首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A plant in vitro system for the nuclear import of proteins   总被引:4,自引:1,他引:3  
This paper reports the development of an in vitro system that allows the direct assay of protein import into plant nuclei. In this assay the import of fluorescently labelled karyophilic protein substrates into nuclei isolated from evacuolated tobacco BY-2 suspension cells is monitored. It is demonstrated that import of the fluorescently labelled peptide conjugates is rapid, saturable and nuclear localization signal (NLS)-dependent. Exclusion of high molecular weight (70 kDa) dextran and substrates carrying mutated NLS sequences further underline the specificity of this system. Nuclear translocation of karyophilic import substrates in tobacco, similar to mammalian systems, is inhibited by the non-hydrolysable GTP analogue GTP-γ-S. In contrast, protein uptake is not blocked by wheat germ agglutinin, N-ethyl-maleinimide and iodoacetic acid. Furthermore, it is shown that nuclear import of proteins is only partially inhibited by low temperature (0–4°C). The in vitro nuclear import assay does not depend on exogenously added ATP or cytosolic factors. However, a block of nuclear import with GTP-γ-S could be overcome by the addition of cytosolic extract, suggesting the dependence on cytosolic factors or proteins. These data indicate that the characteristics of nuclear protein import in plant and mammalian cells are similar, but may be, at least in some respects, also different from each other.  相似文献   

2.
G-proteins are present in eggs, and experiments in which GTP-γ-S, GDP-β-S, cholera toxin and pertussis toxin have been injected into eggs have indicated the involvement of G-proteins in egg activation at fertilization and in oocyte maturation. Eggs into which serotonin or muscarinic acetylcholine receptors have been introduced by mRNA injection produce fertilization-like responses when exposed to serotonin or acetylcholine; since these neurotransmitter receptors act by way of G-proteins, this observation further supports the conclusion that a G-protein is involved in the fertilization process.  相似文献   

3.
4.
Potato spindle tuber viroid (PSTVd), an RNA plant pathogen encoding no known proteins, induces systemic symptoms on tomato plants. We report detection of small RNAs of approximately 25 nucleotides with sequence specificity to PSTVd in infected plants: an indication of the presence of RNA silencing. RNA silencing, however, did not appear to be responsible for the differing symptoms induced by a mild and a severe strain of PSTVd. The unique structural and biological features of viroids make them attractive experimental tools to investigate mechanisms of RNA silencing and pathogen counterdefense.  相似文献   

5.
Viroids are the smallest plant pathogens. These RNAs do not encode proteins and are not encapsidated, and yet they can replicate autonomously, move systemically, and cause diseases in infected plants. Notably, strains of a viroid with subtle differences in nucleotide sequences can cause dramatically different symptoms in infected plants. These features make viroids unique probes to investigate the role of a pathogenic RNA genome in triggering host responses. We conducted a comprehensive analysis of the differential gene expression patterns of tomato plants at various stages of infection by a mild and severe strain of Potato spindle tuber viroid (PSTVd). We also compared tomato gene expression altered by the PSTVd strains with that altered by Tobacco mosaic virus (TMV). Our analyses revealed that the two PSTVd strains altered expression of both common and unique tomato genes. These genes encode products involved in defense/stress response, cell wall structure, chloroplast function, protein metabolism, and other diverse functions. Five genes have unknown functions. Four genes are novel. The expression of some but not all of these genes was also altered by TMV infection. Our results indicate that viroids, although structurally simple, can trigger complex host responses. Further characterization of viroid-altered gene expression in a host plant should help understand viroid pathogenicity and, potentially, the mechanisms of RNA-mediated regulation of plant gene expression.  相似文献   

6.
7.
Proteins in the karyopherin-β family mediate the majority of macromolecular transport between the nucleus and the cytoplasm. Eleven of the 19 known human karyopherin-βs and 10 of the 14 S. cerevisiae karyopherin-βs mediate nuclear import through recognition of nuclear localization signals or NLSs in their cargos. This receptor-mediated process is essential to cellular viability as proteins are translated in the cytoplasm but many have functional roles in the nucleus. Many known karyopherin-β-cargo interactions were discovered through studies of the individual cargos rather than the karyopherins, and this information is thus widely scattered in the literature. We consolidate information about cargos that are directly recognized by import-karyopherin-βs and review common characteristics or lack thereof among cargos of different import pathways. Knowledge of karyopherin-β-cargo interactions is also critical for the development of nuclear import inhibitors and the understanding of their mechanisms of inhibition. This article is part of a Special Issue entitled: Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import.  相似文献   

8.
9.
Phospholipase A2 (PLA2) associated with the membrane fraction of trophocytes from Periplaneta americana fat body increases by as much as 100% when the cells are incubated with hypertrehalosemic hormone (HTH-II). Activation with HTH-II is approximately halved by inclusion of the PKC inhibitor sphingosine in the incubation medium. Because activation of PLA2 by HTH-II is blocked by the GDP analogue GDP-β-S, and the unactivated enzyme is activated by the GTP analogue GTP-γ-S it is likely that a G protein is involved in activation of the enzyme. Activation of PLA2 was also achieved by treating the trophocytes with the synthetic diacylglycerol 1-oleoyl-2-acetylglycerol in the presence of thapsigargin. This supports the view that protein kinase C is also involved in the activation process.  相似文献   

10.
We have investigated classical nuclear localization sequence (NLS) mediated protein trafficking by measuring biomolecular dynamics within living cells using two-photon fluorescence correlation spectroscopy. By directly observing the behavior of specific molecules in their native cellular environment, it is possible to uncover functional details that are not apparent from traditional biochemical investigations or functional assays. We show that the intracellular mobility of NLS cargoes and their import receptor proteins, karyopherin-α and karyopherin-β, can be robustly measured and that quantitative comparison of intracellular diffusion coefficients provides new insights into nuclear transport mechanisms. Import cargo complexes are assembled throughout the cytoplasm, and their diffusion is slower than predicted by molecular weight due to specific interactions. Analysis of NLS cargo diffusion in the cytoplasm indicates that these interactions are likely disrupted by NLS cargo binding. Our results suggest that delivery of import receptors and NLS cargoes to nuclear pores may complement selective translocation through the pores as a functional mechanism for regulating transport of proteins into the nucleus.  相似文献   

11.
Abstract: The endogenous polyamines spermidine and spermine enhanced guanosine 5′-O-(3-thiotriphosphate) (GTP-γ-S)-stimulated phosphoinositide turnover with EC50 values of 100 ± 30 and 50 ± 15 µM, respectively, whereas the synthetic polyamines N,N′-bis(3-aminopropyl)-1,3-propanediamine and -ethylenediamine inhibited GTP-γ-S-stimulated phosphoinositide turnover, with maximal inhibition at 1 mM. Kinetic analysis of GTP-γ-S-stimulated phosphoinositide turnover in the absence and presence of spermidine showed that the Km for GTP-γ-S was not changed (1,303 ± 270 and 1,069 ± 214 nM, respectively), whereas the Vmax was increased by 206% (1,566 ± 141 and 4,792 ± 84 cpm, respectively), indicating that spermidine and GTP-γ-S acted at different sites. Spermidine also enhanced Ca2+-stimulated phosphoinositide turnover in the absence of GTP-γ-S by decreasing the Ca2+ requirement of the phosphoinositide-specific phospholipase C. Arcaine and agmatine, polyamine antagonists at the NMDA receptor complex, did not block the effects of spermidine on GTP-γ-S- and Ca2+-induced phosphoinositide turnover, suggesting that the spermidine effects are not mediated through these specific polyamine sites. Furthermore, spermidine increased the level of [3H]phosphatidylinositol 4-phosphate (EC50 = 120 ± 10 µM), without affecting significantly the levels of [3H]phosphatidylinositol and [3H]phosphatidylinositol 4,5-bisphosphate. Collectively these data indicate that the enhanced phosphoinositide turnover induced by spermidine in the presence of GTP-γ-S or Ca2+ is mediated through multiple levels of the phosphoinositide turnover cascade.  相似文献   

12.
The sequence analysis of five new field isolates of potato spindle tuber viroid (PSTVd) of different virulence revealed that the lengthof their RNA chain is not strictly conserved to 359 nucleotides (nts), as one could have inferred from the previously sequenced PSTVd strains. It was now found that the chain length is strain-specific like in the case of practically all other viroids, and that it may vary, so far, between 356 and 360 nts. Taking our previously sequenced and least virulent mild strain PSTVd KF6-M as standard, the new mild strains PSTVd WA-M and PSTVd F-M differ from it by one or two nts. The new intermediate-severe strains PSTVd F-IS and PSTV-F 88-IS differ from the standard mild strain by eight and nine nts, respectively, whereas the new severe-lethal strain PSTVd F-SL differes in seven nts. Most of these mutations are located within the virulence-modulating (VM) region and within the variable region (VR), and only in two strains a single mutation is found in the right terminal domain.  相似文献   

13.
Taxonomy:   Potato spindle tuber viroid (PSTVd) is the type species of the genus Posipiviroid , family Pospiviroidae . An absence of hammerhead ribozymes and the presence of a 'central conserved region' distinguish PSTVd and related viroids from members of a second viroid family, the Avsunviroidae .
Physical properties:   Viroids are small, unencapsidated, circular, single-stranded RNA molecules which replicate autonomously when inoculated into host plants. Because viroids are non-protein-coding RNAs, designation of the more abundant, highly infectious polarity strand as the positive strand is arbitrary. PSTVd assumes a rod-like, highly structured conformation that is resistant to nuclease degradation in vitro . Naturally occurring sequence variants of PSTVd range in size from 356 to 361 nt.
Hosts and symptoms:   The natural host range of PSTVd—cultivated potato, certain other Solanum spp., and avocado—appears to be quite limited. Foliar symptoms in potato are often obscure, and the severity of tuber symptoms (elongation with the appearance of prominent bud scales/eyebrows and growth cracks) depends on both temperature and length of infection. PSTVd has a broad experimental host range, especially among solanaceous species, and strains are classified as mild, intermediate or severe based upon the symptoms observed in sensitive tomato cultivars. These symptoms include shortening of internodes, petioles and mid-ribs, severe epinasty and wrinkling of the leaves, and necrosis of mid-ribs, petioles and stems.  相似文献   

14.
DNA-tumor viruses comprise enveloped and non-enveloped agents that cause malignancies in a large variety of cell types and tissues by interfering with cell cycle control and immortalization. Those DNA-tumor viruses that replicate in the nucleus use cellular mechanisms to transport their genome and newly synthesized viral proteins into the nucleus. This requires cytoplasmic transport and nuclear import of their genome. Agents that employ this strategy include adenoviruses, hepadnaviruses, herpesviruses, and likely also papillomaviruses, and polyomaviruses, but not poxviruses which replicate in the cytoplasm. Here, we discuss how DNA-tumor viruses enter cells, take advantage of cytoplasmic transport, and import their DNA genome through the nuclear pore complex into the nucleus. Remarkably, nuclear import of incoming genomes does not necessarily follow the same pathways used by the structural proteins of the viruses during the replication and assembly phases of the viral life cycle. Understanding the mechanisms of DNA nuclear import can identify new pathways of cell regulation and anti-viral therapies.  相似文献   

15.
16.
17.
Pretreatment with pertussis toxin or microinjection of guanosine- 5[prime]-(3-thiotriphosphate) (GTP-[gamma]-S) into guard cells in peeled epidermis of Commelina communis L. promoted stomatal opening under subsaturating white light. Guanosine-5[prime]-(2-thiodiphosphate) (GDP-[beta]-S) and adenosine-5[prime]-(3-thiotriphosphate) (ATP-[gamma]-S) did not change stomatal aperture under identical conditions. These results indicate that G proteins may be involved in the regulation of stomatal opening.  相似文献   

18.
Plants can attenuate the replication of plant viruses and viroids by RNA silencing induced by virus and viroid infection. In higher plants, silencing signals such as small interfering RNAs (siRNAs) produced by RNA silencing can be transported systemically through phloem, so it is anticipated that antiviral siRNA signals produced in a stock would have the potential to attenuate propagation of viruses or viroids in the scion. To test whether this is indeed the case, we prepared transgenic tobacco (Nicotiana benthamiana) expressing a hairpin RNA (hpRNA) of Potato spindle tuber viroid (PSTVd) in companion cells by using a strong companion cell-specific promoter. A grafting experiment of the wild type tobacco scion on the top of the transgenic tobacco stock revealed that accumulation of PSTVd challenge-inoculated into the scion was apparently attenuated compared to the control grafted plants. These results indicate that genetically modified rootstock expressing viroid-specific siRNAs can attenuate viroid accumulation in a non-genetically modified scion grafted on the stock.  相似文献   

19.
Viroids replicate via a rolling circle mechanism, and cleavage/ligation requires extensive rearrangement of the highly base-paired native structure. For Potato spindle tuber viroid (PSTVd), the switch from cleavage to ligation is driven by the change from a multibranched tetraloop structure to a loop E conformation. Here we present evidence that processing of Citrus viroid III (CVd-III), a member of a related group of viroids that also replicate in the nucleus, may proceed via a distinct pathway. Chemical probing of PSTVd and CVd-III miniRNAs with DMS and CMCT revealed that the loop E motifs of these two viroids have quite different tertiary structures. As shown by temperature gradient gel electrophoresis, the presence of two likely Watson-Crick GC pairs results in a significant overall stabilization of the CVd-III loop E-like motif. Unlike PSTVd, the upper strand of the CVd-III loop E-like motif cannot fold into a GNRA tetraloop, and comparison of suboptimal structures indicates that the initial cleavage event could occur on the 5' side of the only GU wobble pair in a helix involving a nearby pair of inverted repeats. According to our model, rearrangement of 3' sequences into a hairpin stem containing an identical arrangement of GC, GU, and CG base pairs and a second cleavage event is followed by formation of loop E, which serves to align the 5' and 3' termini of the CVd-III monomer prior to ligation. Because ligation would occur within loop E itself, stabilization of this motif may be needed to hold the 5' and 3' termini of CVd-III in position for the host ligase.  相似文献   

20.
Because of their highly ordered structure, mature viroid RNA molecules are assumed to be resistant to degradation by RNA interference (RNAi). In this article, we report that transgenic tomato plants expressing a hairpin RNA (hpRNA) construct derived from Potato spindle tuber viroid (PSTVd) sequences exhibit resistance to PSTVd infection. Resistance seems to be correlated with high-level accumulation of hpRNA-derived short interfering RNAs (siRNAs) in the plant. Thus, although small RNAs produced by infecting viroids [small RNAs of PSTVd (srPSTVds)] do not silence viroid RNAs efficiently to prevent their replication, hpRNA-derived siRNAs (hp-siRNAs) appear to effectively target the mature viroid RNA. Genomic mapping of the hp-siRNAs revealed an unequal distribution of 21- and 24-nucleotide siRNAs of both (+)- and (–)-strand polarities along the PSTVd genome. These data suggest that RNAi can be employed to engineer plants for viroid resistance, as has been well established for viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号