首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report experiments designed to test the hypothesis that the aqueous solubility of 11-cis-retinoids plays a significant role in the rate of visual pigment regeneration. Therefore, we have compared the aqueous solubility and the partition coefficients in photoreceptor membranes of native 11-cis-retinal and an analogue retinoid, 11-cis 4-OH retinal, which has a significantly higher solubility in aqueous medium. We have then correlated these parameters with the rates of pigment regeneration and sensitivity recovery that are observed when bleached intact salamander rod photoreceptors are treated with physiological solutions containing these retinoids. We report the following results: (a) 11-cis 4-OH retinal is more soluble in aqueous buffer than 11-cis-retinal. (b) Both 11-cis-retinal and 11-cis 4-OH retinal have extremely high partition coefficients in photoreceptor membranes, though the partition coefficient of 11-cis-retinal is roughly 50-fold greater than that of 11-cis 4-OH retinal. (c) Intact bleached isolated rods treated with solutions containing equimolar amounts of 11-cis-retinal or 11-cis 4-OH retinal form functional visual pigments that promote full recovery of dark current, sensitivity, and response kinetics. However, rods treated with 11-cis 4-OH retinal regenerated on average fivefold faster than rods treated with 11-cis-retinal. (d) Pigment regeneration from recombinant and wild-type opsin in solution is slower when treated with 11-cis 4-OH retinal than with 11-cis-retinal. Based on these observations, we propose a model in which aqueous solubility of cis-retinoids within the photoreceptor cytosol can place a limit on the rate of visual pigment regeneration in vertebrate photoreceptors. We conclude that the cytosolic gap between the plasma membrane and the disk membranes presents a bottleneck for retinoid flux that results in slowed pigment regeneration and dark adaptation in rod photoreceptors.  相似文献   

2.
Vitamin A immunoreactive sites were studied in the retina and pineal organ of the frog, Rana esculenta, by the peroxidase antiperoxidase, avidin-biotinperoxidase and immunogold methods. In dark-adapted material, strong immunoreaction was found in the outer and inner segments of the photoreceptor cells of both retina and pineal organ, as well as in the pigment epithelium, retinal Müller cells and pineal ependymal cells. In light-adapted retina, cones and green (blue-sensitive) rods were immunopositive. At the electron microscopic level, immunogold particles were found on the membranes of the photoreceptor outer segments as well as on the membranes of the endoplasmic reticulum and mitochondria. Individual retinal photorecptor cells exhibited strong immunoreaction in the distal portion of the inner segment, the ciliary connecting piece and the electron-dense material covering the outer segment. In the pigment epithelium, the immunolabeling varied in intensity in the basal and apical cytoplasm and phagocytosed outer segments. The immunocytochemical results indicate that retinoids (retinal, retinol and possibly retinoic acid) are present not only in the photoreceptor cells of the retina but also in those of the pineal organ. The light-dependent differences in the immunoreactivity of vitamin A underlines its essential role in the visual cycle of the photopigments. Our results suggest that the pineal ependyma plays a role comparable to that of the Müller cells and pigment epithelium of the retina with regard to the transport and storage of vitamin A. The presence of a retinoid in nuclei, mitochondria and cytoplasmic membranes suggests an additional role of vitamin A in other metabolic processes.  相似文献   

3.
Rhodopsin is a prototypical G protein-coupled receptor (GPCR) - a member of the superfamily that shares a similar structural architecture consisting of seven-transmembrane helices and propagates various signals across biological membranes. Rhodopsin is embedded in the lipid bilayer of specialized disk membranes in the outer segments of retinal rod photoreceptor cells where it transmits a light-stimulated signal. Photoactivated rhodopsin then activates a visual signaling cascade through its cognate G protein, transducin or Gt, that results in a neuronal response in the brain. Interestingly, the lipid composition of ROS membranes not only differs from that of the photoreceptor plasma membrane but is critical for visual transduction. Specifically, lipids can modulate structural changes in rhodopsin that occur after photoactivation and influence binding of transducin. Thus, altering the lipid organization of ROS membranes can result in visual dysfunction and blindness.  相似文献   

4.
Demonstration of a sensory rhodopsin in eubacteria   总被引:5,自引:0,他引:5  
We report the first sensory rhodopsin observed in the eubacterial domain, a green light-activated photoreceptor in Anabaena (Nostoc) sp. PCC7120, a freshwater cyanobacterium. The gene encoding the membrane opsin protein of 261 residues (26 kDa) and a smaller gene encoding a soluble protein of 125 residues (14 kDa) are under the same promoter in a single operon. The opsin expressed heterologously in Escherichia coli membranes bound all-trans retinal to form a pink pigment (lambda max 543 nm) with a photochemical reaction cycle of 110 ms half-life (pH 6.8, 18 degrees C). Co-expression with the 14 kDa protein increased the rate of the photocycle, indicating physical interaction with the membrane-embedded rhodopsin, which we confirmed in vitro by affinity enrichment chromatography and Biacore interaction. The pigment lacks the proton donor carboxylate residue in helix C conserved in known retinylidene proton pumps and did not exhibit detectable proton ejection activity. We detected retinal binding to the protein in Anabaena membranes by SDS-PAGE and autofluorography of 3H-labelled all-trans retinal of reduced membranes from the organism. We conclude that Anabaena rhodopsin functions as a photosensory receptor in its natural environment, and suggest that the soluble 14 kDa protein transduces a signal from the receptor. Therefore, unlike the archaeal sensory rhodopsins, which transmit signals by transmembrane helix-helix interactions with membrane-embedded transducers, the Anabaena sensory rhodopsin may signal through a soluble cytoplasmic protein, analogous to higher animal visual pigments.  相似文献   

5.
Summary In common with other cyclostomata, the Japanese river lamprey (Lampetra japonica) has a retina consisting of distinct types of photoreceptor cells called long and short photoreceptor cells. After freeze-fracture, disc membranes of these photoreceptor cells were characterized in common by a homogeneous distribution of intramembrane particles on the protoplasmic fracture faces, in contrast to those of the myeloid bodies bearing scattering particles.Immunofluorescent examination was applied to the retina with monoclonal antibodies raised against bovine and chicken rhodopsins. Positive immunoreactivity was found to be limited to outer segments of the short cell, leaving the entire body of the long cell and all other components of the retina negative. The results suggest that the short cell is more closely related to a rod-type photoreceptor cell characterized by rhodopsin as its visual pigment.  相似文献   

6.
Green flagellate algae are capable of the active adjustment of their swimming path according to the light direction (phototaxis). This direction is detected by a special photoreceptor apparatus consisting of the photoreceptor membrane and eyespot. Receptor photoexcitation in green flagellates triggers a cascade of rapid electrical events in the cell membrane which plays a crucial role in the signal transduction chain of phototaxis and the photophobic response. The photoreceptor current is the earliest so far detectable process in this cascade. Measurement of the photoreceptor current is at present the most suitable approach to investigation of the photoreceptor pigment in green flagellate algae, since a low receptor concentration in the cell makes application of optical and biochemical methods so far impossible. A set of physiological evidences shows that the phototaxis receptor in green flagellate algae is a unique rhodopsin-type protein. It shares common chromophore properties with retinal proteins from archaea. However, the involvement of photoelectric processes in the signal transduction chain relates it to animal visual rhodopsins. The presence of some enzymatic components of the animal visual cascade in isolated eyespot preparations might also point to this relation. A retinal-binding protein has been identified in such preparations, the amino acid sequence of which shows a certain homology to sequences of animal visual rhodopsins. However, potential function of this protein as the phototaxis receptor has been questioned in recent time.  相似文献   

7.
Summary Vitamin A immunoreactive sites were studied in the retina and pincal organ of the frog,Rana esculenta, by the peroxidase antiperoxidase, avidin-biotinperoxidase and immunogold methods. Indark-adapted material, strong immunoreaction was found in the outer and inner segments of the photoreceptor cells of both retina and pineal organ, as well as in the pigment epithelium, retinal Müller cells and pineal ependymal cells. Inlight-adapted retina, cones and green (blue-sensitive) rods were immunopositive.At the electron microscopic level, immunogold particles were found on the membranes of the photoreceptor outer segments as well as on the membranes of the endoplasmic reticulum and mitochondria. Individual retinal photoreceptor cells exhibited strong immunoreaction in the distal portion of the inner segment, the ciliary connecting piece and the electron-dense material covering the outer segment. In the pigment epithelium, the immunolabeling varied in intensity in the basal and apical cytoplasm and phagocytosed outer segments.The immunocytochemical results indicate that retinoids (retinal, retinol and possibly retinoic acid) are present not only in the photoreceptor cells of the retina but also in those of the pineal organ. The light-dependent differences in the immunoreactivity of vitamin A underlines its essential role in the visual cycle of the photopigments. Our results suggest that the pineal ependyma plays a role comparable to that of the Müller cells and pigment epithelium of the retina with regard to the transport and storage of vitamin A. The presence of a retinoid in nuclei, mitochondria and cytoplasmic membranes suggests an additional role of vitamin A in other metabolic processes.Dedicated to Professor Dr. T.H. Schiebler on the occasion of his 65th birthdaySupported by the Hungarian OTKA grant Nr. 1619 to B.V., and a grant from the Pardee Foundation to G.H.W.  相似文献   

8.
The retinal pigment epithelium (RPE) is separated from the photoreceptor outer segments by the subretinal space. While the actual volume of this space is minimal, the communication that occurs across this microenvironment is important to the visual process, and accumulating evidence suggests the purines ATP and adenosine contribute to this communication. P1 and P2 receptors are localized to membranes on both the photoreceptor outer segments and on the apical membrane of the RPE which border subretinal space. ATP is released across the apical membrane of the RPE into this space in response to various triggers including glutamate and chemical ischemia. This ATP is dephosphorylated into adenosine by a series of ectoenzymes on the RPE apical membrane. Regulation of release and ectoenzyme activity in response to light-sensitive signals can alter the balance of purines in subretinal space, and thus coordinate communication across subretinal space with the visual process.  相似文献   

9.
Kono M  Goletz PW  Crouch RK 《Biochemistry》2008,47(28):7567-7571
Rhodopsin is the photosensitive pigment in the rod photoreceptor cell. Upon absorption of a photon, the covalently bound 11- cis-retinal isomerizes to the all- trans form, enabling rhodopsin to activate transducin, its G protein. All -trans-retinal is then released from the protein and reduced to all -trans-retinol. It is subsequently transported to the retinal pigment epithelium where it is converted to 11- cis-retinol and oxidized to 11- cis-retinal before it is transported back to the photoreceptor to regenerate rhodopsin and complete the visual cycle. In this study, we have measured the effects of all -trans- and 11- cis-retinals and -retinols on the opsin's ability to activate transducin to ascertain their potentials for activating the signaling cascade. Only 11- cis-retinal acts as an inverse agonist to the opsin. All -trans-retinal, all -trans-retinol, and 11- cis-retinol are all agonists with all -trans-retinal being the most potent agonist and all -trans-retinol being the least potent. Taken as a whole, our study is consistent with the hypothesis that the steps in the visual cycle are optimized such that the rod can serve as a highly sensitive dim light receptor. All -trans-retinal is immediately reduced in the photoreceptor to prevent back reactions and to weaken its effectiveness as an agonist before it is transported out of the cell; oxidation of 11- cis-retinol occurs in the retinal pigment epithelium and not the rod photoreceptor cell because 11- cis-retinol can act as an agonist and activate the signaling cascade if it were to bind an opsin, effectively adapting the cell to light.  相似文献   

10.
视紫红质是感光细胞中的一种视色素,在光线的接收和视觉电位的产生方面具有重要的生理作用,由视紫红质介导的过度光信号传导是光性视网膜变性的主要原因。近年的研究表明,视网膜色素上皮细胞中的RPE65蛋白作为影响视紫红质再生的关键因素,与视网膜光损伤的易感性密切相关。就视紫红质和RPE65蛋白在光致视网膜变性中的作用机理作一探讨。  相似文献   

11.
The cDNA encoding a visual pigment of the locust Schistocerca gregaria has been inserted into the germline of the ninaE mutant of Drosophila melanogaster by P-element-mediated transformation. Functional expression has been documented by recording light-regulated electroretinograms in transgenic flies. The spectral properties of the expressed visual pigment were determined with detergent-solubilized material, prepared from the eyecups of the transgenic D. melanogaster. The recombinant locust pigment, as well as the genuine pigment of the fruitfly (Rh1) that served as a control for transformation/expression, showed photoreversibility between the pigment and metapigment forms. The absorptions of the difference spectra identify the locust visual pigment as a short wavelength-absorbing, blue-light-sensitive photoreceptor. The absorption maxima are similar to those recorded on living locust animals. These results show that, although locust visual pigments contain 11-cis retinal as chromophore, the expressed protein is able to adopt 3-hydroxyretinal that is provided by the transgenic fruitflies. The electrophysiological recordings reveal that the locust visual pigment is able to induce phototransduction in the fruitfly. The reported results have two important consequences: On the one hand, the binding site of the locust opsin is apparently able to interact with the 3-hydroxyretinal from Drosophila in a way that the biological signal generated by the photoisomerization of the chromophore can be used by the protein to adopt a physiologically active conformation. On the other hand, despite the relatively large phylogenetic distance between both insect species, the extent of conservation between the protein domains thought to be involved in G-protein activation is striking.  相似文献   

12.
Recent progress in understanding visual signal transduction in retinal cells is summarized. The roles of particular proteins in activation, amplification and termination of the photoresponse are described. Detailed information on the structure and function of the photoreceptor protein rhodopsin is presented. The latest data on visual pigment sequences, rhodopsin mutations in the autosomal-dominant retinitis pigmentosa, and the results of site-directed mutagenesis of the rhodopsin molecule are summarized.  相似文献   

13.
Renewal of opsin in the photoreceptor cells of the mosquito   总被引:3,自引:2,他引:1  
Mosquito rhodopsin is a digitonin-soluble membrane protein of molecular weight 39,000 daltons, as determined by sodium dodecyl sulfate gel electrophoresis. The rhodopsin undergoes a spectral transition from R515-520 to M480 after orange illumination. The visual pigment apoprotein, opsin, is the major membrane protein in the eye. Protein synthesis in the photoreceptor cells occurs in the perinuclear cytoplasm and the newly made protein is transported to the rhabdom. Light adaptation increases the rate of turnover of this rhabdomal protein. The turnover of electrophoretically isolated opsin is also stimulated by light adaptation. The changes observed in protein metabolism biochemically, are consistent with previous morphological observations of photoreceptor membrane turnover. The results agree with the hypothesis that the newly synthesized rhabdomal protein is opsin.  相似文献   

14.
Chuang JZ  Zhao Y  Sung CH 《Cell》2007,130(3):535-547
The light-sensing organelle of the vertebrate rod photoreceptor, the outer segment (OS), is a modified cilium containing approximately 1,000 stacked disc membranes that are densely packed with visual pigment rhodopsin. The mammalian OS is renewed every ten days; new discs are assembled at the base of the OS by a poorly understood mechanism. Our results suggest that discs are formed and matured in a process that involves specific phospholipid-directed vesicular membrane targeting. Rhodopsin-laden vesicles in the OS axonemal cytoplasm fuse with nascent discs that are highly specialized with abundant phosphatidylinositol 3-phosphate (PI3P). This membrane coupling is regulated by the FYVE domain-containing protein, SARA, through its direct interaction with PI3P, rhodopsin, and SNARE protein syntaxin 3. Our model, in contrast to the previously proposed evagination model, suggests that the vesicular delivery of rhodopsin in the OS concentrates rhodopsin into discs, and this process directly participates in disc biogenesis.  相似文献   

15.
Photoreceptor cells of eyes in vertebrate animals have been chosen as an example to illustrate the morphogenetic function of biomembranes in differentiation of the eye outer segments -- rods and cones. Morphogenetic function of biomembranes in photoreceptor cells involves an insertion of the heterogeneous molecule of visual pigment into the original plasma membrane. Depending on some features of visual pigment in one case cones may be produced or rods as more complicated structures may be differentiated in the other one. Some evolution aspects of photoreceptor cell differentiation have also been under discussion.  相似文献   

16.
Cyclic GMP-specific phosphodiesterase (3',5'-cyclic-nucleotide 5'-nucleotidohydrolase, EC 1.3.4.17) (PDE) is thought to be a key enzyme of the retinal-rod phototransduction cyclic nucleotide pathway. We attempted to investigate the properties and content of PDE in retinal-cone photoreceptors. The fractions obtained from cone-dominant ground squirrel retinas were analyzed for cone visual pigment content and PDE activity. The cone visual pigment content was estimated to be approx. 65 pmol per retina. The distribution of cone visual pigment coincided with that of the PDE activity through several steps of photoreceptor membrane purification by sucrose density gradient centrifugation. The ground squirrel retinal PDE was similar to the retinal-rod PDE by its kinetic properties, thermostability, sensitivity to tryptic activation, Stokes radius and pI values. The cone visual pigment enriched fractions contained the heat-stable trypsin-inactivated PDE inhibitor. Its functional properties seem to be similar to those of the retinal-rod PDE inhibitory subunit. The PDE content in ground squirrel retina was roughly estimated to be about five copies of enzyme per 100 cone visual pigment molecules. The obtained results indicated that the major portion of ground squirrel retinal cyclic GMP-specific PDE is the endogenous cone photoreceptor membrane enzyme and strongly supported the conception about the key role of PDE in cone phototransduction. The existence of essential differences between rod and cone systems rapidly returning cyclic GMP-specific amplification cascade components to the dark (or inactivated) states after photon absorption was suggested. If this suggestion is true, the well-known distinctions between response kinetics and light sensitivity of these two kinds of photoreceptor can be explained.  相似文献   

17.
Lysosomal protein trafficking is a fundamental process conserved from yeast to humans. This conservation extends to lysosome-like organelles such as mammalian melanosomes and insect eye pigment granules. Recently, eye and coat color mutations in mouse (mocha and pearl) and Drosophila (garnet and carmine) were shown to affect subunits of the heterotetrameric adaptor protein complex AP-3 involved in vesicle trafficking. Here we demonstrate that the Drosophila eye color mutant ruby is defective in the AP-3beta subunit gene. ruby expression was found in retinal pigment and photoreceptor cells and in the developing central nervous system. ruby mutations lead to a decreased number and altered size of pigment granules in various cell types in and adjacent to the retina. Humans with lesions in the related AP-3betaA gene suffer from Hermansky-Pudlak syndrome, which is caused by defects in a number of lysosome-related organelles. Hermansky-Pudlak patients have a reduced skin pigmentation and suffer from internal bleeding, pulmonary fibrosis, and visual system malfunction. The Drosophila AP-3beta adaptin also appears to be involved in processes other than eye pigment granule biogenesis because all ruby allele combinations tested exhibited defective behavior in a visual fixation paradigm.  相似文献   

18.
This study investigated the lipid and fatty acid composition of gecko photoreceptor outer segment membranes which contain the P521 cone-type pigment. The lipids of gecko photoreceptor outer segment membranes were first extracted and separated by thin layer chromatography (TLC) and then analyzed by gas chromatography (GC). Our results show that gecko photoreceptor outer segment membranes contain less phosphatidylethanolamine (PE) and more phosphatidylcholine (PC) and phosphatidylserine (PS) compared with those of bovine and frog. The content of the polyunsaturated fatty acid, docosahexaenoic acid (DHA), in PC and PS is also the highest yet reported (55 and 63%, respectively). These lipid differences may provide some insight into the specific lipid requirements of cone-type pigments.  相似文献   

19.
Although a given retina typically contains several visual pigments, each formed from a retinal chromophore bound to a specific opsin protein, single photoreceptor cells have been thought to express only one type of opsin. This design maximizes a cell''s sensitivity to a particular wavelength band and facilitates wavelength discrimination in retinas that process color. We report electrophysiological evidence that the ultraviolet-sensitive cone of salamander violates this rule. This cell contains three different functional opsins. The three opsins could combine with the two different chromophores present in salamander retina to form six visual pigments. Whereas rods and other cones of salamander use both chromophores, they appear to express only one type of opsin per cell. In visual pigment absorption spectra, the bandwidth at half-maximal sensitivity increases as the pigment''s wavelength maximum decreases. However, the bandwidth of the UV-absorbing pigment deviates from this trend; it is narrow like that of a red-absorbing pigment. In addition, the UV-absorbing pigment has a high apparent photosensitivity when compared with that of red- and blue-absorbing pigments and rhodopsin. These properties suggest that the mechanisms responsible for spectrally tuning visual pigments separate two absorption bands as the wavelength of maximal sensitivity shifts from UV to long wavelengths.  相似文献   

20.
We have cloned a cDNA for a novel opsin from the larval brain of the silkworm Bombyx mori in which the photoperiodic photoreceptor had been supposed to reside in the cephalic central nervous system (CNS). Its deduced amino acid sequence was composed of 381 amino acids and included amino acid residues highly conserved in insect visual pigments. This opsin belonged to the long wavelength photoreceptor group of insect opsins and showed the greatest degree of homology (84%) with the green visual photoreceptor in the sphingid moth. We have designated this Bombyx cerebral opsin as Boceropsin. Southern blotting experiments indicated that the Boceropsin gene is present in a single copy, and RT-PCR analysis revealed that Boceropsin mRNA is expressed in the larval brain but not in the subesophageal ganglion (Sg) or thoracic ganglion (Tg). Immunohistochemical analyses demonstrated that Boceropsin protein is present bilaterally in some defined cells localized in the brain of Bombyx larvae. This is the first report of expression of an opsin-based protein in CNS of an insect. The possibility that the Boceropsin functions as the photoperiodic receptive pigment in the silkworm is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号