首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neuronal activity triggers calcium waves in hippocampal astrocyte networks.   总被引:26,自引:0,他引:26  
J W Dani  A Chernjavsky  S J Smith 《Neuron》1992,8(3):429-440
The recent discovery that the neurotransmitter glutamate can trigger actively propagating Ca2+ waves in the cytoplasm of cultured astrocytes suggests the possibility that synaptically released glutamate may trigger similar Ca2+ waves in brain astrocytes in situ. To explore this possibility, we used confocal microscopy and the Ca2+ indicator fluo-3 to study organotypically cultured slices of rat hippocampus, where astrocytic and neuronal networks are intermingled in their normal tissue relationships. We find that astrocytic Ca2+ waves are present under these circumstances and that these waves can be triggered by the firing of glutamatergic neuronal afferents with latencies as short as 2 s. The Ca2+ waves closely resemble those previously observed in cultured astrocytes: they propagate both within and between astrocytes at velocities of 7-27 microns/s at 21 degrees C. The ability of tissue astrocyte networks to respond to neuronal network activity suggests that astrocytes may have a much more dynamic and active role in brain function than has been generally recognized.  相似文献   

2.
Astrocytes produce a complex repertoire of Ca2+ events that coordinate their major functions. The principle of Ca2+ events integration in astrocytes, however, is unknown. Here we analyze whole Ca2+ events, which were defined as spatiotemporally interconnected transient Ca2+ increases. Using such analysis in single hippocampal astrocytes in culture and in slices we found that spreads and durations of Ca2+ events follow power law distributions, a fingerprint of scale-free systems. A mathematical model demonstrated that such Ca2+ dynamics can arise from intracellular inositol-3-phosphate diffusion. The power law exponent (α) was decreased by activation of metabotropic glutamate receptors (mGluRs) either by specific receptor agonist or by low frequency stimulation of glutamatergic fibers in hippocampal slices. Decrease in α indicated an increase in proportion of large Ca2+ events. Notably, mGluRs activation did not increase the frequency of whole Ca2+ events. This result suggests that neuronal activity does not trigger new Ca2+ events in astrocytes (detectable by our methods), but modulates the properties of existing ones. Thus, our results provide a new perspective on how astrocyte responds to neuronal activity by changing its Ca2+ dynamics, which might further affect local network by triggering release of gliotransmitters and by modulating local blood flow.  相似文献   

3.
Close to two decades of research has established that astrocytes in situ and in vivo express numerous G protein-coupled receptors (GPCRs) that can be stimulated by neuronally-released transmitter. However, the ability of astrocytic receptors to exhibit plasticity in response to changes in neuronal activity has received little attention. Here we describe a model system that can be used to globally scale up or down astrocytic group I metabotropic glutamate receptors (mGluRs) in acute brain slices. Included are methods on how to prepare parasagittal hippocampal slices, construct chambers suitable for long-term slice incubation, bidirectionally manipulate neuronal action potential frequency, load astrocytes and astrocyte processes with fluorescent Ca2+ indicator, and measure changes in astrocytic Gq GPCR activity by recording spontaneous and evoked astrocyte Ca2+ events using confocal microscopy. In essence, a “calcium roadmap” is provided for how to measure plasticity of astrocytic Gq GPCRs. Applications of the technique for study of astrocytes are discussed. Having an understanding of how astrocytic receptor signaling is affected by changes in neuronal activity has important implications for both normal synaptic function as well as processes underlying neurological disorders and neurodegenerative disease.  相似文献   

4.
Cultured rat cerebellar astrocytes, loaded with the Ca2+-sensitive fluorescent dyes Fura-2 or Fluo-3, responded with cytoplasmic Ca2+ transients, when the external K+ concentration was reduced from 5 mM to below 1 mM. Ca2+ transients were generated after changing to a saline containing 0.2 mM K+ in 82% of the cells (n =303) with a delay of up to 4 min. Cultured rat cortical neurones, which responded in high-K+ saline (50 mM) with Ca2+ transients, showed no Ca2+ responses in low K+ (n =22). In acute rat hippocampal brain slices, presumed glial cells responded with Ca2+ transients in low K+ similar to astrocytes in culture (88%, n =17). The Ca2+ transients were observed both in somatic and dendritic regions of cultured astrocytes, as examined with confocal laser scanning microscopy. Patch-clamped astrocytes hyperpolarized in 0.2 mM K+ from an average resting potential of -65 +/- 4 mV to -98 +/- 20 mV (n =15). The Ca2+ transients in low K+ were suppressed in Ca2+-free saline, buffered with 0.5 mM EGTA, but not after depletion of intracellular Ca2+ stores by thapsigargin, cyclopiazonic acid or by Ruthenium Red, indicating that they were due to Ca2+ influx into the cells, and not caused by intracellular Ca2+ release. The addition of different divalent cations revealed that Ba2+, but not Ni2+, Cd2+, Sr2+ or Mg2+, reversibly blocked the Ca2+ transients in low K+. There was a significant reduction of the Ca2+ responses at micromolar Ba2+ concentrations (Ki = 3.8 microM). The application of different K+ channel blockers, tetraethylammonium, dequalinium, tolbutamide, clotrimazole, or quinidine had no effect on the Ca2+ responses. Removal of external Na+, or intracellular acidification by the addition of 40 mM propionate to the saline, had also no influence on the generation of the Ca2+ transients. The results suggest that reducing the external K+ concentration elicits a Ca2+ influx into rat astrocytes which is highly sensitive to Ba2+. It is discussed that this Ca2+ influx might occur through K+ inward rectifier channels, which become Ca2+-permeable when the extracellular K+ concentration decreases to 1 mM or below.  相似文献   

5.
The relative contribution of voltage-sensitive Ca2+ channels, Ca(2+)-ATPases, and Ca2+ release from intracellular stores to spontaneous oscillations in cytosolic free Ca2+ concentration ([Ca2+]i) observed in secretory cells is not well characterized owing to a lack of specific inhibitors for a novel thapsigargin (Tg)-insensitive Ca(2+)-ATPase expressed in these cells. We show that spontaneous [Ca2+]i oscillations in GH3 cells were unaffected by Ca2+ depletion in inositol-1,4,5-trisphosphate (IP3)-sensitive Ca2+ stores by the treatment of Tg, but could be initiated by application of caffeine. Moreover, we demonstrate for the first time that these spontaneous [Ca2+]i oscillations were highly temperature dependent. Decreasing the temperature from 22 to 17 degrees C resulted in an increase in the frequency, a reduction in the amplitude, and large inhibition of [Ca2+]i oscillations. Furthermore, the rate of ATP-dependent 45Ca2+ uptake into GH3-derived microsomes was greatly reduced at 17 degrees C. The effect of decreased temperatures on extracellular Ca2+ influx was minor because the frequency and amplitude of spontaneous action potentials, which activate L-type Ca2+ channels, was relatively unchanged at 17 degrees C. These results suggest that in GH3 secretory cells, Ca2+ influx via L-type Ca2+ channels initiates spontaneous [Ca2+]i oscillations, which are then maintained by the combined activity of Ca(2+)-ATPase and Ca(2+)-induced Ca2+ release from Tg/IP3-insensitive intracellular stores.  相似文献   

6.
Fast excitatory neurotransmission is mediated by activation of synaptic ionotropic glutamate receptors. In hippocampal slices, we report that stimulation of Schaffer collaterals evokes in CA1 neurons delayed inward currents with slow kinetics, in addition to fast excitatory postsynaptic currents. Similar slow events also occur spontaneously, can still be observed when neuronal activity and synaptic glutamate release are blocked, and are found to be mediated by glutamate released from astrocytes acting preferentially on extrasynaptic NMDA receptors. The slow currents can be triggered by stimuli that evoke Ca2+ oscillations in astrocytes, including photolysis of caged Ca2+ in single astrocytes. As revealed by paired recording and Ca2+ imaging, a striking feature of this NMDA receptor response is that it occurs synchronously in multiple CA1 neurons. Our results reveal a distinct mechanism for neuronal excitation and synchrony and highlight a functional link between astrocytic glutamate and extrasynaptic NMDA receptors.  相似文献   

7.
COS-1 cells with heterologeous expression of the Kir4.1 (KCNJ10) channel subunit, possess functional Kir4.1 channels and become capable to generating cytosolic Ca2+ transients, upon lowering of the extracellular K+ concentration to 2 mM or below. These Ca2+ transients are blocked by external Ba2+ (100 microM). Acute brain stem slices from wild-type mice (second post-natal week), which were loaded with the fluorescent Ca2+ indicator Oregon Green BAPTA-1-AM, were exposed to 0.2 mM K+. Under these conditions astrocytes, but not neurons, responded with cytosolic Ca2+ elevations in wild-type mice. This astrocyte-specific response has previously been used to identify astroglial cells type [R. Dallwig, H. Vitten, J.W. Deitmer, A novel barium-sensitive calcium influx into rat astrocytes at low external potassium. Cell Calcium 28 (2000) 247-259]. In Kir4.1 knock-out (Kir4.1-/-) mice, the number of responding cells was dramatically reduced and the Ca2+ transients in responding cells were significantly smaller than in wild-type mice. Our results indicate that Kir4.1 channels are the molecular substrate for the observed Ca2+ influx in astrocytes under conditions of low external K+-concentration.  相似文献   

8.
Recent findings suggest that astrocytes respond to neuronally released neurotransmitters with Ca2+ elevations. These Ca2+ elevations may trigger astrocytes to release glutamate, affecting neuronal activity. Neuronal activity is also affected by modulatory neurotransmitters that stimulate G protein-coupled receptors. These neurotransmitters, including acetylcholine and histamine, might affect neuronal activity by triggering Ca2+-dependent release of neurotransmitters from astrocytes. However, there is no physiological evidence for histaminergic or cholinergic receptors on astrocytes in situ. We asked whether astrocytes have these receptors by imaging Ca2+-sensitive dyes sequestered by astrocytes in hippocampal slices. Our results show that immunocytochemically identified astrocytes respond to carbachol and histamine with increases in intracellular free Ca2+ concentration. The H1 histamine receptor antagonist chlorpheniramine inhibited responses to histamine. Similarly, atropine and the M1-selective muscarinic receptor antagonist pirenzepine inhibited carbachol-elicited responses. Astrocyte responses to histamine and carbachol were compared with responses elicited by alpha1-adrenergic and metabotropic glutamate receptor agonists. Individual astrocytes responded to different subsets of receptor agonists. Ca2+ oscillations were the prevalent response pattern only with metabotropic glutamate receptor stimulation. Finally, functional alpha1-adrenergic receptors and muscarinic receptors were not detected before postnatal day 8. Our data show that astrocytes have acetylcholine and histamine receptors coupled to Ca2+. Given that Ca2+ elevations in astrocytes trigger neurotransmitter release, it is possible that these astrocyte receptors modulate neuronal activity.  相似文献   

9.
Pathological conditions in the brain, such as ischemia, trauma and seizure are accompanied by increased levels of free n-6 and n-3 polyunsaturated fatty acids (PUFA), mainly arachidonic acid (AA, 20:4n-6) and docosahexaenoic acid (DHA, 22:6n-3). A neuroprotective role has been suggested for PUFA. For investigation of the potential molecular mechanisms involved in neuroprotection by PUFA, we studied the regulation of the concentration of intracellular Ca2+ ([Ca2+]i) in rat brain astrocytes. We evaluated the presence of extracellular PUFA and the release of intracellular PUFA. Interestingly, only the constitutive brain PUFA AA and DHA, but not eicosapentaenoic acid (EPA) had prominent effects on intracellular Ca2+. AA and DHA suppressed [Ca2+]i oscillation, inhibited store-operated Ca2+ entry, and reduced the amplitudes of Ca2+ responses evoked by agonists of G protein-coupled receptors. Moreover, prolonged exposure of astrocytes to AA and DHA brought the cells to a new steady state of a moderately elevated [Ca2+]i level, where the cells became virtually insensitive to external stimuli. This new steady state can be considered as a mechanism of self-protection. It isolates disturbed parts of the brain, because AA and DHA reduce pathological overstimulation in the tissue surrounding the damaged area. In inflammation-related events, frequently AA and DHA exhibit opposite effects. However, in astrocytes AA and DHA exerted comparable effects on [Ca2+]i. Extracellularly added AA and DHA, but not EPA, were also able to induce the release of [3H]AA from prelabeled astrocytes. Therefore, we also suggest the involvement of phospholipase A2 activation and lysophospholipid generation in the regulation of intracellular Ca2+ in astrocytes.  相似文献   

10.
Intracellular microelectrode recordings were used to determine whether nitric oxide (NO), affects the pacemaker events that initiate vasomotion in lymphatic vessels of the guinea pig mesentery. This pacemaker activity is recorded as spontaneous transient depolarizations (STDs) and is likely to arise through synchronized Ca2+ release from intracellular stores. We show here that acetylcholine-induced endothelium-derived NO and exogenous NO released by sodium nitroprusside (SNP; 100 microM) and DEA-NONOate (500 microM) reduced the frequency and amplitude of STDs. This inhibition of STD frequency and amplitude was independent of the NO-induced hyperpolarization of the smooth muscle. The SNP-induced inhibition of STD frequency and amplitude was abolished during superfusion with the soluble guanylyl cyclase inhibitor ODQ (10 microM) and was diminished in the presence of cGMP and cAMP-dependent protein kinase inhibitors. The data are consistent with the hypothesis that NO inhibits vasomotion primarily by production of cGMP and activation of both cGMP- and cAMP-dependent protein kinases, which reduce the size and frequency of STDs, probably by acting on the underlying synchronized Ca2+ release from intracellular stores.  相似文献   

11.
Nicotinic acid adenine dinucleotide phosphate (NAADP+) has been identified as a novel second messenger triggering Ca2+ release from intracellular stores. Here we report that murine cortical astrocytes in culture and in acute slices respond with transient intracellular Ca2+ increases to extracellularly applied NAADP+ and express the NAADP+-producing enzyme CD38. The Ca2+ transients triggered by NAADP+ occurred with an average delay of 35 s as compared with ATP-triggered Ca2+ signaling, suggesting that NAADP+ may have to enter the cell to act. Blockage of connexin hemichannels (a possible entry route for NAADP+ into the cell) reduced the number of astrocytes responding to NAADP+. Disruption of lysosomes as the suggested site of NAADP+ receptors reduced the number of astrocytes responding to NAADP+ strongly. The NAADP+-triggered Ca2+ signal also depended on intact endoplasmic reticulum Ca2+ stores linked to activation of inositol 1,4,5-trisphosphate receptors and on the activity of voltage-gated Ca2+ channels. Adenosine receptor-mediated signaling contributes to the NAADP+-evoked signal, since it is strongly reduced by the adenosine receptor blocker CGS-15943. Moreover, NAADP+ triggered responses in all other cell types (cultured cerebellar neurons, microglia, and oligodendrocytes) of the central nervous system.  相似文献   

12.
Abstract: The effects of nitric oxide (NO)-generating agents on 45Ca2+ uptake in rat brain slices and cultured rat astrocytes were studied in the presence of monensin, which is considered to drive the Na+-Ca2+ exchanger in the reverse mode. Sodium nitroprusside (SNP) at >10 µ M increased monensin-stimulated Ca2+ uptake in the slices, although it did not affect high K+-stimulated Ca2+ uptake. Another NO donor, 3-morpholinosydnonimine, was effective. The effect of SNP was antagonized by hemoglobin (50 µ M ), a NO scavenger, and mimicked by 8-bromo-cyclic GMP (100 µ M ). In rat brain synaptosomes, SNP increased monensin-stimulated Ca2+ uptake, but it did not affect high K+-stimulated Ca2+ uptake. 8-Bromocyclic GMP, but not SNP, increased Na+-dependent Ca2+ uptake significantly in synaptic membrane vesicles in the absence of monensin. In cultured rat astrocytes, SNP and 8-bromo-cyclic GMP increased Ca2+ uptake in the presence of ouabain and monensin, which were required for the Ca2+ uptake in the cells. These findings suggest that NO stimulates the Na+-Ca2+ exchanger in neuronal preparations and astrocytes in a cyclic GMP-dependent mechanism.  相似文献   

13.
14.
Astrocytes are important glial cells in the brain providing metabolic support to neurons as well as contributing to brain signaling. These different functional levels have to be highly coordinated to allow for proper cell and brain function. In this study, we show that in astrocytes the NAD(+) /NADH redox state modulates dopamine-induced Ca(2+) signals thereby connecting metabolism and Ca(2+) signaling. Application of dopamine induced a dose-dependent increase in Ca(2+) signal frequency in these cells, which was dependent on D(1) -receptor signaling, glycolytic activity, an increase in cytosolic NADH and inositol 1,4,5-triphosphate receptor operated intracellular Ca(2+) stores. Application of dopamine at a low concentration (1 μM) did not induce an increase in Ca(2+) signal frequency by itself. However, simultaneously increasing cytosolic NADH content either by direct application of NADH or by application of lactate resulted in a pronounced increase in Ca(2+) signal frequency. This increase could be blocked by co-application of pyruvate, suggesting that indeed the NAD(+) /NADH redox state is regulating Ca(2+) signals. We conclude that at the NAD(+) /NADH redox state metabolic and signaling information is integrated in astrocytes, thereby most likely contributing to precisely coordinate these different tasks of astrocytes.  相似文献   

15.
It is well recognized clinically that fever in young children (< 6 y of age) may lead to seizure activity in a small, but significant percentage of these individuals, which may have negative consequences for the developing brain and progressive cognitive function. In rodent models, exposure of acute brain slices to hyperthermic temperatures (i.e., 38–41°C) is reported to evoke membrane depolarization and increased neuronal firing, although the underlying molecular/cellular events responsible for these phenomena are not fully understood. Elevated temperature may alter membrane excitability by influencing individual ion channels within a given neuron, or alter the behavior and connectivity of neurons and glia that operate within a local network. In the present study, Radzicki and colleagues have examined the possibility that modest increases in tissue/body temperature (up to 40.5°C) may enhance the activity of voltage-gated Ca2+ channels, which could then promote spontaneous firing of individual neurons and greater network discharge. The results of this work indicate that fever-like temperatures positively and reversibly influence the gating properties of L-type Ca2+ channels, and that the L-type blocker nimodipine reduces both temperature-induced increases in spontaneous neuronal firing and the incidence/duration of discharge activity in a whole animal model of febrile seizure.  相似文献   

16.
Intracellular Ca2+ transients were identified in endothelial cells (ECs) in intact blood-perfused arterioles. ECs in cremaster muscle arterioles (diameter approximately 45 microm) in anesthetized mice were loaded with the Ca2+ indicator fluo 4-AM by intraluminal perfusion, after which blood flow was reestablished. Confocal microscopy was used to visualize Ca2+ as a function of fluo-4 intensity in real time. Separate sets of experiments were performed under the following conditions: control, ischemia, during inhibition of P(2x) or P(1) purinoreceptors, and with the application of exogenous adenosine. In controls, spontaneous EC Ca2+ transients displayed a wide range of activity frequency (1-32 events/min) and about one-third of these transient events were synchronized between adjacent ECs. The increase in Ca2+ remained localized and did not spread to encompass the entire cell body. Ca2+ transient activity decreased significantly with ischemia (from 9.9 +/- 0.6 to 3.1 +/- 0.3 events/min, n = 135) but was unaffected by P(2x) or P(1) receptor inhibition. Exogenous adenosine significantly increased the frequency of Ca2+ transients (to 12.8 +/- 0.9 events/min) and increased synchronization so that 50% of all Ca2+ events were synchronized between ECs. This response to adenosine was not due to an increase in shear stress. These data indicate that localized Ca2+ transients are sensitive to flow conditions and, separately, to metabolically active pathways (exogenous adenosine), although the basal activity occurs independently of P(2x) or P(1) receptors. These transients may represent a mechanism by which individual EC responses are integrated to result in coordinated arteriolar responses in situ.  相似文献   

17.
ABSTRACT: BACKGROUND: Central sensitization in the spinal cord requires glutamate receptor activation and intracellular Ca2+ mobilization. We used Fura-2AM bulk loading of mouse slices together with wide-field Ca2+ imaging to measure glutamate-evoked increases in extracellular Ca2+ to test the hypotheses that: 1. Exogenous application of glutamate causes Ca2+ mobilization in a preponderance of dorsal horn neurons within spinal cord slices taken from adult mice; 2. Glutamate-evoked Ca2+ mobilization is associated with spontaneous and/or evoked action potentials; 3. Glutamate acts at glutamate receptor subtypes to evoked Ca2+ transients; and 4. The magnitude of glutamate-evoked Ca2+ responses increases in the setting of peripheral neuropathic pain. RESULTS: Glutamate robustly increased [Ca2+]i in 14.4 +/- 2.6 cells per dorsal horn within a 440 x 330 um field-of-view, with an average time-to-peak of 27 s and decay of 112 s. Repeated application produced sequential responses of similar magnitude, indicating the absence of sensitization, desensitization or tachyphylaxis. Ca2+ transients were glutamate concentration-dependent with a Kd = 0.64 mM. Ca2+ responses predominantly occurred on neurons since: 1) Over 95% of glutamate-responsive cells did not label with the astrocyte marker, SR-101; 2) 62% of fura-2 AM loaded cells exhibited spontaneous action potentials; 3). 75% of cells that responded to glutamate with a rise in [Ca2+]i also showed a significant increase in AP frequency upon a subsequent glutamate exposure; 4) In experiments using simultaneous on-cell recordings and Ca2+ imaging, glutamate elicited a Ca2+ response and an increase in AP frequency. AMPA/kainate (CNQX)- and AMPA (GYKI 52466)-selective receptor antagonists significantly attenuated glutamate-evoked increases in [Ca2+]i, while NMDA (AP-5), kainate (UBP-301) and class I mGluRs (AIDA) did not. Compared to sham controls, peripheral nerve injury significantly decreased mechanical paw withdrawal threshold and increased glutamate-evoked Ca2+ signals. CONCLUSIONS: Bulk-loading fura-2AM into spinal cord slices is a successful means for determining Ca2+ responses in adult dorsal horn neurons. Glutamate-evoked Ca2+ signals in adult dorsal horn neurons are mediated predominantly by AMPA channels and are potentiated by peripheral neuropathic injury.  相似文献   

18.
In cardiac muscle, Ca2+ is released from the sarcoplasmic reticulum (SR) in units called Ca2+ sparks. Ca2+ spark characteristics have been studied almost entirely at room temperature. This study compares characteristics of spontaneous sparks detected with fluo 3 in resting mouse ventricular myocytes at 22 and 37 degrees C. The incidence and frequency of Ca2+ sparks decreased dramatically at 37 degrees C compared with 22 degrees C. Also, spark amplitudes and times to peak were significantly reduced at 37 degrees C. In contrast, spatial width and decay times were unchanged. During field stimulation, peak spatially averaged transients were similar at 22 and 37 degrees C, and experiments with fura 2 demonstrated that diastolic and systolic Ca2+ concentrations were unchanged. However, SR Ca2+ content decreased significantly at 37 degrees C. Restoration of SR Ca2+ by superfusion with 5 mM Ca2+ increased spark frequency but did not reverse the effects of temperature on spark parameters. Thus effects of temperature on spark frequency may reflect changes in SR stores, whereas changes in spark amplitude and rise time may reflect known effects of temperature on ryanodine receptor function.  相似文献   

19.
Jeong JH  Kum C  Choi HJ  Park ES  Sohn UD 《Life sciences》2006,78(13):1407-1412
We investigated an effect of extremely low frequency magnetic field (ELF-MF, 60 Hz) on hyperalgesia using hot plate test. The level of nitric oxide (NO) and the expression of nitric oxide synthase (NOS) were measured to determine if ELF-MF is engaged in NO mediated pain mechanism. Additionally, the involvement of Ca2+-dependent NO pathway in ELF-MF induced hyperalgesia was evaluated by blocking Ca2+ sources with NMDA receptor antagonist and Ca2+ channel blocker. The exposure of mice to ELF-MF lowered pain threshold and elevated NO synthesis in brain and spinal cord. An NOS inhibitor blocked these effects of ELF-MF with attenuating the reduction of pain threshold and the rise of NO level in brain and spine by the exposure of ELF-MF. The hyperalgesic effects of ELF-MF were also blocked by a Ca2+ channel blocker, nimodipine, but not by a NMDA receptor antagonist, MK-801. The expression of Ca2+ -dependent nNOS and eNOS and Ca2+ -independent iNOS were not changed by ELF-MF. These results indicated that the exposure of ELF-MF might cause Ca2+ -dependent NOS activation, which then induces hyperalgesia with the increase in NO synthesis. In conclusion, ELF-MF may produce hyperalgesia by modulating NO synthesis via Ca2+ -dependent NOS.  相似文献   

20.
M Nilsson  E Hansson  L R?nnb?ck 《Life sciences》1991,49(18):1339-1350
The effect of 5-hydroxytryptamine (5HT) on cytoplasmic Ca2+ concentration was examined at the single cell level in astroglial enriched primary cultures from newborn rat cerebral cortex. Type 1 astroglial cells were identified and the Ca2+ indicator dye fura 2/AM was used in a microspectrofluorimetric system. Pharmacological studies indicated that the Ca2+ responses were mediated by 5HT2 receptors. Four different patterns of 5HT evoked cytosolic Ca2+ responses were identified including two different types of spike patterns and two types of Ca2+ oscillations (low amplitude and base-line spiking behaviour). In addition, cells with spontaneous Ca2+ oscillations were of two types, those responding to 5HT and those not responding to 5HT. The different responses were identified already on day 7 in culture and were followed up to day 21 with a concomitant increase in the number of responding cells, although the response patterns did not differ during culture. The triggering 5HT concentration was 1 microM. The results suggest that subpopulations of astrocytes exist with respect to 5HT2-evoked cytosolic Ca2+ mobilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号