首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Sex chromosomes are the Achilles' heel of male meiosis in mammals. Mis-segregation of the X and Y chromosomes leads to sex chromosome aneuploidies, with clinical outcomes such as infertility and Klinefelter syndrome. Successful meiotic divisions require that all chromosomes find their homologous partner and achieve recombination and pairing. Sex chromosomes in males of many species have only a small region of homology (the pseudoautosomal region, PAR) that enables pairing. Until recently, little was known about the dynamics of recombination and pairing within mammalian X and Y PARs. Here, we review our recent findings on PAR behavior in mouse meiosis. We uncovered unexpected differences between autosomal chromosomes and the X-Y chromosome pair, namely that PAR recombination and pairing occurs later, and is under different genetic control. These findings imply that spermatocytes have evolved distinct strategies that ensure successful X-Y recombination and chromosome segregation.  相似文献   

2.
S Sun  YP Hsueh  J Heitman 《PLoS genetics》2012,8(7):e1002810
Meiotic recombination of sex chromosomes is thought to be repressed in organisms with heterogametic sex determination (e.g. mammalian X/Y chromosomes), due to extensive divergence and chromosomal rearrangements between the two chromosomes. However, proper segregation of sex chromosomes during meiosis requires crossing-over occurring within the pseudoautosomal regions (PAR). Recent studies reveal that recombination, in the form of gene conversion, is widely distributed within and may have played important roles in the evolution of some chromosomal regions within which recombination was thought to be repressed, such as the centromere cores of maize. Cryptococcus neoformans, a major human pathogenic fungus, has an unusually large mating-type locus (MAT, >100 kb), and the MAT alleles from the two opposite mating-types show extensive nucleotide sequence divergence and chromosomal rearrangements, mirroring characteristics of sex chromosomes. Meiotic recombination was assumed to be repressed within the C. neoformans MAT locus. A previous study identified recombination hot spots flanking the C. neoformans MAT, and these hot spots are associated with high GC content. Here, we investigated a GC-rich intergenic region located within the MAT locus of C. neoformans to establish if this region also exhibits unique recombination behavior during meiosis. Population genetics analysis of natural C. neoformans isolates revealed signals of homogenization spanning this GC-rich intergenic region within different C. neoformans lineages, consistent with a model in which gene conversion of this region during meiosis prevents it from diversifying within each lineage. By analyzing meiotic progeny from laboratory crosses, we found that meiotic recombination (gene conversion) occurs around the GC-rich intergenic region at a frequency equal to or greater than the meiotic recombination frequency observed in other genomic regions. We discuss the implications of these findings with regards to the possible functional and evolutionary importance of gene conversion within the C. neoformans MAT locus and, more generally, in fungi.  相似文献   

3.
Dioecy is relatively rare in plants and sex determination systems vary among such species. A good example of a plant with heteromorphic sex chromosomes is hop (Humulus lupulus). The genotypes carrying XX or XY chromosomes correspond to female and male plants, respectively. Until now no clear cytogenetic markers for the sex chromosomes of hop have been established. Here, for the first time the sex chromosomes of hop are clearly identified and characterized. The high copy sequence of hop (HSR1) has been cloned and localized on chromosomes by fluorescence in situ hybridization. The HSR1 repeat has shown subtelomeric location on autosomes with the same intensity of the signal. The signal has been present in the subtelomeric region of the long arm and in the near-centromeric region but absent in the telomeric region of the short arm of the X chromosome. At the same time the signal has been found in the telomeric region only of the long arm of the Y chromosome. This finding indicates that the sex chromosomes of hop have evolved from a pair of autosomes via ancient translocation or inversion. The observation of the meiotic configuration of the sex bivalents shows the location of a pseudoautosomal region on the long arms of X and Y chromosomes.  相似文献   

4.
The pseudoautosomal boundary of mammalian sex chromosomes separates a low-recombination region (X- or Y-specific) from a high-recombination region (the pseudoautosomal region), providing a good opportunity to investigate the influence of recombination on molecular evolutionary processes. The mouse and human patterns of sequence variation, however, are discordant: a striking difference of GC-content and evolutionary rate was reported between the proximal and distal sides of the pseudoautosomal boundary in the mouse genome, whereas this difference was not found in the human genome. The paradox might be explained by the mirror histories of the pseudoautosomal boundary in the two species, and by the asymmetric nature of the forces driving GC-content evolution in mammalian genomes.  相似文献   

5.
Marsupial sex chromosomes are smaller than their eutherian counterparts and are thought to reflect an ancestral mammalian X and Y. The gene content of this original X is represented largely by the long arm of the human X chromosome. Genes on the short arm of the human X are autosomal in marsupials and monotremes, and represent a recent addition to the eutherian X and Y. The marsupial X and Y apparently lack a pseudoautosomal region and show only end-to-end pairing at meiosis. However, the sex chromosomes of macropodid marsupials (kangaroos and wallabies) are larger than the sex chromosomes of other groups, and a nucleolus organizer is present on the X and occasionally the Y. Chromosome painting using DNA from sorted and microdissected wallaby X and Y chromosomes reveals homologous sequences on the tammar X and Y chromosomes, concentrated on the long arm of the Y chromosome and short arm of the X. Ribosomal DNA sequences were detected by fluorescence in situ hybridization on the wallaby Xp but not the Y. Since no chiasmata have been observed in marsupial sex chromosomes, it is unlikely that these shared sequences act as a pseudoautosomal region within which crossing over may occur, but they may be required for end-to-end associations. The shared region of wallaby X and Y chromosomes bears no homology with the recently added region of the eutherian sex chromosomes, so we conclude that independent additions occurred to both sex chromosomes in a eutherian and macropodid ancestor, as predicted by the addition-attrition hypothesis of sex chromosome evolution. Received: 18 October 1996 / Accepted: 21 February 1997  相似文献   

6.
Sex-linked inheritance is a stark exception to Mendel’s Laws of Heredity. Here we discuss how the evolution of heteromorphic sex chromosomes (mainly the Y) has been shaped by the intricacies of the meiotic programme. We propose that persistence of Y chromosomes in distantly related mammalian phylogroups can be explained in the context of pseudoautosomal region (PAR) size, meiotic pairing strategies, and the presence of Y-borne executioner genes that regulate meiotic sex chromosome inactivation. We hypothesise that variation in PAR size can be an important driver for the evolution of recombination frequencies genome wide, imposing constraints on Y fate. If small PAR size compromises XY segregation during male meiosis, the stress of producing aneuploid gametes could drive function away from the Y (i.e., a fragile Y). The Y chromosome can avoid fragility either by acquiring an achiasmatic meiotic XY pairing strategy to reduce aneuploid gamete production, or gain meiotic executioner protection (a persistent Y). Persistent Ys will then be under strong pressure to maintain high recombination rates in the PAR (and subsequently genome wide), as improper segregation has fatal consequences for germ cells. In the event that executioner protection is lost, the Y chromosome can be maintained in the population by either PAR rejuvenation (extension by addition of autosome material) or gaining achiasmatic meiotic pairing, the alternative is Y loss. Under this dynamic cyclic evolutionary scenario, understanding the meiotic programme in vertebrate and invertebrate species will be crucial to further understand the plasticity of the rise and fall of heteromorphic sex chromosomes.Subject terms: Sexual selection, Genome, Cytogenetics, Evolutionary biology  相似文献   

7.
Comparative studies of genes in the pseudoautosomal region (PAR) of human and mouse sex chromosomes have thus far been very limited. The only comparisons that can presently be made indicate that the PARs of humans and mice are not identical in terms of gene content. Here we describe additional comparative studies of human pseudoautosomal genes and their mouse homologs. Using a somatic cell hybrid mapping panel, we have assigned the mouse homolog of the human pseudoautosomal interleukin 3 receptor alpha subunit (IL3RA) gene to mouse Chromosome (Chr) 14. Attempts to clone the mouse homolog of the human pseudoautosomal adenine nucleotide translocase-3 (ANT3) gene resulted in the isolation of the murine homologs of the human ANT1 and ANT2 genes. The mouse Ant1 and Ant2 genes are very similar in sequence to their human homologs, and we have mapped them to mouse Chromosomes (Chrs) (8 and X respectively) that exhibit conserved synteny with the chromosomes on which the human genes are located. In contrast, the homolog of ANT3 appears to be either very divergent or absent from the mouse genome. Southern blot analysis of DNA from a variety of mammalian species shows restricted conservation of human pseudoautosomal genes, a trend that also applies to the two cloned mouse homologs of these genes and to neighboring human genes in distal Xp22.3. Our observations combined with those of other workers lead us to propose a model for the evolution of the PAR that includes both rapid sequence evolution and the incremental reduction in size of the region during mammalian evolution. Received: 4 May 1995 / Accepted: 21 August 1995  相似文献   

8.
The mammalian X and Y chromosomes are thought to have evolved from a common, nearly homologous chromosome pair. Although there is little sequence similarity between the mouse or the human X and Y, there are several regions in which moderate to extensive sequence homologies have been found, including, but not limited to, the so-called pseudoautosomal segment, in which X-Y pairing and recombination take place. The steroid sulfatase gene is in the pseudoautosomal region of the mouse, but not in man. We have cloned and characterized the human STS X-encoded locus and a pseudogene that is present on the long arm of the Y chromosome. Our data in humans and other primates suggest that there has been a pericentric inversion of the Y chromosome during primate evolution that has disrupted the former pseudoautosomal arrangement of these genes. These results provide additional insight into the evolution of the sex chromosomes and into the nature of this interesting portion of the human genome.  相似文献   

9.
Synapsis and reciprocal recombination between sex chromosomes are restricted to the pseudoautosomal region. In some animal species, sex chromosomes do not present this region, although they utilize alternative mechanisms that ensure meiotic pairing and segregation. The subfamily Arvicolinae (Rodentia, Cricetidae) includes numerous species with achiasmate sex chromosomes. In order to know whether the mechanism involved in achiasmate segregation is an ancient feature in arvicolid species, we have compared the sex chromosomes of both the Mediterranean vole (Microtus duodecimcostatus) and the water vole (Arvicola terrestris). By means of immunofluorescence, we have found that sex chromosomes in M. duodecimcostatus are asynaptic and develop a synaptonemal complex-derived structure that mediates pairing and facilitates segregation. In A. terrestris, sex chromosomes are synaptic and chiasmate but also exhibit a synaptonemal complex-derived filament during anaphase I. Since phylogenetic relationships indicate that the synaptic condition is ancestral in arvicolids, this finding indicates that the mechanism for achiasmate sex chromosome segregation precedes the switching to the asynaptic condition. We discuss the origin of this synaptonemal complex-derived mechanism that, in turn, could counterbalance the disruption of homology in the sex chromosomes of those species.  相似文献   

10.
X-Y crossing over in the chimpanzee   总被引:2,自引:2,他引:0  
Summary Single-copy DNA sequences defining several pseudoautosomal loci on the human sex chromosomes are shown to be highly conserved in the genome of the chimpanzee. Segregation analysis of polymorphic pseudoautosomal probes in a chimpanzee pedigree revealed that the transmission of the paternal alleles was not strictly sex-linked. In situ hybridization localized the pseudoautosomal probe 29C1 specifically to Xp22-Xpter and to Yq12.2-Yqter on the chimpanzee sex chromosomes. Thus, our results demonstrate the existence of homologous segments on the chimpanzee X and Y chromosomes, which regularly undergo recombinatory exchange in male meiosis. The chimpanzee is now the third mammalian species, besides man and mouse, in which there is genetic evidence for a pseudoautosomal segment on the sex chromosomes.  相似文献   

11.

Background

The monotremes, represented by the duck-billed platypus and the echidnas, are the most divergent species within mammals, featuring a flamboyant mix of reptilian, mammalian and specialized characteristics. To understand the evolution of the mammalian major histocompatibility complex (MHC), the analysis of the monotreme genome is vital.

Results

We characterized several MHC containing bacterial artificial chromosome clones from platypus (Ornithorhynchus anatinus) and the short-beaked echidna (Tachyglossus aculeatus) and mapped them onto chromosomes. We discovered that the MHC of monotremes is not contiguous and locates within pseudoautosomal regions of two pairs of their sex chromosomes. The analysis revealed an MHC core region with class I and class II genes on platypus and echidna X3/Y3. Echidna X4/Y4 and platypus Y4/X5 showed synteny to the human distal class III region and beyond. We discovered an intron-containing class I pseudogene on platypus Y4/X5 at a genomic location equivalent to the human HLA-B,C region, suggesting ancestral synteny of the monotreme MHC. Analysis of male meioses from platypus and echidna showed that MHC chromosomes occupy different positions in the meiotic chains of either species.

Conclusion

Molecular and cytogenetic analyses reveal new insights into the evolution of the mammalian MHC and the multiple sex chromosome system of monotremes. In addition, our data establish the first homology link between chicken microchromosomes and the smallest chromosomes in the monotreme karyotype. Our results further suggest that segments of the monotreme MHC that now reside on separate chromosomes must once have been syntenic and that the complex sex chromosome system of monotremes is dynamic and still evolving.  相似文献   

12.
The ability to identify the sex of individuals from noninvasive samples can be a powerful tool for field studies. Amelogenin, a nuclear gene proximate to the pseudoautosomal region of mammalian sex chromosomes, has a 6 base-pair (bp) size difference between human X and Y chromosomes that can be PCR-amplified and sized to distinguish male from female DNA. We examined whether this test can be used to identify sex from different DNA sources across a number of nonhuman primate taxa. Using human amelogenin primers, we were able to amplify diagnostic products from the four great ape species tested, but products from five other primate species were not sexually dimorphic.  相似文献   

13.
In most eutherian mammals, sex chromosomes synapse and recombine during male meiosis in a small region called pseudoautosomal region. However in some species sex chromosomes do not synapse, and how these chromosomes manage to ensure their proper segregation is under discussion. Here we present a study of the meiotic structure and behavior of sex chromosomes in one of these species, the Mongolian gerbil (Meriones unguiculatus). We have analyzed the location of synaptonemal complex (SC) proteins SYCP1 and SYCP3, as well as three proteins involved in the process of meiotic recombination (RAD51, MLH1, and γ-H2AX). Our results show that although X and Y chromosomes are associated at pachytene and form a sex body, their axial elements (AEs) do not contact, and they never assemble a SC central element. Furthermore, MLH1 is not detected on the AEs of the sex chromosomes, indicating the absence of reciprocal recombination. At diplotene the organization of sex chromosomes changes strikingly, their AEs associate end to end, and SYCP3 forms an intricate network that occupies the Y chromosome and the distal region of the X chromosome long arm. Both the association of sex chromosomes and the SYCP3 structure are maintained until metaphase I. In anaphase I sex chromosomes migrate to opposite poles, but SYCP3 filaments connecting both chromosomes are observed. Hence, one can assume that SYCP3 modifications detected from diplotene onwards are correlated with the maintenance of sex chromosome association. These results demonstrate that some components of the SC may participate in the segregation of achiasmate sex chromosomes in eutherian mammals.  相似文献   

14.
MIC2: a human pseudoautosomal gene   总被引:2,自引:0,他引:2  
MIC2 and XGR are the only known pseudoautosomal genes in man. MIC2 encodes the 12E7 antigen, a human cell-surface molecule of unknown function. XGR regulates, in cis, the expression of the XG and MIC2 genes. DNA probes derived from the MIC2 locus have been used in the construction of a meiotic map of the pseudoautosomal region and a long range restriction map into the X- and Y-specific chromosome domains. MIC2 is the most proximal marker in the pseudoautosomal region and recombination between the sex chromsomes only rarely includes the MIC2 locus. Our long-range restriction maps and chromosome walking experiments have localized the pseudoautosomal boundary within 40 kilobases adjacent to the 3' end of the MIC2 gene. The same maps have been used to predict the chromosomal location of TDF.  相似文献   

15.
Several X-linked mutations that have associated sex chromosomal nondisjunction have been identified in the mouse. We describe a new semidominant X-linked mutation called patchy fur (Paf) that produces an abnormal coat. It maps to the distal end of the murine X chromosome very near the XY pseudoautosomal region. The degree of severity in affected mice is hemizygous males greater than homozygous females greater than heterozygous females. An unusual feature of Paf is that either the mutation itself or an inseparable chromosomal abnormality causes delayed disjunction of the X and Y chromosomes at meiotic metaphase I, which in turn results in approximately 19% XO progeny and slightly less than 1% XXY progeny from Paf/Y males. The effect occurs only in male carriers and thus must extend into the proximal end of the XY pairing region.  相似文献   

16.
17.
Outside the pseudoautosomal regions, the mammalian sex chromosomes are thought to have been genetically isolated for up to 350 million years. However, in humans pathogenic XY translocations occur in XY-homologous (gametologous) regions, causing sex-reversal and infertility. Gene conversion might accompany recombination intermediates that resolve without translocation and persist in the population. We resequenced X and Y copies of a translocation hotspot adjacent to the PRKX and PRKY genes and found evidence of historical exchange between the male-specific region of the human Y and the X in patchy flanking gene-conversion tracts on both chromosomes. The rate of X-to-Y conversion (per base per generation) is four to five orders of magnitude more rapid than the rate of Y-chromosomal base-substitution mutation, and given assumptions about the recombination history of the X locus, tract lengths have an overall average length of ∼100 bp. Sequence exchange outside the pseudoautosomal regions could play a role in protecting the Y-linked copies of gametologous genes from degeneration.  相似文献   

18.
Evolution of the pseudoautosomal boundary in Old World monkeys and great apes   总被引:12,自引:0,他引:12  
Mammalian sex chromosomes are divided into sex-specific and pseudoautosomal regions. Sequences in the pseudoautosomal region recombine between the sex chromosomes; the sex-specific sequences normally do not. The interface between sex-specific and pseudoautosomal sequences is the pseudoautosomal boundary. The boundary is the centromeric limit to recombination in the pseudoautosomal region. In man, an Alu repeat element is found inserted at the boundary on the Y chromosome. In the evolutionary comparison conducted here, the Alu repeat element is found at the Y boundary in great apes, but it is not found there in two Old World monkeys. During the evolution of the Old World monkey and great ape lineages, homology between the sex chromosomes was maintained by recombination in the sequences telomeric to the Alu insertion site. The Alu repeat element did not create the present-day boundary; instead, it inserted at the preexisting boundary after the Old World monkey and great ape lineages diverged.  相似文献   

19.
The pseudoautosomal regions of the human sex chromosomes   总被引:25,自引:0,他引:25  
In human females, both X chromosomes are equivalent in size and genetic content, and pairing and recombination can theoretically occur anywhere along their entire length. In human males, however, only small regions of sequence identity exist between the sex chromosomes. Recombination and genetic exchange is restricted to these regions of identity, which cover 2.6 and 0.4 Mbp, respectively, and are located at the tips of the short and the long arm of the X and Y chromosome. The unique biology of these regions has attracted considerable interest, and complete long-range restriction maps as well as comprehensive physical maps of overlapping YAC clones are already available. A dense genetic linkage map has disclosed a high rate of recombination at the short arm telomere. A consequence of the obligatory recombination within the pseudoautosomal region is that genes show only partial sex linkage. Pseudoautosomal genes are also predicted to escape X-inactivation, thus guaranteeing an equal dosage of expressed sequences between the X and Y chromosomes. Gene pairs that are active on the X and Y chromosomes are suggested as candidates for the phenotypes seen in numerical X chromosome disorders, such as Klinefelter's (47,XXY) and Turner's syndrome (45,X). Several new genes have been assigned to the Xp/Yp pseudoautosomal region. Potential associations with clinical disorders such as short stature, one of the Turner features, and psychiatric diseases are discussed. Genes in the Xq/Yq pseudoautosomal region have not been identified to date.  相似文献   

20.
The pseudoautosomal region (PAR) is a genomic segment on mammalian sex chromosomes where sequence homology mimics that seen between autosomal homologues. The region is essential for pairing and proper segregation of sex chromosomes during male meiosis. As yet, only human/chimp and mouse PARs have been characterized. The two groups of species differ dramatically in gene content and size of the PAR and therefore do not provide clues about the likely evolution and constitution of PAR among mammals. Here we characterize the equine PAR by i) isolating and arranging 71 BACs containing 129 markers (110 STS and 19 genes) into two contigs spanning the region, ii) precisely localizing the pseudoautosomal boundary (PAB), and iii) describing part of the contiguous X- and Y-specific regions. We also report the discovery of an approximately 200 kb region in the middle of the PAR that is present in the male-specific region of the Y (MSY) as well. Such duplication is a novel observation in mammals. Further, comparison of the equine PAR with the human counterpart shows that despite containing orthologs from an additional 1 Mb region beyond the human PAR1, the equine PAR is around 0.9 Mb smaller than the size of the human PAR. We theorize that the PAR varies in size and gene content across evolutionarily closely as well as distantly related mammals. Although striking differences like those observed between human and mouse may be rare, variations similar to those seen between horse and human may be prevalent among mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号