which phosphorylates 20 kDa regulatory myosin light chain and activates myosin ATPase. The simultaneous measurement of cytosolic Ca2+ concentration and force development revealed that the alteration of the Ca2+-sensitivity of the contractile apparatus as well as the Ca2+ signal plays a critical role in the regulation of smooth muscle contraction. The fluctuation of an extent of myosin phosphorylation for a given change in Ca2+ concentration is considered to contribute to the major mechanisms regulating the Ca2+-sensitivity. The level of myosin phosphorylation is determined by the balance between phosphorylation and dephosphorylation. The phosphorylation level for a given Ca2+ elevation is increased either by Ca2+-independent activation of phosphorylation process or inhibition of dephosphorylation. In the last decade, the isolation and cloning of myosin phosphatase facilitated the understanding of regulatory mechanism of dephosphorylation process at the molecular level. The inhibition of myosin phosphatase can be achieved by (1) alteration of hetrotrimeric structure, (2) phosphorylation of 110 kDa regulatory subunit MYPT1 at the specific site and (3) inhibitory protein CPI-17 upon its phosphorylation. Rho-kinase was first identified to phosphorylate MYPT1, and later many kinases were found to phosphorylate MYPT1 and inhibit dephosphorylation of myosin. Similarly, the phosphorylation of CPI-17 can be catalysed by multiple kinases. Moreover, the myosin light chain can be phosphorylated by not only authentic myosin light chain kinase in a Ca2+-dependent manner but also by multiple kinases in a Ca2+-independent manner, thus adding a novel mechanism to the regulation of the Ca2+-sensitivity by regulating the phosphorylation process. It is now clarified that the protein kinase network is involved in the regulation of myosin phosphorylation and dephosphorylation. However, the physiological role of each component remains to be determined. One approach to accomplish this purpose is to investigate the effects of the dominant negative mutants of the signalling molecule on the smooth muscle contraction. In this regards, a protein transduction technique utilizing the cell-penetrating peptides would provide a useful tool. In the preliminary study, we succeeded in introducing a fragment of MYPT1 into the arterial strips, and found enhancement of contraction.  相似文献   

11.
Brain type II Ca2+/calmodulin-dependent protein kinase was found to phoshorylate smooth muscle myosin, incorporating maximally 2 mol of phosphoryl per mol of myosin, exclusively on the 20,000 dalton light chain subunit. After maximal phosphorylation of myosin or the isolated 20,000 dalton light chain subunit by myosin light chain kinase, the addition of type II Ca2+/calmodulin-dependent protein kinase led to no further incorporation indicating the two kinases phosphorylated a common site. This conclusion was supported by two dimensional mapping of tryptic digests of myosin phosphorylated by the two kinases. By phosphoamino acid analysis the phosphorylated residue was identified as a serine. The phosphorylation by type II Ca 2+/calmodulin-dependent protein kinase of myosin resulted in enhancement of its actin-activated Mg2+-ATPase activity. Taken together, these data strongly support the conclusion that type II Ca2+/calmodulin-dependent protein kinase phosphorylates the same amino acid residue on the 20,000 dalton light chain subunit of smooth muscle myosin as is phosphorylated by myosin light chain kinase and suggest an alternative mechanism for the regulation of actin-myosin interaction.Abbreviations SDS-PAGE Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis - EGTA Ethylene Glycol Bis (-amino-ethyl ether)-N,N,N,N-Tetraacetic Acid - DTT Dithiothreitol - LC20 Gizzard Smooth Muscle Phosphorylatable 20 kDa Myosin Light Chain - LC17 Gizzard Smooth Muscle, 17 kDa Myosin Light Chain - H Chain Gizzard Smooth Muscle 200 kDa Myosin Heavy Chain - TPCK L-1-Tosylamido-2-Phenylethyl Chloromethyl Ketone - MOPS 3-(N-morpholino) Propanesulfonic Acid  相似文献   

12.
Molluscan myosins are regulated molecules that control muscle contraction by the selective binding of calcium. The essential and the regulatory light chains are regulatory subunits. Scallop myosin is the favorite material for studying the interactions of the light chains with the myosin heavy chain since the regulatory light chains can be reversibly removed from it and its essential light chains can be exchanged. Mutational and structural studies show that the essential light chain binds calcium provided that the Ca-binding loop is stabilized by specific interactions with the regulatory light chain and the heavy chain. The regulatory light chains are inhibitory subunits. Regulation requires the presence of both myosin heads and an intact headrod junction. Heavy meromyosin is regulated and shows cooperative features of activation while subfragment-1 is non-cooperative. The myosin heavy chains of the functionally different phasic striated and the smooth catch muscle myosins are products of a single gene, the isoforms arise from alternative splicing. The differences between residues of the isoforms are clustered at surface loop-1 of the heavy chain and account for the different ATPase activity of the two muscle types. Catch muscles contain two regulatory light chain isoforms, one phosphorylatable by gizzard myosin light chain kinase. Phosphorylation of the light chain does not alter ATPase activity. We could not find evidence that light chain phosphorylation is responsible for the catch state.  相似文献   

13.
The purpose of this study was to test the hypothesis that the phosphorylation of myosin is solely responsible for the activation of the Mg2+-ATPase activity of gizzard actomyosin. Using a washed natural actomyosin and a reconstituted actomyosin it was shown that phosphorylation alone caused only a slight activation of ATPase activity. Full activity was obtained only when proteins in addition to the myosin light chain kinase were added. It is evident from these results that: 1) there is no simple relationship between the extent of myosin phosphorylation and the specific Mg2+-ATPase activity of actomyosin and 2) in order for full activation by actin of the Mg2+-ATPase activity of phosphorylated myosin additional factors are required.  相似文献   

14.
Developmental changes in the regulation of smooth muscle contraction were examined in urinary bladder smooth muscle from mice. Maximal active stress was lower in newborn tissue compared with adult, and it was correlated with a lower content of actin and myosin. Sensitivity to extracellular Ca2+ during high-K+ contraction, was higher in newborn compared with 3-wk-old and adult bladder strips. Concentrations at half maximal tension (EC50) were 0.57 +/- 0.01, 1.14 +/- 0.12, and 1.31 +/- 0.08 mM. Force of the newborn tissue was inhibited by approximately 45% by the nonmuscle myosin inhibitor Blebbistatin, whereas adult tissue was not affected. The calcium sensitivity in newborn tissue was not affected by Blebbistatin, suggesting that nonmuscle myosin is not a primary cause for increased calcium sensitivity. The relation between intracellular [Ca2+] and force was shifted toward lower [Ca2+] in the newborn bladders. This increased Ca2+ sensitivity was also found in permeabilized muscles (EC50: 6.10 +/- 0.07, 5.77 +/- 0.08, and 5.55 +/- 0.02 pCa units, in newborn, 3-wk-old, and adult tissues). It was associated with an increased myosin light chain phosphorylation and a decreased rate of dephosphorylation. No difference was observed in the myosin light chain phosphorylation rate, whereas the rate of myosin light chain phosphatase-induced relaxation was about twofold slower in the newborn tissue. The decreased rate was associated with a lower expression of the phosphatase regulatory subunit MYPT-1 in newborn tissue. The results show that myosin light chain phosphatase activity can be developmentally regulated in mammalian urinary bladders. The resultant alterations in Ca2+ sensitivity may be of importance for the nervous and myogenic control of the newborn bladders.  相似文献   

15.
Whereas dissociation of rabbit skeletal muscle myosin light chains occurs at an increased temperature (25°) and in the obsence of divalent cations, reassociation of the myosin oligomer requires a low temperature (4°C) and the presence of divalent cations, thus resulting in the original light to heavy chain stoichiometry. With a 5–10 per cent release of alkali light chains, LC1 and LC3, and a 50 per cent dissociation of the Ca2+ binding light chain, LC2, there is no significant decrease in myosin ATPase activity irrespective of the cation activator, however, there is an approximate 15–20 per cent decrease in actomyosin ATPase activity. With reassociation of the myosin oligomer, actomyosin ATPase activity is partially restored as well as the original number of Ca2+ binding sites.  相似文献   

16.
We have studied the primary structures of myosins from chicken muscles in order to clarify the relationship between structure and function of muscle myosin. The primary structures of the various kinds of light chains from chicken muscle myosins have been determined. We also report the primary structure of the 23K fragment of subfragment-1 (S-1) component from the heavy chain of chicken fast skeletal muscle myosin. In addition, antibody was prepared against the 23K fragment. The antibody was found to inhibit the Mg2+-ATPase activity and the initial Pi burst of the ATPase in the S-1 component. The antibody suppressed the ATP-induced fluorescence enhancement of S-1, though it did not suppress the binding of ATP to S-1. These results are also discussed.This article was presented during the proceedings of the International Conference on Macromolecular Structure and Function, held at the National Defence Medical College, Tokorozawa, Japan, December 1985.  相似文献   

17.
In the course of muscle differentiation, changes in fibre-type population and in myosin composition occur. In this work, the expression of native myosin isoforms in developing fast-twitch (posterior latissimus dorsi; PLD) and slow-tonic (anterior latissimus dorsi; ALD) muscles of the chick was examined using electrophoresis under nondissociating conditions. The major isomyosin of 11-day-old embryonic PLD comigrated with the adult fast myosin FM3. Two additional components indistinguishable from adult fast FM2 and FM1 isomyosins appeared successively during the embryonic development. The relative proportion of these latter isoforms increased with age, and the adult pattern was established by the end of the 1st month after hatching. Between day 11 and day 16 of embryonic development, PLD muscle fibres also contained small amounts of slow isomyosins SM1 and SM2. This synthesis of slow isoforms may be related to the presence of slow fibres within the muscle. At all embryonic and posthatch stages, ALD was composed essentially of slow isomyosins that comigrated with the two slow components SM1 and SM2 identified in adult. Several studies have reported that the SM1:SM2 ratio decreases progressively throughout embryonic and posthatching development, SM2 being predominant in the adult. In contrast, we observed a transient increase in SM1:SM2 ratio at the end of embryonic life. This could reflect a transitional neonatal stage in myosin expression. In addition, the presence in trace amounts of fast isomyosins in developing ALD muscle could be related to the presence of a population of fast fibres within this muscle.  相似文献   

18.
Summary Subfragment-1 of rabbit atrial and thyrotoxic ventricular myosin (V1 isomyosin) has been prepared and purified by DEAF-cellulose column chromatography. Pyrophosphate-polyacrylamide gel electrophoretic patterns and column chromatographic profile of the atrial subfragment differ from those of thyrotoxic ventricular myosin subfragment-1. On the other hand, Ca2+, Mg2+ and actin-activated ATPase activities of these subfragments are identical. Comparison of the peptide mapping by limited proteolysis in the presence of sodium dodecyl sulfate of the heavy and the light subunits of these subfragments reveals that the patterns for the heavy chain peptides of these subfragments are substantially similar but their light chain peptide patterns differ. The results suggest that the enzymatic and structural similarities that have been recognized between these isoenzymes using intact myosin hold true for the myosin subfragment-1.The differences between these subfragments are due to the differences in the light chains associated with them.Abbreviations EDTA Ethylene Diamine Tetra-acetic Acid - SDS Sodium Dodecyl Sulfate - S1 myosin subfragment-1 - HC Heavy Chain - LC Light Chain  相似文献   

19.
Evidence is presented for Ca2+ and cyclic GMP being involved in signal transduction between the cell surface cyclic AMP receptors and cytoskeletal myosin II involved in chemotactic cell movement. Ca2+ is shown to be required for chemotactic aggregation of amoebae. The evidence for uptake and/or eflux of this ion being regulated by the nucleotide cyclic GMP is discussed. The connection between Ca2+, cyclic GMP and chemotactic cell movement has been explored using “streamer F” mutants. The primary defect in these mutants is in the structural gene for the cyclic GMP-specific phosphodiesterase which results in the mutants producing an abnormally prolonged peak of accumulation of cyclic GMP in response to stimulation with the chernoattractant cyclic AMP. While events associated with production and relay of cyclic AMP signals are normal, certain events associated with movement are (like the cyclic GMP response) abnormally prolonged in the mutants. These events include Ca2+ uptake, myosin II association with the cytoskeleton and inhibition of myosin heavy and light chain phosphorylation. These changes can be correlated with the amoebae becoming elongated and transiently decreasing their locomotive speed after chemotactic stimulation. Other mutants studied in which the accumulation of cyclic GMP in response to cyclic AMP stimulation was absent produced no myosin II responses. Models are described in which cyclic GMP (directly or indirectly via Ca2+) regulates accumulation of myosin II on the cytoskeleton by inhibiting phosphorylation of the myosin heavy and light chain kinases.  相似文献   

20.
平滑肌细胞迁移的肌球蛋白轻链非磷酸化途径   总被引:2,自引:0,他引:2  
为了阐明平滑肌细胞迁移存在肌球蛋白轻链非磷酸化调节途径,研究花生四烯酸(arachidonicacid,AA)对肌球蛋白轻链非磷酸化状态下平滑肌细胞迁移的影响及其相关的信号传导途径.经Boyden小室跨膜迁移实验发现,AA对培养的兔血管平滑肌SM3细胞具有明显的诱导迁移作用.然而,当预先用10μmolL肌球蛋白轻链激酶(myosinlightchainkinase,MLCK)特异性抑制剂ML7作用SM3细胞后,发现AA对SM3细胞仍然具有明显的诱导迁移作用,并呈剂量依赖性,这种诱导作用可被细胞外信号调节激酶12(ERK12)的特异性抑制剂PD98059或磷脂酶C(PLC)的特异性抑制剂U73122所拮抗.此外,Ⅱ型肌球蛋白抑制剂blebbistatin(BLB)可部分抑制“非磷酸化”状态下AA的诱导迁移作用.经Western印迹检测显示,10μmolLML7可完全抑制SM3细胞中20kD肌球蛋白轻链(MLC20)磷酸化,并且加入AA后MLC20仍为非磷酸化状态.应用免疫荧光染色法观察肌动蛋白在SM3细胞中分布的变化,发现在AA作用下肌动蛋白呈细胞边缘聚集现象,有伪足形成,细胞形态表现为迁移状态.预先用ML7作用后再加入AA,肌动蛋白的分布与上述结果相同.研究结果初步表明,在平滑肌细胞迁移的作用途径中,在MLC磷酸化调节途径受到抑制时,AA可诱导MLC非磷酸化的平滑肌细胞发生迁移,其分子机理可能与ERK12和PLC信号传导途径有关,非磷酸化的肌球蛋白直接参与了该迁移过程.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号