首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The process of wound repair in adult skin is complex, involving dermal contraction and epithelial migration to repair the lesion and restore the skin's barrier properties. At the wound edge, keratinocytes undergo many changes that engender an epithelialization behavior. The type II keratin 6 and type I keratins 16 and 17 are induced well before cell migration begins, but the role of these proteins is not understood. Forced expression of human K16 in skin epithelia of transgenic mice has been shown to cause dose-dependent skin lesions concomitant with alterations in keratin filament organization and in cell adhesion. Here we show, with the use of a quantitative assay, that these transgenic mice show a delay in the closure of full-thickness skin wounds in situ compared with wild-type and low-expressing K16 transgenic mice. We adapted and validated an ex vivo skin explant culture system to better assess epithelialization in a wound-like environment. Transgenic K16 explants exhibit a significant reduction of keratinocyte outgrowth in this setting. This delay is transgene dose-dependent, and is more severe when K16 is expressed in mitotic compared with post-mitotic keratinocytes. Various lines of evidence suggest that the mechanism(s) involved is complex and not strictly cell autonomous. These findings have important implications for the function of K16 in vivo.  相似文献   

2.
Multipotent mesenchymal stem cells have recently emerged as an attractive cell type for the treatment of diabetes-associated wounds. The purpose of this study was to examine the potential biological function of human placenta-derived mesenchymal stem cells (PMSCs) in wound healing in diabetic Goto-Kakizaki (GK) rats. PMSCs were isolated from human placenta tissue and characterized by flow cytometry. A full-thickness circular excisional wound was created on the dorsum of each rat. Red fluorescent CM-DiI-labeled PMSCs were injected intradermally around the wound in the treatment group. After complete wound healing, full-thickness skin samples were taken from the wound sites for histological evaluation of the volume and density of vessels. Our data showed that the extent of wound closure was significantly enhanced in the PMSCs group compared with the no-graft controls. Microvessel density in wound bed biopsy sites was significantly higher in the PMSCs group compared with the no-graft controls. Most surprisingly, immunohistochemical studies confirmed that transplanted PMSCs localized to the wound tissue and were incorporated into recipient vasculature with improved angiogenesis. Notably, PMSCs secreted comparable amounts of proangiogenic molecules, such as VEGF, HGF, bFGF, TGF-β and IGF-1 at bioactive levels. This study demonstrated that PMSCs improved the wound healing rate in diabetic rats. It is speculated that this effect can be attributed to the PMSCs engraftment resulting in vascular regeneration via direct de novo differentiation and paracrine mechanisms. Thus, placenta-derived mesenchymal stem cells are implicated as a potential angiogenesis cell therapy for repair-resistant chronic wounds in diabetic patients.  相似文献   

3.
Svensjö T  Pomahac B  Yao F  Slama J  Eriksson E 《Plastic and reconstructive surgery》2000,106(3):602-12; discussion 613-4
Full-thickness skin wounds are preferably allowed to heal under controlled hydration dressings such as hydrocolloids. It was hypothesized that a wet (liquid) environment rather than a dry or moist one would accelerate the wound healing process. We compared skin repair by secondary intention in full-thickness skin wounds in wet (saline), moist (hydrocolloid), and dry (gauze) conditions in an established porcine wound healing model. The study included three animals with a total of 70 wounds layered in a standardized fashion on the back of young Yorkshire pigs. Twelve days after wounding, 0 percent of dry, 20 percent of moist, and 86 percent of saline-treated wounds were completely reepithelialized (p values = 0.0046 and 0.027 for saline wounds compared with dry and moist wounds, respectively). The accelerated healing was caused at least in part by faster contraction in wet wounds (p value < 0.005 compared with that of other groups 9 and 12 days after wounding). Development of granulation tissue was faster in moist conditions than it was for dry and wet wounds. The thickness and number of cell layers of the newly formed epidermis were greater in dry and wet wounds than in moist ones. It was concluded that these full-thickness porcine skin wounds healed faster in a wet environment than in a moist one. Dry wounds healed more slowly than moist wounds. The basic mechanisms of skin wound repair were influenced by the treatment modality as demonstrated by the observed differences in granulation tissue formation, reepithelialization, and rate of wound contraction.  相似文献   

4.
为了获得更为理想的皮肤创口修复敷料,在海藻酸钠(SA)和聚丙烯酰胺(PAM)水凝胶的基础上复合人发角蛋白(KTN),制得KTN/SA/PAM水凝胶皮肤敷料.用电子万能测试机、扫描电子显微镜等对其进行表征,结果显示,KTN/SA/PAM水凝胶皮肤敷料拉伸强度为42.41 kPa,弹性模量11.19 kPa,接近人体皮肤组...  相似文献   

5.
Cultures of adipose tissue explants are a valuable tool for studying the intracellular mechanisms involving hormones and nutrients. However, testing how fatty acids affect cells requires a carrier molecule; bovine serum albumin (BSA) has been used for this purpose. However, contaminants can alter the cellular response. Our objectives were to: 1) test BSA as a fatty acid carrier and 2) evaluate polyvinyl alcohol (PVA) as a replacement for BSA. Adipose tissue explants from nine pigs were cultured in medium 199 for 4, 12, 24, and 48 h, with the following treatments: control, PVA (100 mM PVA added) and PVA + pGH (100 mM PVA plus 0.1 mg/mL porcine growth hormone). After each culture period, explants were collected and assayed for lipogenesis. After 48 h in culture, explants were assayed for lipolysis. A preliminary study with different commercial sources and high concentrations showed that BSA affected lipogenic rates. On the other hand, there were no effects of PVA on lipid synthesis, while pGH (positive control) reduced glucose incorporation into lipids (P < 0.01) when compared to both control and PVA (P < 0.05). There was no difference between control and PVA for lipolysis rates. However, pGH increased lipolysis when compared to control (P < 0.01) and PVA (P < 0.05). We demonstrated that BSA can alter lipogenesis, which precludes its use as a carrier molecule. On the other hand, addition of PVA had no effect on lipolysis or lipogenesis. We suggest the use of PVA instead of BSA for adding bioactive fatty acids to cultures of adipose tissue.  相似文献   

6.
We have investigated the wound-healing effects of mesenchymal stem cells (MSCs) in combination with human amniotic membrane (HAM) when grafted into full-thickness skin defects of rabbits. Five defects in each of four groups were respectively treated with HAM loaded with autologous MSCs (group A), HAM loaded with allologous MSCs (group B), HAM with injected autologous MSCs (group C), and HAM with injected allologous MSCs (group D). The size of the wounds was calculated for each group at 7, 12, and 15 days after grafting. The wounds were subsequently harvested at 25 days after grafting. Sections stained with hematoxylin and eosin were used to determine the quality of wound healing, as based on the characteristics and amount of granulated tissue in the epidermal and dermal layers. Groups A and B showed the most pronounced effect on wound closure, with statistically significant improvement in wound healing being seen on post-operative days 7, 12, and 15. Although a slight trend toward improved wound healing was seen in group A compared with group B, no statistically significant difference was found at any time point between the two groups. Histological examination of healed wounds from groups A and B showed a thin epidermis with mature differentiation and collagen bundle deposition plus recovered skin appendages in the dermal layer. In contrast, groups C and D showed thickened epidermis with immature epithelial cells and increased fibroblast proliferation with only partially recovered skin appendages in the dermal layer. Thus, the graft of HAM loaded with MSCs played an effective role during the healing of skin defects in rabbits, with no significant difference being observed in wound healing between autologous and allologous MSC transplantation. This study was supported by research funds from Dong-A University.  相似文献   

7.
Explants of fetal rabbit lung were established on the 25th day of gestation. These were maintained in serum-free medium for periods up to 10 days. During this time, the cultures exhibited morphological changes typical of terminal lung differentiation. Morphological evidence was also obtained for synthesis and secretion of pulmonary surfactant in these explants. beta-Adrenergic receptors were identified in these lung explants. Exposure of the explants to 10(-7)M dexamethasone on the third day of culture resulted in a significant increase in the number of beta-adrenergic receptors in the tissue without a change in receptor affinity. The effect of dexamethasone in organ culture was dose-dependent, a maximum increase in receptor number being observed within 48 hours of incubation with a hormone concentration of 1 x 10(-7)M. Exposure of the explant tissue to 1 x 10(-7)M triiodothyronine resulted in no significant increase in the concentration of beta-adrenergic receptors and no change in receptor affinity. These results suggest that glucocorticoids may potentiate the effects of beta-adrenergic agents in the fetal lung by increasing the numbers of their receptors. The effects of triiodothyronine upon the fetal lung do not appear to be mediated by this mechanism.  相似文献   

8.
暴露于寒冷环境下的皮肤开放性伤口是一种高度危险的战场创伤,威胁在室外作业的人员健康。紧急治疗中,高压氧(hyperbaric oxygen, HBO)治疗已经证实能够安全有效地促进皮肤伤口愈合。然而,HBO治疗的最佳干预时间说法仍然并不统一。使用冷应激下的小鼠背部皮肤全层缺损创面模型,比较了HBO治疗的3种干预策略,即分别为创伤后0、24和48 h介入HBO。结果显示,创后立即实施高压氧治疗(0-hHBO组)降低死亡率的效果最佳,小鼠死亡率为33%,而对照组死亡率为100%,且0-hHBO组创面愈合率第5天已达到85%。进一步的血常规和组织免疫化学检测显示,0-hHBO治疗组改善了血液指标,并发挥了一定的抗凋亡作用,这种作用尤其在表皮干细胞中更为明显。因此,研究结果将为HBO的临床应用提供重要的实验数据和线索。  相似文献   

9.
目的:观察创面生物活性玻璃修复材料对家猪皮肤创面的促愈合作用。方法:选择14头家猪,随机分成7组,每组2头,在每头猪的脊柱两旁制造3个4×4cm的全层皮肤缺损的创面模型,每头猪6个创面又分成实验组和空白对照组,于试验后每天观察创面愈合情况,第1、3、7、14、21、28、35天图像分析计算创面愈合率,并同时取创面组织行组织学染色,观察各组材料对家猪皮肤全层缺损创面愈合的影响。结果:在涂材料的实验组和空白对照组创面愈合时间分别是23.19±1.27d、29.52±1.54d两组组间比较,具有统计学意义(P<0.05);实验组的创面愈合率在各时间段均高于空白对照组,差异有统计学意义(P<0.05);组织学观察实验组的上皮化程度、表皮生长、成纤维细胞、毛细血管数量均好于空白对照组。结论:创面生物活性玻璃修复材料对家猪皮肤创面愈合具有促进作用,可作为一种新型的促愈合覆盖材料进一步研究。  相似文献   

10.
The present studies were designed to investigate the sites of PGE(2), prostacyclin and leptin formation in human adipose tissue. Most of the PGE(2) and prostacyclin formation by adipose tissue explants from obese humans after 48 h in primary culture was due to blood vessels and other tissues not digested by collagenase. However, there was appreciable PGE(2) formation by adipocytes over a 48 h incubation and leptin formation was only seen in adipocytes. An increase in COX-2 immunoreactive protein was also seen after incubation of isolated human adipocytes for 48 h. The release of PGE(2) by adipocytes incubated for 48 h was about 4% that by intact adipose tissue explants while the release of prostacyclin was about 1.5% that by tissue. However, in a different experimental design where PGE(2) formation was measured over 2 h in the presence of 20 microM arachidonic acid the formation of PGE(2) by adipocytes after 48 h prior incubation in primary culture was 38% of that by tissue explants. Dexamethasone enhanced leptin release by adipocytes while inhibiting PGE(2) release and COX-2 up-regulation. The mechanisms involved in up-regulation of COX-2 activity during primary culture of adipocytes and the inhibition of this by dexamethasone do not appear to involve p38 MAPK or p42-44 MAPK. Interleukin I(beta) further enhanced PGE(2) formation by adipocytes but did not affect leptin formation. In conclusion, these data indicate that leptin release is exclusively a function of adipocytes while prostanoids are made by both adipocytes and the other cells present in human adipose tissue  相似文献   

11.
Fibronectin (Fn) has been shown to play an important role in wound healing because it appears to be the stimulus for migration of fibroblasts and epidermal cells. The purpose of this study was to investigate whether topical application of plasma Fn (pFn) improves healing of full-thickness skin wounds in rats. A round section of full-thickness skin (diameter of approximately 15 mm) was resected in rats. Animals were then divided into two groups, and wounds were treated topically with a single application of human plasma albumin (control group) or human pFn (FN group). Wound closure rate, hydroxyproline concentration, and histologic features (immunohistochemical staining) were evaluated. The FN group had a significantly higher wound closure rate and hydroxyproline level in the skin than the control group. Histologic analysis of macrophage and fibroblast migration, collagen regeneration, and epithelialization were significantly increased in the FN group compared with the control group. A single topical application of pFn increased the migration of macrophages, myofibroblasts, and fibroblasts. Moreover, further release of transforming growth factor-beta1 from activated fibroblasts, keratinocytes, and epithelial cells may also contribute to the beneficial effect of pFn on wound healing.  相似文献   

12.
The role of microfilaments and microtubules during injury-induced cell migration of corneal endothelial cells in situ along their natural basement membrane has been investigated using organ culture. In the noninjured tissue, actin is localized at or near the plasma membrane, whereas tubulin is observed as a delicate lattice pattern throughout the cytoplasm. Twenty-four hours after a circular freeze injury, cells surrounding the wound area extend processes into this region. Fluorescent microscopy using phallotoxins and anti-tubulin antibodies demonstrated the presence of stress fibers and microtubule reorganization within these cells. Between 24 and 48 h post-injury endothelial cells move into the wound region, and by 48 h, the injury zone is repopulated and the monolayer is becoming reestablished. When injured corneas are placed in media containing 5 x 10(-7) M cytochalasin B, endothelial cell migration occurs; but it is slow, and wound closure is not complete even by 72 h. In contrast, when tissues are cultured in the presence of 10(-8) M colchicine, cell movement is greatly reduced, complete wound closure does not occur, and endothelial cells at the wound edge fail to display extensions typical of migrating cells. Furthermore, when injured endothelia are exposed to 0.05 micrograms/ml of actinomycin D for 15 min within the first hour after injury and transferred back into culture media lacking the drug for the duration of the experiment, migration does not occur and the wound persists. These actinomycin D treated cells remain viable as shown by their ability to incorporate 3H-uridine and 3H-thymidine. Fluorescence microscopy of actinomycin D treated tissues revealed the presence of stress filaments but disorganized microtubule patterns. Interestingly, 24 h after injury, if the tissue is exposed to actinomycin D, even for periods of up to 1 h, migration is not inhibited. Our results indicate that injury-induced endothelial cell movement appears to be more dependent on microtubule than microfilament reorganization and may require a critical timing of macromolecular synthesis.  相似文献   

13.
14.
Fibroblast growth factor 2 (FGF2) stimulates skin wound healing but does long-term delivery of FGF2 enhance skin regeneration compared to short-term delivery? Heparin-conjugated fibrin (HCF) was used as a vehicle for long-term delivery of FGF2. Fibrin, HCF, FGF2-loaded fibrin, and FGF2-loaded HCF were implanted into full-thickness skin defects of mice. The neoepidermis thickness was significantly larger in the FGF2-loaded HCF group than in the other groups, except for the FGF2-loaded fibrin group. Suprabasal cytokeratin differentiation in squamous neoepithelium was greatest in the FGF2-loaded HCF group. The enhanced skin regeneration accompanying the long-term delivery of FGF2 could be mediated, at least partially, by enhanced neovascularization and cell proliferation in the neodermis.  相似文献   

15.
To gain insight into the molecular mechanisms underlying the wound repair process, we searched for genes that are regulated by skin injury. For this purpose we generated a subtractive cDNA library from normal mouse back skin and 1-day full-thickness excisional wounds. One of the differentially expressed genes encodes the chemokine C10. Using Northern blotting, RNase protection assay and Western blotting, we confirmed the injury-induced expression of C10 at the mRNA and protein level. Maximal levels of C10 mRNA and protein were seen at day 1 after wounding, and expression levels subsequently declined. In situ hybridization and immunohistochemistry revealed expression of C10 in macrophages of the clot and the granulation tissue as well as in keratinocytes of the epidermis and the hair follicles at the wound edge. Since C10 is a potent chemoattractant for macrophages, our results suggest that this chemokine contributes to the strong macrophage influx observed in the healing skin wound.  相似文献   

16.
The function of the endogenous angiogenesis inhibitor thrombospondin-1 (TSP-1) in tissue repair has remained controversial. We established transgenic mice with targeted overexpression of TSP-1 in the skin, using a keratin 14 expression cassette. TSP-1 transgenic mice were healthy and fertile, and did not show any major abnormalities of normal skin vascularity, cutaneous vascular architecture, or microvascular permeability. However, healing of full-thickness skin wounds was greatly delayed in TSP-1 transgenic mice and was associated with reduced granulation tissue formation and highly diminished wound angiogenesis. Moreover, TSP-1 potently inhibited fibroblast migration in vivo and in vitro. These findings demonstrate that TSP-1 preferentially interfered with wound healing-associated angiogenesis, rather than with the angiogenesis associated with normal development and skin homeostasis, and suggest that therapeutic application of angiogenesis inhibitors might potentially be associated with impaired wound vascularization and tissue repair.  相似文献   

17.
Batrachochytrium dendrobatidis, the causal agent of chytridiomycosis, is implicated in the global decline of amphibians. This chytrid fungus invades keratinised epithelial cells, and infection is mainly associated with epidermal hyperplasia and hyperkeratosis. Since little is known about the pathogenesis of chytridiomycosis, this study was designed to optimise the conditions under which primary keratinocytes and epidermal explants of amphibian skin could be maintained ex vivo for several days. The usefulness of the following set-ups for pathogenesis studies was investigated: a) cultures of primary keratinocytes; b) stripped epidermal (SE) explants; c) full-thickness epidermal (FTE) explants on Matrigel?; d) FTE explants in cell culture inserts; and e) FTE explants in Ussing chambers. SE explants proved most suitable for short-term studies, since adherence of fluorescently-labelled zoospores to the superficial epidermis could be observed within one hour of infection. FTE explants in an Ussing chamber set-up are most suitable for the study of the later developmental stages of B. dendrobatidis in amphibian skin up to five days post-infection. These models provide a good alternative for in vivo experiments, and reduce the number of experimental animals needed.  相似文献   

18.
A random flap can be constructed, its circulation determined, and the ischemic portion identified. Left untreated for a period, the critical ischemia time, the ischemic portion will die and is clinically recognized several days later. What is not known is when this tissue, destined to die, actually dies. To ascertain this time, we compared the percent necrosis of a distal 3 x 3 cm segment of a 10 x 3 cm reverse McFarlane random flap with a known distribution of necrosis to the percent necrosis of the distal 3 x 3 cm of full-thickness skin grafts taken from a similar reverse McFarlane flap at 0, 4, 8, 12, and 16 hours after pedicle construction. Implicit in this experiment is the assumption that necrosis of the full-thickness skin grafts in excess of that of control animals represented skin no longer viable. Sometime between 8 and 12 hours, the percent necrosis of the full-thickness skin grafts surpassed that of the control, and it was concluded that this graft was dead prior to grafting. Thus it is suggested that critical ischemia time and death of the flap tissue are nearly identical, and the latter occurs at between 8 and 12 hours.  相似文献   

19.
The objective of this study was to evaluate the use of Afp1m as a cryopreservative agent for skin by examining the transplanted skin histological architecture and mechanical properties following subzero cryopreservation. Thirty four (34) rats with an average weight of 208 ± 31 g (mean ± SD), were used. Twenty four (n = 24) rats were equally divided into four groups: (i) immediate non-cryopreserved skin autografts (onto same site), (ii) immediate non-cryopreserved skin autografts (onto different sites), (iii) skin autografts cryopreserved with glycerol for 72 h and (iv) skin autografts cryopreserved with Afp1m for 72 h at −4 °C. Rounded shaped full-thickness 1.5–2.5 cm in diameter skin was excised from backs of rats for the autograft transplantation. Non-cryopreserved or cryopreserved auto skin graft were positioned onto the wound defects and stitched. Non-transplanted cryopreserved and non-cryopreserved skin strips from other ten rats (n = 10) were allowed for comparative biomechanical test. All skin grafts were subjected to histological and mechanical examinations at the end of day 21. Histological results revealed that tissue architecture especially the epidermal integrity and dermal-epidermal junction of the Afp1m cryopreserved skin grafts exhibited better histological appearance, good preservation of tissue architecture and structural integrity than glycerolized skin. However, there was no significant difference among these groups in other histological criteria. There were no significant differences among the 4 groups in skin graft mechanical properties namely maximum load. In conclusion, Afp1m were found to be able to preserve the microstructure as well as the viability and function of the skin destined for skin transplantation when was kept at −4 °C for 72 h.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号