首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adult male Sprague-Dawley rats were treated with 3-acetylpyridine, a neurotoxin selective for the inferior olivary nucleus. Following treatment, the rats exhibited deficits in locomotor behavior indicative of destruction in the inferior olivary nucleus. The rats were sacrificed 3 weeks later, and the binding of 125I-sarcosine, isoleucine angiotensin II to brain homogenates and slide-mounted sections of brainstem was determined. Treatment with 3-acetylpyridine significantly decreased specific 125I-sarcosine, isoleucine angiotensin II binding in homogenates of posteroventral brainstem (containing the inferior olivary nucleus) by approximately 50%. Homogenates of dorsal brainstem and hypothalamus-thalamus-midbrain showed no significant changes in specific binding. Treatment with 3-acetylpyridine did not significantly alter the radioligand binding affinity which was determined in the hypothalamus-thalamus-midbrain. Autoradiographic analysis of 125I-sarcosine, isoleucine angiotensin II binding in the brainstem sections indicated that specific angiotensin II binding sites in the inferior olivary nucleus were virtually eliminated by the 3-acetylpyridine treatment. In addition, a comparatively small, but significant, decrease in specific 125I-sarcosine, isoleucine angiotensin II binding occurred in the solitary tract nucleus/dorsal vagal motor nucleus complex. These results indicate that specific angiotensin II binding sites in the inferior olivary nucleus occur exclusively on neuronal perikarya and/or dendrites.  相似文献   

2.
1. Binding sites for angiotensin II have been localized in forebrain and brain-stem areas of water-deprived and control Sprague-Dawley rats, employing autoradiography with computerized microdensitometry. 2. Angiotensin II receptor sites were identified in the organum vasculosum of the lamina terminalis, subfornical organ, paraventricular nucleus, median preoptic nucleus, area postrema, nucleus of the solitary tract, and inferior olive. 3. After dehydration a significant increases in the concentration of angiotensin II receptors was detected only in the subfornical organ. Although there was an increased concentration of angiotensin II binding sites in the organum vasculosum of the lamina terminalis, the median preoptic nucleus, and the paraventricular nucleus after dehydration, these changes did not reach statistical significance. Other brain nuclei investigated did not show differences in angiotensin II binding sites in the dehydrated rats compared to controls. 4. These results indicate that angiotensin II receptors in the subfornical organ may play an important role in fluid homeostasis during dehydration.  相似文献   

3.
Angiotensin II binding sites were localized and quantified in individual brain nuclei from single rats by incubation of tissue sections with 1 nM 125I-[Sar1]-angiotensin II, [3H]-Ultrofilm autoradiography, computerized microdensitometry and comparison with 125I-standards. High angiotensin II binding was present in the circumventricular organs (organon vasculosum laminae terminalis, organon subfornicalis and area postrema), in selected hypothalamic nuclei (nuclei suprachiasmatis, periventricularis and paraventricularis) and in the nucleus tractus olfactorii lateralis, the nucleus preopticus medianus, the dorsal motor nucleus of the vagus and the nucleus tractus solitarii. High affinity (KA from 0.3 to 1.5 X 10(9) M-1) angiotensin II binding sites were demonstrated in the organon subfornicalis, the nucleus tractus solitarii and the area postrema after incubation of consecutive sections from single rat brains with 125I-[Sar1]-angiotensin II in concentrations from 100 pM to 5 nM. These results demonstrate and characterize brain binding sites for angiotensin II of variable high affinity binding both inside and outside the blood-brain barrier.  相似文献   

4.
The angiotensin II receptor of cultured rat hepatocytes was characterized using [3H]angiotensin II as radioligand. Binding at 23 degrees C was rapid (t1/2 = 0.65 min) with equilibrium being reached in 10-12 min. At this time, binding was completely reversible after 20 min (t1/2 = 3.5 min), indicating negligible internalization of the ligand. Analysis of the saturation binding curve showed one population of binding sites with an apparent KD of 8.6 nM and a Bmax of 35 fmol/mg of protein. The time courses of association and dissociation were also consistent with one class of binding sites with an apparent kinetically derived KD of 7.7 nM. The order of potency of different agonists and antagonists to increase cytosolic Ca2+ or phosphorylase a or inhibit the effects of angiotensin II on these parameters was the same as for their mimicry or reversal of angiotensin II inhibition of glucagon-induced cAMP accumulation, and was well correlated with their order of potency to inhibit angiotensin II specific binding. Treatment of cultured hepatocytes with dithiothreitol caused a time- and concentration-dependent inhibition of angiotensin II binding and corresponding alterations of angiotensin II effects on phosphorylase and cAMP. It also inhibited the actions of other hormones on phosphorylase. These results indicate that hepatocytes contain a homogeneous population of angiotensin II receptors that are coupled to two different biological effects apparently mediated by different G-proteins.  相似文献   

5.
High affinity binding sites for angiotensin II in bovine and rat brain membranes have been identified and characterized using monoiodinated Ile5-angiotensin II of high specific radioactivity. Degradation of labeled and unlabeled peptide by washed brain particulate fractions was prevented by adding glucagon to the final incubation medium and including a proteolytic enzyme inhibitor (phenylmethylsulfonyl fluoride) in preincubation and incubation procedures. 125I-Angiotensin II binding can be studied using either centrifugation or filtration techniques to separate tissue-bound radioactivity. 125I-Angiotensin II binding to calf brain membranes is saturable and reversible, with a dissociation binding constant of 0.2 nM at 37 degrees. A similar binding constant is found in rat brain membranes. Analogues and fragments of angiotensin II compete for these brain binding sites with potencies which correlate with both their in vivo potencies and their binding inhibition protencies at adrenal cortex angiotensin II receptors. Angiotensin I is 1 to 2 orders of magnitude weaker than angiotensin II; the 3-8 hexapeptide and 4-8 pentapeptide are much weaker still. (desAsp1) angiotensin II (angiotensin III) is slightly more potent than angiotensin II, as are several antagonists of angiotensin II with aliphatic amino acids substituted at position 8. In calf brain 125I-angiotensin II binding is restricted almost exclusively to the cerebellum (cortex and deep nuclei). In rat brain, angiotensin II binding is highest in the thalamus-hypothalamus, midbrain, and brainstem, areas which are believed to be involved in mediating angiotensin II-induced central effects. These findings illustrate the presence of high affinity specific binding sites for angiotensin II in rat and bovine brain and suggest a physiological role for angiotensin peptides in the central nervous system.  相似文献   

6.
R C Speth  T T Dinh  S Ritter 《Peptides》1987,8(4):677-685
Angiotensin II (Ang II) receptor binding sites in the dorsomedial medulla of intact and unilaterally nodose ganglionectomized rats were identified and characterized using 125I-sarcosine,isoleucine Ang II. This radioligand bound saturably and with high affinity to rat brain homogenates and to sections of rat brainstem. Specific (1 microM angiotensin II displaceable) binding of 125I-sarcosine,isoleucine Ang II was displaced by angiotensin analogues with a potency order similar to that described for angiotensin II receptors. Unilateral nodose ganglionectomy caused a reduction in Ang II receptor binding in the medial solitary tract nucleus, dorsal motor nucleus of the vagus, and area postrema ipsilateral to the lesioned ganglion. This observation suggests that Ang II receptors in the dorsomedial medulla may be located on axon terminals of vagal afferents and cell bodies of vagal efferents.  相似文献   

7.
Angiotensin II receptor agonist (125I-angiotensin II) and antagonist (125I-[Sar1,Ile8]angiotensin II) bind in a specific and saturable manner to rat ovarian membranes. Agonist and antagonist binding affinity (KD approximately 0.5 nM) and the number of sites estimated (Bmax approximately 60 fmol/mg of protein) were similar. Dissociation of receptor-bound agonist was more rapid than the dissociation of receptor-bound antagonist, and agonist, but not antagonist, dissociation from the receptor was accelerated by GTP gamma S. A 0-150 mM increase in Na+ produced a 27% increase in the KD of agonist binding. Antagonist binding was not modified by Na+. These studies suggest that both agonist and antagonist identify putative angiotensin II receptors in the ovary but that the properties of agonist and antagonist binding are distinct. Angiotensin II antagonist binding sites are present on the granulosa cell layer of rat ovarian follicles (Speth, R. C., Bumpus, F. M., and Husain, A. (1986) Eur. J. Pharmacol. 130, 351-352). To determine the role of angiotensin II in ovarian function, we examined angiotensin II receptors and function during the onset of puberty. High affinity and low capacity angiotensin II receptors were present in ovaries from immature rats. After pregnant mare's serum gonadotropin induced ovulation in immature rats, antagonist binding to total ovarian membranes increased over 3-fold. In vitro incubation of peripubertal ovaries with 1 microM angiotensin II produced a stimulation of estrogen, but not progesterone, secretion. This steroidogenic effect of angiotensin II was most pronounced in the luteal phase of the estrus cycle. These studies point toward the involvement of angiotensin II in the regulation of ovarian function, possibly through modulation of follicular estrogen levels.  相似文献   

8.
Sim MK  Min L 《Regulatory peptides》2005,129(1-3):133-137
The binding of 125I-[Sar1,Ile8]angiotensin II and 125I-angiotensin II to ventricular membranes of rat heart was studied. Displacement of bound 125I-[Sar1,Ile8]angiotensin II by its cold equivalents, angiotensin I, angiotensin II, angiotensin III, des-aspartate-angiotensin I, losartan, PD123319 and CGP42112B supports the presence of the AT1 and the near absence of the AT2 angiotensin receptor in adult rat ventricle. The presence of binding sites for des-aspartate-angiotensin I could account for its reported cardioprotective actions. Binding of 125I-angiotensin II but not that of 125I-[Sar1,Ile8]angiotensin II was partially displaced by GppNHp suggesting that a portion of the receptor population was in the active state with dissociated G-protein. Saturation experiments carried out in the absence and presence of 1 mM GppNHp showed similar magnitude of decrease in the number of receptors (Bmax from 26.2+/-1.3 to 15.7+/-1.1 fmol/mg protein) in [125I]-angiotensin II binding. However, the guanine nucleotide had no effect on the binding of 125I-[Sar1,Ile8]angiotensin II as has also been reported elsewhere, and may suggest that Sar1-Ile8-angiotensin II, being a partial agonist, binds to both the G-protein coupled and uncoupled states of the angiotensin receptors. The present study demonstrates that des-aspartate-angiotensin I binds to angiotensin receptors in the heart, and provides further evidence for its involvement in the pathophysiology of the organ.  相似文献   

9.
Specific binding sites for angiotensin II (Ang II) were localized in the red pulp of the spleen of rats and mice by quantitative autoradiography using 125I-Sar1-Ang II as a ligand. In the rat, the binding was saturable and specific, and the rank order for Ang II derivatives as competitors of 125I-Sar1-Ang II binding correlates well with their affinity for Ang II receptors in other tissues. Kinetic analysis in the rat spleen revealed a single class of binding sites with a KD of 1.11 nM and a Bmax value of 81.6 fmol/mg protein. Ang II binding sites were also localized on isolated rat spleen cells with similar affinity but with much lower Bmax, 9.75 fmol/mg protein. Ang II receptors were not detected in thymus sections from rats or mice, or on isolated rat thymocytes. The binding sites described here might represent a functional Ang II receptor with a role in the regulation of splenic volume and blood flow and in the modulation of the lymphocyte function.  相似文献   

10.
1. Angiotensin II receptors have been studied by quantitative autoradiography in selected brain areas of young (2-week-old) and adult (8-week-old) rats. 2. In young rats, angiotensin II receptors were present in brain areas which did not express receptors in the adult brain, such as thalamic nuclei, cortical areas, and the cerebellum. 3. Young rats had more angiotensin II receptors in the subfornical organ than adult rats. In the inferior olive, the number of angiotensin receptors in young animals was 10 times higher than that in adult rats. Angiotensin II binding in the inferior olive was insensitive to incubation in the presence of dithiothreitol. 4. Conversely, the number of angiotensin II receptors in the nucleus of the solitary tract was lower in young rats compared to adults. Incubation in the presence of dithiothreitol resulted in a more than 90% inhibition of angiotensin II binding in the nucleus of the solitary tract. 5. Our results indicate the presence of two types of angiotensin II receptor in brain, one sensitive (type 1) and one insensitive (type 2) to the reducing agent dithiothreitol. 6. The expression of type 2 angiotensin II receptors, insensitive to dithiothreitol, is more marked in young rats, indicating a role for this type of angiotensin receptors in brain development.  相似文献   

11.
Effect of aldosterone on vascular angiotensin II receptors in the rat   总被引:3,自引:0,他引:3  
The effect of aldosterone on the density and affinity of binding sites for 125I-labelled angiotensin II was investigated in a particulate fraction prepared from the rat mesenteric arteriolar arcades. The infusion of aldosterone 6.6 micrograms/h intraperitoneally via Alzet osmotic minipumps for 6 d produced an increase in the density of binding sites for 125I-labelled angiotensin II without change in affinity. After sodium depletion, mesenteric artery angiotensin II receptors were down-regulated as expected. An increase in the number of binding sites could be found when aldosterone was infused into sodium-depleted rats with no change in the elevated plasma renin activity. The intraperitoneal infusion of angiotensin II (200 ng X kg-1 X min-1 for 6 d) simultaneously with aldosterone resulted in down-regulation of vascular angiotensin II receptors, whereas after intravenous angiotensin II infusion (at 60 ng X kg-1 X min-1) the density of angiotensin II binding sites rose with aldosterone infusion. Plasma renin activity (PRA) was reduced and plasma angiotensin II increased in a dose-dependent fashion after angiotensin II infusion. An aldosterone concentration of 3 ng/mL for 18 h produced an increase in the number of angiotensin II binding sites in rat mesenteric artery smooth muscle cells in culture. We conclude that increased plasma aldosterone may result in up-regulation of vascular angiotensin II receptors independently of changes in plasma renin activity, and may in certain physiological states effectively antagonize the down-regulating action of angiotensin II.  相似文献   

12.
Summary The distribution of binding sites for atrial natriuretic factor (ANF) and angiotensin II (A II) was investigated in the central nervous system (CNS) of the clawed toad Xenopus laevis by means of in vitro autoradiography using [125I]-rat ANF(99–126) or [125I] [Val5] A II and [125I]human A II as labeled ligands. The highest densities of specific ANF-binding were detected in the nucleus habenularis, thalamic regions, hypophyseal pars nervosa and nucleus interpeduncularis. Moderate ANF-binding was found in the bulbus olfactorius, pallium, septum, striatum, lateral forebrain bundle, nucleus infundibularis, hypophyseal pars distalis and tectum. The highest levels of specific A II binding sites were observed in the nucleus praeopticus, nucleus habenularis, hypophyseal pars nervosa and pars distalis, whereas the amygdala contained moderate A II binding. The existence of specific binding sites for ANF and A II in the CNS of Xenopus laevis suggests that both peptides act as neurotransmitters or neuromodulators in the amphibian CNS. The co-localization of dense binding sites for both peptides in the nucleus habenularis, hypophyseal pars nervosa and pars distalis supports the view that ANF and A II have opposite regulatory functions in these regions.  相似文献   

13.
Angiotensin II increased PGE2 release from superfused glomeruli, and stimulated labeled inositol phosphate production. 12-O-Tetradecanoyl phorbol -13-acetate (TPA, 10(-7) M), which stimulates protein kinase C activity in soluble fractions of glomerular homogenates, suppressed angiotensin II actions on inositol phosphate production and PGE2. By contrast, 4a phorbol 12,13 di-decanoate and phorbol had no effect on protein kinase C activity or angiotensin II induced increases in inositol phosphate or PGE2. 1-(5-Isoquinolinyl)-2-methylpiperazine (H-7), which inhibits protein kinase C activity in soluble fractions of glomerular homogenates, prevented TPA induced suppression of angiotensin II actions on inositol phosphate production and PGE2. Moreover H-7 prolonged the time course of angiotensin II induced inositol phosphate production and enhanced angiotensin II actions on glomerular PGE2 production. The results support a role for inositol phospholipid hydrolysis through the phospholipase C pathway in the mediation of angiotensin II actions on PGE2 in glomeruli and are consistent with negative modulation of these actions by protein kinase C.  相似文献   

14.
A single class of high-affinity binding sites for [125I]angiotensin III and [125I]angiotensin II were found in rat adrenal medulla and zona glomerulosa by quantitative autoradiography. In the medulla, Kd were 1.46 and 1.16 nM, and Bmax 1700 and 1700 fmol/mg protein, for [125I]angiotensin II and [125I]angiotensin III, respectively. In the zona glomerulosa, Kd were 0.86 and 0.90 nM, and Bmax 790 and 560 fmol/mg protein, for [125I]angiotensin II and [125I]angiotensin III, respectively. Unlabeled angiotensin III and angiotensin II displaced [125I]angiotensin III with similar potency in both adrenal zona glomerulosa and medulla. Our findings suggest that angiotensin III and angiotensin II might share the same binding sites in adrenal gland and support the hypothesis of a role for angiotensin III in the adrenal medulla and zona glomerulosa.  相似文献   

15.
The effects of estradiol and progesterone on the binding of rat placental angiotensin II receptors were examined. Sex steroid (progesterone estradiol plus progesterone) decreased the total number of rat placental angiotensin II receptors, while sex steroid (estradiol plus progesterone) increased angiotensin levels. Our present results suggest that sex steroids may play an important role in the control of the number of the angiotensin binding sites during pregnancy.  相似文献   

16.
Moulik S  Speth RC  Rowe BP 《Life sciences》2000,66(16):PL233-PL237
In vitro receptor autoradiography was performed on rat brain and kidney sections stored frozen at -20 degrees C for extended time periods (17, 40, 64, 121, 183, 251, and 333 days). The results indicate that prolonged tissue storage has a differential effect upon 125I sar1ile8 angiotensin II binding to AT1 and AT2 receptor sites. Binding at AT1 receptor rich tissues studied (renal medulla, renal cortex, anterior pituitary, ventral hippocampus, spinal trigeminal nucleus, and nucleus of the solitary tract) shows a first order exponential decay pattern. The logarithmic linear regression slope (log(e) specific binding versus time), is significantly different from zero (p<0.05) in all AT1 rich tissues except for nucleus of the solitary tract (p=0.086). There is no detected loss of 125I sar1ile8 angiotensin II binding at the AT2 prominent regions in the superior colliculus, medial geniculate nucleus, and the inferior olivary nucleus. The half lives of AT1 receptors are highly variable, ranging from 36 days in the anterior pituitary to 442 days in the nucleus of the solitary tract, and this might be related to variable stability of AT1A and AT1B receptors. These observations should be taken into account when assessing and comparing AT1 and AT2 receptor subtype densities.  相似文献   

17.
Light microscopic autoradiographic techniques have been utilized to demonstrate specific regions of the rat and dog kidney where angiotensin II receptors exist. Slide mounted tissue sections were labeled with [125I]-angiotensin II using conditions which provided for highly specific binding. These angiotensin II binding sites were localized to several distinct renal structures. In the renal cortex, angiotensin II binding sites were found concentrated in all parts of the glomeruli including the vascular components, the macula densa and the juxtaglomerular apparatus. Angiotensin II binding in the medulla was more diffusely associated with the vasa recta, and to a lesser extent, the thick ascending segment of the loop of Henle. Binding sites specific for angiotensin II were also found in the smooth muscle laminae of the ureter. Scatchard analysis of the binding kinetics allowed the demonstration of two subpopulations of binding sites which differ slightly in their affinities for [125I]-angiotensin II. These subpopulations appear to be associated with distinct components of the renal structure.  相似文献   

18.
Specific binding sites of high affinity and low capacity for 125I-angiotensin II have been identified in a membrane fraction derived from arterial arcades of the rat mesentery. Heterogeneity of binding sites and extensive tracer degradation necessitated the use of nonlinear regression methods for the analysis of radioligand binding data. Forward and reverse rate constants for the high affinity sites obtained by three experimental approaches were in good agreement and gave a dissociation equilibrium constant (Kd) of 19-74 pM (95% confidence interval). Affinities for a number of angiotensin-related peptides calculated from competitive binding curves were in the order 125I-angiotensin II = angiotensin II greater than angiotensin III greater than [Sar1,Ile8]angiotensin II greater than [Sar1,Gly8]angiotensin II. Angiotensin I and biochemically unrelated peptides had virtually no effect on binding of tracer angiotensin II. The divalent cations Mn2+, Mg2+ and Ca2+ stimulated 125I-angiotensin II binding at concentrations of 2-10 mM, as did Na+ at 50-100 mM. In the presence of Na+ or Li+, K+ had a biphasic effect. The chelating agents EDTA and EGTA were inhibitory, as were the thiol reagents dithiothreitol and cysteine. This study defined angiotensin II binding sites in a vascular target tissue of sufficiently high affinity to interact rapidly with plasma angiotensin II at physiological concentrations.  相似文献   

19.
Radiolabelled angiotensin II binds to a single class of high-affinity binding sites on purified rabbit hepatic membranes. The binding is specific, reversible and saturable. Displacement studies using angiotensin and various analogs of angiotensin II disclosed a structure-activity profile similar to that found in physiologically relevant angiotensin II receptor sites. Treatment of membranes with the reducing agent, dithiothreitol, cause a significant decrease in the affinity of angiotensin II binding sites for the native ligand. This effect is mimicked by a 15-fold higher concentration of the monosulfhydryl derivative, 2-mercaptoethanol. Kinetic studies also indicated that dithiothreitol increases the rate of dissociation of bound ligand from the membrane without significantly affecting the association rate. In contrast, treatment of membranes with the metal chelators, ethylenediaminetetracetic acid (EDTA) and ethyleneglycol bis(β-aminoethyl ether)-N,N′-tetracetic acid (EGTA), does not affect the binding of radiolabeled angiotensin II. Furthermore, dithiothreitol inhibited the binding of angiotensin II to a solubilized partially purified preparation of angiotensin II-binding protein from the same tissue and also increased the dissociation of bound angiotensin II. This indicates that the effect of the sulfhydryl reagents on the membrane binding sites is the result of a direct alteration of the binding sites rather than a gross modification of the structure of the membrane.  相似文献   

20.
Atrial natriuretic peptides exert actions on many key organs involved in blood pressure and water and electrolyte balance. Many of these actions result in a physiological antagonism of angiotensin. To investigate the morphological basis of this interaction, we have mapped the distribution of receptors for atrial natriuretic peptide and angiotensin II in a number of target organs, using 125I-labelled rat atrial natriuretic peptide (99-126) and 125I-labelled [Sar1,Ile8]angiotensin II. In the kidney both atrial natriuretic peptide and angiotensin II receptors were observed overlying glomeruli, vasa recta bundles (high densities), and the outer cortex (moderate density). In the other tissues studied, atrial natriuretic peptide and angiotensin II receptors were codistributed in the adrenal zona glomerulosa, cerebral circumventricular organs including the subfornical organ, organum vasculosum of the lamina terminalis and area postrema, and the external plexiform layer of the olfactory bulb. The concurrent distribution of specific receptors for both peptides at these sites provides the basis for atrial natriuretic peptide to exert a functional antagonism of the actions of angiotensin II on blood pressure and water and electrolyte homeostasis at multiple sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号