首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The Paragon Algorithm, a novel database search engine for the identification of peptides from tandem mass spectrometry data, is presented. Sequence Temperature Values are computed using a sequence tag algorithm, allowing the degree of implication by an MS/MS spectrum of each region of a database to be determined on a continuum. Counter to conventional approaches, features such as modifications, substitutions, and cleavage events are modeled with probabilities rather than by discrete user-controlled settings to consider or not consider a feature. The use of feature probabilities in conjunction with Sequence Temperature Values allows for a very large increase in the effective search space with only a very small increase in the actual number of hypotheses that must be scored. The algorithm has a new kind of user interface that removes the user expertise requirement, presenting control settings in the language of the laboratory that are translated to optimal algorithmic settings. To validate this new algorithm, a comparison with Mascot is presented for a series of analogous searches to explore the relative impact of increasing search space probed with Mascot by relaxing the tryptic digestion conformance requirements from trypsin to semitrypsin to no enzyme and with the Paragon Algorithm using its Rapid mode and Thorough mode with and without tryptic specificity. Although they performed similarly for small search space, dramatic differences were observed in large search space. With the Paragon Algorithm, hundreds of biological and artifact modifications, all possible substitutions, and all levels of conformance to the expected digestion pattern can be searched in a single search step, yet the typical cost in search time is only 2-5 times that of conventional small search space. Despite this large increase in effective search space, there is no drastic loss of discrimination that typically accompanies the exploration of large search space.  相似文献   

2.
Proteomics strategies based on nanoflow (nano-) LC-MS/MS allow the identification of hundreds to thousands of proteins in complex mixtures. When combined with protein isotopic labeling, quantitative comparison of the proteome from different samples can be achieved using these approaches. However, bioinformatics analysis of the data remains a bottleneck in large scale quantitative proteomics studies. Here we present a new software named Mascot File Parsing and Quantification (MFPaQ) that easily processes the results of the Mascot search engine and performs protein quantification in the case of isotopic labeling experiments using either the ICAT or SILAC (stable isotope labeling with amino acids in cell culture) method. This new tool provides a convenient interface to retrieve Mascot protein lists; sort them according to Mascot scoring or to user-defined criteria based on the number, the score, and the rank of identified peptides; and to validate the results. Moreover the software extracts quantitative data from raw files obtained by nano-LC-MS/MS, calculates peptide ratios, and generates a non-redundant list of proteins identified in a multisearch experiment with their calculated averaged and normalized ratio. Here we apply this software to the proteomics analysis of membrane proteins from primary human endothelial cells (ECs), a cell type involved in many physiological and pathological processes including chronic inflammatory diseases such as rheumatoid arthritis. We analyzed the EC membrane proteome and set up methods for quantitative analysis of this proteome by ICAT labeling. EC microsomal proteins were fractionated and analyzed by nano-LC-MS/MS, and database searches were performed with Mascot. Data validation and clustering of proteins were performed with MFPaQ, which allowed identification of more than 600 unique proteins. The software was also successfully used in a quantitative differential proteomics analysis of the EC membrane proteome after stimulation with a combination of proinflammatory mediators (tumor necrosis factor-alpha, interferon-gamma, and lymphotoxin alpha/beta) that resulted in the identification of a full spectrum of EC membrane proteins regulated by inflammation.  相似文献   

3.
Database-searching programs generally identify only a fraction of the spectra acquired in a standard LC/MS/MS study of digested proteins. Subtle variations in database-searching algorithms for assigning peptides to MS/MS spectra have been known to provide different identification results. To leverage this variation, a probabilistic framework is developed for combining the results of multiple search engines. The scores for each search engine are first independently converted into peptide probabilities. These probabilities can then be readily combined across search engines using Bayesian rules and the expectation maximization learning algorithm. A significant gain in the number of peptides identified with high confidence with each additional search engine is demonstrated using several data sets of increasing complexity, from a control protein mixture to a human plasma sample, searched using SEQUEST, Mascot, and X! Tandem database-searching programs. The increased rate of peptide assignments also translates into a substantially larger number of protein identifications in LC/MS/MS studies compared to a typical analysis using a single database-search tool.  相似文献   

4.
The discovery of many noncanonical peptides detectable with sensitive mass spectrometry inside, outside, and on cells shepherded the development of novel methods for their identification, often not supported by a systematic benchmarking with other methods. We here propose iBench, a bioinformatic tool that can construct ground truth proteomics datasets and cognate databases, thereby generating a training court wherein methods, search engines, and proteomics strategies can be tested, and their performances estimated by the same tool. iBench can be coupled to the main database search engines, allows the selection of customized features of mass spectrometry spectra and peptides, provides standard benchmarking outputs, and is open source. The proof-of-concept application to tryptic proteome digestions, immunopeptidomes, and synthetic peptide libraries dissected the impact that noncanonical peptides could have on the identification of canonical peptides by Mascot search with rescoring via Percolator (Mascot+Percolator).  相似文献   

5.
Data processing and analysis of proteomics data are challenging and time consuming. In this paper, we present MS Data Miner (MDM) (http://sourceforge.net/p/msdataminer), a freely available web-based software solution aimed at minimizing the time required for the analysis, validation, data comparison, and presentation of data files generated in MS software, including Mascot (Matrix Science), Mascot Distiller (Matrix Science), and ProteinPilot (AB Sciex). The program was developed to significantly decrease the time required to process large proteomic data sets for publication. This open sourced system includes a spectra validation system and an automatic screenshot generation tool for Mascot-assigned spectra. In addition, a Gene Ontology term analysis function and a tool for generating comparative Excel data reports are included. We illustrate the benefits of MDM during a proteomics study comprised of more than 200 LC-MS/MS analyses recorded on an AB Sciex TripleTOF 5600, identifying more than 3000 unique proteins and 3.5 million peptides.  相似文献   

6.
The effectiveness of database search algorithms, such as Mascot, Sequest and ProteinPilot is limited by the quality of the input spectra: spurious peaks in MS/MS spectra can jeopardize the correct identification of peptides or reduce their score significantly. Consequently, an efficient preprocessing of MS/MS spectra can increase the sensitivity of peptide identification at reduced file sizes and run time without compromising its specificity. We investigate the performance of 25 MS/MS preprocessing methods on various data sets and make software for improved preprocessing of mgf/dta‐files freely available from http://hci.iwr.uni‐heidelberg.de/mip/proteomics or http://www.childrenshospital.org/research/steenlab .  相似文献   

7.
A novel software tool named PTM-Explorer has been applied to LC-MS/MS datasets acquired within the Human Proteome Organisation (HUPO) Brain Proteome Project (BPP). PTM-Explorer enables automatic identification of peptide MS/MS spectra that were not explained in typical sequence database searches. The main focus was detection of PTMs, but PTM-Explorer detects also unspecific peptide cleavage, mass measurement errors, experimental modifications, amino acid substitutions, transpeptidation products and unknown mass shifts. To avoid a combinatorial problem the search is restricted to a set of selected protein sequences, which stem from previous protein identifications using a common sequence database search. Prior to application to the HUPO BPP data, PTM-Explorer was evaluated on excellently manually characterized and evaluated LC-MS/MS data sets from Alpha-A-Crystallin gel spots obtained from mouse eye lens. Besides various PTMs including phosphorylation, a wealth of experimental modifications and unspecific cleavage products were successfully detected, completing the primary structure information of the measured proteins. Our results indicate that a large amount of MS/MS spectra that currently remain unidentified in standard database searches contain valuable information that can only be elucidated using suitable software tools.  相似文献   

8.
Protein identification using MS is an important technique in proteomics as well as a major generator of proteomics data. We have designed the protein identification data object model (PDOM) and developed a parser based on this model to facilitate the analysis and storage of these data. The parser works with HTML or XML files saved or exported from MASCOT MS/MS ions search in peptide summary report or MASCOT PMF search in protein summary report. The program creates PDOM objects, eliminates redundancy in the input file, and has the capability to output any PDOM object to a relational database. This program facilitates additional analysis of MASCOT search results and aids the storage of protein identification information. The implementation is extensible and can serve as a template to develop parsers for other search engines. The parser can be used as a stand-alone application or can be driven by other Java programs. It is currently being used as the front end for a system that loads HTML and XML result files of MASCOT searches into a relational database. The source code is freely available at http://www.ccbm.jhu.edu and the program uses only free and open-source Java libraries.  相似文献   

9.
Shotgun proteomics data analysis usually relies on database search. However, commonly used protein sequence databases do not contain information on protein variants and thus prevent variant peptides and proteins from been identified. Including known coding variations into protein sequence databases could help alleviate this problem. Based on our recently published human Cancer Proteome Variation Database, we have created a protein sequence database that comprehensively annotates thousands of cancer-related coding variants collected in the Cancer Proteome Variation Database as well as noncancer-specific ones from the Single Nucleotide Polymorphism Database (dbSNP). Using this database, we then developed a data analysis workflow for variant peptide identification in shotgun proteomics. The high risk of false positive variant identifications was addressed by a modified false discovery rate estimation method. Analysis of colorectal cancer cell lines SW480, RKO, and HCT-116 revealed a total of 81 peptides that contain either noncancer-specific or cancer-related variations. Twenty-three out of 26 variants randomly selected from the 81 were confirmed by genomic sequencing. We further applied the workflow on data sets from three individual colorectal tumor specimens. A total of 204 distinct variant peptides were detected, and five carried known cancer-related mutations. Each individual showed a specific pattern of cancer-related mutations, suggesting potential use of this type of information for personalized medicine. Compatibility of the workflow has been tested with four popular database search engines including Sequest, Mascot, X!Tandem, and MyriMatch. In summary, we have developed a workflow that effectively uses existing genomic data to enable variant peptide detection in proteomics.  相似文献   

10.
以NCBI维护的一级数据库为数据源建立植物激素相关核酸和蛋白质二级数据库。将该二级数据库设计为基因、蛋白质和文献三部分, 编写软件从上述数据源中采集数据, 并以XML作为中间格式保存, 通过解析提交到二级数据库中并集成部分生物信息学工具软件, 初步实现了数据检索、统计分析、基于Web的本地化BLAST同源序列检索、序列的自动拼接以及蛋白质结构和功能位点的分析等功能。该二级数据库的构建为植物激素作用分子机理研究提供了高针对性的植物激素数据源和生物信息学辅助工具。  相似文献   

11.
MOTIVATION: Comparing tandem mass spectra (MSMS) against a known dataset of protein sequences is a common method for identifying unknown proteins; however, the processing of MSMS by current software often limits certain applications, including comprehensive coverage of post-translational modifications, non-specific searches and real-time searches to allow result-dependent instrument control. This problem deserves attention as new mass spectrometers provide the ability for higher throughput and as known protein datasets rapidly grow in size. New software algorithms need to be devised in order to address the performance issues of conventional MSMS protein dataset-based protein identification. METHODS: This paper describes a novel algorithm based on converting a collection of monoisotopic, centroided spectra to a new data structure, named 'peptide finite state machine' (PFSM), which may be used to rapidly search a known dataset of protein sequences, regardless of the number of spectra searched or the number of potential modifications examined. The algorithm is verified using a set of commercially available tryptic digest protein standards analyzed using an ABI 4700 MALDI TOFTOF mass spectrometer, and a free, open source PFSM implementation. It is illustrated that a PFSM can accurately search large collections of spectra against large datasets of protein sequences (e.g. NCBI nr) using a regular desktop PC; however, this paper only details the method for identifying peptide and subsequently protein candidates from a dataset of known protein sequences. The concept of using a PFSM as a peptide pre-screening technique for MSMS-based search engines is validated by using PFSM with Mascot and XTandem. AVAILABILITY: Complete source code, documentation and examples for the reference PFSM implementation are freely available at the Proteome Commons, http://www.proteomecommons.org and source code may be used both commercially and non-commercially as long as the original authors are credited for their work.  相似文献   

12.
A major problem in the analysis of mass spectrometry-based proteomics data is the vast growth of data volume, caused by improvements in sequencing speed of mass spectrometers. This growth affects analysis times and storage requirements so severely that many analysis tools are no longer able to cope with the increased file sizes. We present a tool, RockerBox, to address size problems for search results obtained from the widely used Mascot search engine. RockerBox allows for a fast evaluation of large result files by means of a number of commonly accepted metrics that can often be viewed through charts. Moreover, result files can be filtered without altering their informative content, based on a number of FDR calculation methods. File sizes can be reduced dramatically, often to a tenth of their original size, thus relaxing the need for storage and computation power, and boosting analysis of current and future proteomics experiments.  相似文献   

13.
We present MassSieve, a Java‐based platform for visualization and parsimony analysis of single and comparative LC‐MS/MS database search engine results. The success of mass spectrometric peptide sequence assignment algorithms has led to the need for a tool to merge and evaluate the increasing data set sizes that result from LC‐MS/MS‐based shotgun proteomic experiments. MassSieve supports reports from multiple search engines with differing search characteristics, which can increase peptide sequence coverage and/or identify conflicting or ambiguous spectral assignments.  相似文献   

14.
It is a major challenge to develop effective sequence database search algorithms to translate molecular weight and fragment mass information obtained from tandem mass spectrometry into high quality peptide and protein assignments. We investigated the peptide identification performance of Mascot and X!Tandem for mass tolerance settings common for low and high accuracy mass spectrometry. We demonstrated that sensitivity and specificity of peptide identification can vary substantially for different mass tolerance settings, but this effect was more significant for Mascot. We present an adjusted Mascot threshold, which allows the user to freely select the best trade-off between sensitivity and specificity. The adjusted Mascot threshold was compared with the default Mascot and X!Tandem scoring thresholds and shown to be more sensitive at the same false discovery rates for both low and high accuracy mass spectrometry data.  相似文献   

15.
The present study reports an in-depth proteome analysis of two Lactobacillus rhamnosus strains, the well-known probiotic strain GG and the dairy strain Lc705. We used GeLC-MS/MS, in which proteins are separated using 1-DE and identified using nanoLC-MS/MS, to generate high-quality protein catalogs. To maximize the number of identifications, all data sets were searched against the target databases using two search engines, Mascot and Paragon. As a result, over 1600 high-confidence protein identifications, covering nearly 60% of the predicted proteomes, were obtained from each strain. This approach enabled identification of more than 40% of all predicted surfome proteins, including a high number of lipoproteins, integral membrane proteins, peptidoglycan associated proteins, and proteins predicted to be released into the extracellular environment. A comparison of both data sets revealed the expression of more than 90 proteins in GG and 150 in Lc705, which lack evolutionary counterparts in the other strain. Differences were noted in proteins with a likely role in biofilm formation, phage-related functions, reshaping the bacterial cell wall, and immunomodulation. The present study provides the most comprehensive catalog of the Lactobacillus proteins to date and holds great promise for the discovery of novel probiotic effector molecules.  相似文献   

16.
De novo interpretation of tandem mass spectrometry (MS/MS) spectra provides sequences for searching protein databases when limited sequence information is present in the database. Our objective was to define a strategy for this type of homology-tolerant database search. Homology searches, using MS-Homology software, were conducted with 20, 10, or 5 of the most abundant peptides from 9 proteins, based either on precursor trigger intensity or on total ion current, and allowing for 50%, 30%, or 10% mismatch in the search. Protein scores were corrected by subtracting a threshold score that was calculated from random peptides. The highest (p < .01) corrected protein scores (i.e., above the threshold) were obtained by submitting 20 peptides and allowing 30% mismatch. Using these criteria, protein identification based on ion mass searching using MS/MS data (i.e., Mascot) was compared with that obtained using homology search. The highest-ranking protein was the same using Mascot, homology search using the 20 most intense peptides, or homology search using all peptides, for 63.4% of 112 spots from two-dimensional polyacrylamide gel electrophoresis gels. For these proteins, the percent coverage was greatest using Mascot compared with the use of all or just the 20 most intense peptides in a homology search (25.1%, 18.3%, and 10.6%, respectively). Finally, 35% of de novo sequences completely matched the corresponding known amino acid sequence of the matching peptide. This percentage increased when the search was limited to the 20 most intense peptides (44.0%). After identifying the protein using MS-Homology, a peptide mass search may increase the percent coverage of the protein identified.  相似文献   

17.
18.
A notable inefficiency of shotgun proteomics experiments is the repeated rediscovery of the same identifiable peptides by sequence database searching methods, which often are time-consuming and error-prone. A more precise and efficient method, in which previously observed and identified peptide MS/MS spectra are catalogued and condensed into searchable spectral libraries to allow new identifications by spectral matching, is seen as a promising alternative. To that end, an open-source, functionally complete, high-throughput and readily extensible MS/MS spectral searching tool, SpectraST, was developed. A high-quality spectral library was constructed by combining the high-confidence identifications of millions of spectra taken from various data repositories and searched using four sequence search engines. The resulting library consists of over 30,000 spectra for Saccharomyces cerevisiae. Using this library, SpectraST vastly outperforms the sequence search engine SEQUEST in terms of speed and the ability to discriminate good and bad hits. A unique advantage of SpectraST is its full integration into the popular Trans Proteomic Pipeline suite of software, which facilitates user adoption and provides important functionalities such as peptide and protein probability assignment, quantification, and data visualization. This method of spectral library searching is especially suited for targeted proteomics applications, offering superior performance to traditional sequence searching.  相似文献   

19.
Proteomics research routinely involves identifying peptides and proteins via MS/MS sequence database search. Thus the database search engine is an integral tool in many proteomics research groups. Here, we introduce the Comet search engine to the existing landscape of commercial and open‐source database search tools. Comet is open source, freely available, and based on one of the original sequence database search tools that has been widely used for many years.  相似文献   

20.
Shotgun proteomics workflows for database protein identification typically include a combination of search engines and postsearch validation software based mostly on machine learning algorithms. Here, a new postsearch validation tool called Scavager employing CatBoost, an open‐source gradient boosting library, which shows improved efficiency compared with the other popular algorithms, such as Percolator, PeptideProphet, and Q‐ranker, is presented. The comparison is done using multiple data sets and search engines, including MSGF+, MSFragger, X!Tandem, Comet, and recently introduced IdentiPy. Implemented in Python programming language, Scavager is open‐source and freely available at https://bitbucket.org/markmipt/scavager .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号