首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Neuronal perikarya were isolated from young rat brain by sucrose density gradient centrifugation of the tissue, dissociated with a low concentration of trypsin. The isolated cells retained their endogenous proteins, and were capable of active protein synthesis. After incubation with L-[35S]methionine, perikarya were homogenised and separated into soluble and particulate fractions by centrifugation at 70,000 g. Newly synthesised polypeptides in each fraction were resolved by SDS-gel and two-dimensional gel electrophoresis coupled with fluorography. Neuronal perikarya synthesised predominantly actin, and α1-, α2 and β-tubulin. In addition, polypeptides with molecular weights of 35,000, 68,000 and 85,000 were heavily labelled. On two-dimensional electrophoresis, microheterogeneities were seen in soluble actin as well as in soluble tubulins, indicating that heterogeneities reported for brain actin and tubulins are inherent in neuronal actin and tubulins, but not owing to the heterogeneity of cells in the brain tissue. Structural differences between soluble tubulins and those associated with the particulate fraction were indicated by two-dimensional gel electrophoresis and also by one-dimensional peptide maps. The 68,000 molecular weight polypeptide synthesised in neuronal perikarya in vitro yielded a peptide map virtually identical with that generated from the major component of the neurofilament triplet polypeptides that were synthesised in situ. The 160,000 and 200,000 components of the neurofilament triplet were also synthesised in perikarya in vitro , but to disproportionately weaker extents compared with the 68,000 component.  相似文献   

2.
A galanin-like peptidergic system was demonstrated in the brain of Anguilla. A group of immunoreactive perikarya was located in the nucleus preopticus periventricularis close to the recessus preopticus. Galaninergic fibers occurred in various brain areas. Galanin identified in mammalian pituitary cells was undetectable in fish adenohypophysial cells. Estradiol increased the immunostaining of the rostral perikarya and brain fibers in both male and female European eels kept in fresh water and in female American eels in sea water. Methyltestosterone, an aromatizable androgen, increased galanin immunoreactivity in rostral perikarya and brain fibers of male European eels and female American eels. The cross-sectional area of these perikarya increased significantly after both treatments whereas cell bodies of the posteroventral hypothalamus were slightly affected. Dihydrotestosterone showed no clear effect. Fibers close to the corticotropes were sometime increased, but galanin synthesis was not induced in pituitary cells. In contrast, estradiol induced galanin synthesis in rat pituitary cells, but had a still controversed effect on hypothalamic galanin. A putative influence of galanin on the pituitary-gonadal axis is discussed as gonadal hormones diversely affect gonadotropes and gonosomatic indices in Anguilla.  相似文献   

3.
Six day old rat cerebrums prepared as a 10% cell suspension in 3% buffered Ficoll medium were fractionated in a Beckman CR-3 Elutriator rotor system. Neuroglial cells and heterogeneous components of broken cells were separated from intact neuronal perikarya at rotor speeds, respectively, of 2400 rev/min (first pass) and 5030 rev/min (second pass).  相似文献   

4.
Summary The gonadotropin-releasing hormone-associated peptide (GAP) of the LHRH precursor and the decapeptide LHRH were localized in the rat brain by immunocytochemistry in 12 to 18-day-old animals, by use of thick Vibratome sections and nickel intensification of the diaminobenzidinereaction product. Our results indicate that the GAP portion of the LHRH precursor is present in the same population of neurons that contain LHRH in the rat brain. An important difference observed was that the GAP antiserum, in contrast to LHRH antisera, stained several perikarya in the medial basal hypothalamus. GAP-immunoreactive perikarya were observed in the following regions: the olfactory bulb and tubercle, diagonal band of Broca, medial septum, medial preoptic and suprachiasmatic areas, anterior and lateral hypothalamus, and several regions of the hippocampus. In addition to the preoptico-terminal and the septopreoptico-infundibular pathways, we also observed GAPimmunopositive processes in several major tracts and areas of the brain, including the amygdala, stria terminalis, stria medullaris thalami, fasciculus retroflexus, stria longitudinalis medialis, periventricular plexus, periaqueductal gray of the mesencephalon and extra-cerebral regions, such as the nervus terminalis and its associated ganglion. These results confirm the specificity of previous immunocytochemical results obtained with antisera to LHRH. The presence of GAP immunoreactivity in nerve terminals of the rat brain indicates that GAP or a GAP-like peptide is located in the proper site to serve as a hypophysiotropic substance and/or as a neurotransmitter or neuromodulator.Supported by AKA No. 419427, OTKA No. 104, OKKFT 2.1.5.1 and NSF No. INT-8602688  相似文献   

5.
A simplified method was developed for the bulk separation of neuronal perikarya and astroglial celis from adult rat brain without the involvement of density gradients. Activities of various enzymes involved in glutamate metabolism were estimated and compared with those of synaptosomes. The activities of glutamate dehydrogenase and aspartate aminotransferase were higher in synaptosomes than in neuronal perikarya or glia. Glutamine synthetase was distributed in all the three fractions while glutaminase activity was higher in astrocytes than in synaptosomes and was not detectable in neuronal perikarya. The significance of these results in relation to metabolic compartmentation was discussed.  相似文献   

6.
1. UDPgalactose:glycoprotein galactosyltransferase (EC 2.4.1.-) activity was demonstrated in homogenates from whole rat brain, isolated neuromal perikarya, enriched glial cell fractions, and cultured rat glial tumor cells (clone C6). 2. Galactosyltransferase activity was enriched 3-9-fold in neuronal perikarya and 1.4--1.8-fold in the glial cell fraction over the activity in whole brains from 19- and 40-day-old rats. The activity of galactosyltransferase in neuronal perikarya decreased with age. Extensive contamination of the glial cell fraction with membranous fragments appeared to obscure the precise specific activity of this fraction. 3. The specific activity of the enzyme in glial tumor cells was 4--8-fold higher than in brain tissue when the enzyme was assayed under identical conditions using endogenous and different exogenous acceptors. 4. Galactosyltransferase activities from adult brain and glial tumor cells had similar properties. They both required Mn-2 plus and Triton, and exhibited pH optima between 5 and 7. The apparent Km of the enzyme for UDPgalactose was 1.3-10-minus 4 M for brain tissue and 2.2-10-minus 4 M for glial tumor cells. 5. The high galactosyltransferase activity in glial tumor cells and in neuronal perikarya of younger rats is compatible with the possibility of a role of this enzyme in developing brain.  相似文献   

7.
Summary The avidin-biotin peroxidase technique was used to determine the distribution of natriuretic peptides in the hearts and brains of the dogfishSqualus acanthias and the Atlantic hagfishMyxine glutinosa. Three antisera were used: one raised against porcine brain natriuretic peptide which cross-reacts with atrial natriuretic and C-type natriuretic peptides (termed natriuretic peptide-like immunoreactivity); the second raised against porcine brain natriuretic peptide which cross-reacts with C-type natriuretic peptide, but not with atrial natriuretic peptide (termed porcine brain natriuretic peptide-like immunoreactivity); and the third raised against rat atrial natriuretic peptide (termed rat atrial natriuretic peptide-like immunoreactivity). Only natriuretic peptide-like immunoreactivity was observed in the heart ofS. acanthias which was most likely due to the antiserum cross-reacting with C-type natriuretic peptide. No immunoreactivity was found in theM. glutinosa heart. In the brain ofS. acanthias, natriuretic peptide-like immunoreactive fibres were located in many areas of the telencephalon, diencephalon, mesencephalon, rhombencephalon, and spinal cord. Extensive immunoreactivity was observed in the hypothalamo-hypophyseal tract and the neurointermediate lobe of the hypophysis. Natriuretic peptide-like immunoreactive perikarya were found in ventromedial regions of the telencephalon and in the nucleus preopticus. Most perikarya had short, thick processes which extended toward the ventricle. Another group of perikarya was observed in the rhombencephalon. Porcine brain natriuretic peptide-like immunoreactive fibres were observed in the telencephalon, diencephalon, mesencephalon, and rhombencephalon, but perikarya were only present in the preoptic area. In theM. glutinosa brain, natriuretic peptide-like immunoreactive fibres were present in all regions. Immunoreactive perikarya were observed in the pallium, primordium hippocampi, pars ventralis thalami, pars dorsalis thalami, nucleus diffusus hypothalami, nucleus profundus, nucleus tuberculi posterioris, and nucleus ventralis tegmenti. Procine brain natriuretic peptide-like immunoreactive perikarya and fibres had a similar, but less abundant distribution than natriuretic peptide-like immunoreactive structures. Although the chemical structures of natriuretic peptides in the brains of dogfish and hagfish are unknown, these observations show that a component of the natriuretic peptide complement is similar to porcine brain natriuretic peptide or porcine C-type natriuretic peptide. The presence of natriuretic peptides in the brain suggest they could be important neuromodulators and/or neurotransmitters. Furthermore, there appears to be divergence in the structural forms of natriuretic peptides in the hearts and brains of dogfish and hagfish.  相似文献   

8.
The anatomical distribution of neurons containing galanin has been studied in the central nervous system of the chicken by means of immunocytochemistry using antisera against rat galanin. Major populations of immunostained perikarya were detected in several brain areas. The majority of galanin-immunoreactive cell bodies was present in the hypothalamus and in the caudal brainstem. Extensive groups of labeled perikarya were found in the paraventricular, periventricular, dorsomedial and tuberal hypothalamic nuclei, and in the nucleus of the solitary tract in the medulla oblongata. In the telencephalon, immunoreactive perikarya were observed in the preoptic area, in the lateral septal nucleus and in the hippocampus. The mesencephalon contained only a few galanin-positive perikarya located in the interpeduncular nucleus. Immunoreactive nerve fibers of varying density were detected in all subdivisions of the brain. Dense accumulations of galanin-positive fibers were seen in the preoptic area, periventricular region of the diencephalon, the ventral hypothalamus, the median eminence, the central gray of the brainstem, and the dorsomedial caudal medulla. The distributional pattern of galanin-immunoreactive neurons suggests a possible involvement of a galanin-like peptide in several neuroregulatory mechanisms.  相似文献   

9.
UDP-Galactose:Ceramide Galactosyl Transferase of Isolated Oligodendroglia   总被引:1,自引:1,他引:0  
Abstract: The activity of UDP-galactose:ceramide galactosyl transferase (CGalT) has been studied in isolated oligodendroglia from bovine brain white matter and myelinating rat brain. The specific activity and activity per mg DNA are 4- and 10-fold higher in rat oligodendroglia compared with neuronal perikarya from rat brain, and is higher in oligodendroglia from myelinating rat brain compared with bovine oligodendroglia. In membranes isolated from oligodendroglia, the specific activity decreased in the order endoplasmic reticulum > plasma membrane > myelin.  相似文献   

10.
Summary Immunocytochemical staining of luteinizing hormone-releasing hormone (LHRH), somatostatin, and neurophysin was compared in rat brains fixed with 1) formalin, 2) Bouin's solution, 3) freeze-dried (FD), or 4) freeze-dried + paraformaldehyde vapor perfused (FDV). The distribution of LHRH fibers was similar in all preparations; however, beads of granular reaction product often appeared finer and more numerous in the median eminence of FD- and FDV brains. Positively stained LHRH perikarya were not observed in any of the preparations. In contrast, somatostatin-immunoreactive perikarya were present in the fluid-fixed and FD brains, although few were observed in FDV brains. Somatostatin-immunoreactive fibers were present in all preparations, but appeared most numerous in the median eminence of FD brains. Staining of neurophysin-containing perikarya and fibers was similar in all preparations. These observations suggest that the FD brain can provide a suitable tissue substrate for immunocytochemistry, demonstrating staining comparable to or surpassing that of more conventional preparations. However, staining of antigens in FD brain was not uniformly successful and may depend on stereochemical characteristics of each antigen as well as properties of the primary antisera used in the staining procedure.  相似文献   

11.
A brain specific antiserum was prepared by immunizing rabbits with a crude membrane fraction from 8-day old rat cerebella. In immunofluorescence studies the antiserum labeled the perikarya and processes of cultured cerebellar neurones. In contrast, other cell types, encountered in cerebellar cultures including astrocytes, endothelial cells and fibroblasts, were consistently unstained. The antiserum when used in crossed immunoelectrophoresis with Triton X-100 solubilized brain extracts reacted predominantly with one antigen that could be identified as the D2 protein.This paper is dedicated to Dr. Derek Richter on his seventy-fifth birthday.  相似文献   

12.
The distribution of neurokinin B (NKB) was determined by immunocytochemistry with antisera directed toward its amino terminus. Immunoreactive perikarya were detected in the main and accessory olfactory bulbs, cortical regions, the olfactory tubercle, the bed nucleus of the stria terminalis, the diagonal band of Broca, the nucleus accumbens, the septum, the neostriatum, several hypothalamic nuclei, the superior colliculus, the central gray, the substantia nigra, the medullary reticular formation, and the external cuneate nucleus. The distribution of NKB-containing perikarya revealed by immunocytochemistry was similar to the distribution of protachykinin B-containing cells previously visualized by in situ hybridization. Immunoreactive nerve fibers and terminals were detected in all major subdivisions of the brain. The levels of NKB measured by radioimmunoassay were highest in the hypothalamus. The distribution of NKB in the rat brain was similar to the distribution of substance P; however, there were several regions where the two distributions were clearly different.  相似文献   

13.
Summary The localization and distribution of prolactinlike-immunoreactive perikarya and nerve fibers in the rat central nervous system have been studied by a preembedding immunoperoxidase method using well-characterized specific immunsera to rat prolactin. Although the localization of labeled neuronal structures in a number of brain areas correlates with the data of previous immunocytochemical studies, we found prolactin-immunoreactive neurons in various regions not previously reported. In untreated animals, the highest concentrations of prolactinfibers were observed: (i) in the external layers of the median eminence where they exhibited close contact with blood vessels, and (ii) in the bed nucleus of the stria terminalis and in the central nucleus of the amygdala where they closely surrounded unlabeled perikarya. Dense networks of finely varicose prolactin fibers were also observed in the organum vasculosum of the lamina terminalis, in the subfornical organ, and in the dorsolateral regions of the medulla oblongata and the spinal cord. Lastly, a number of large, varicose, intensely immunoreactive fibers were found in the olfactory bulb, the cingulum, and the periventricular regions of the hypothalamus and central gray, whereas isolated fibers could be detected in the caudate nucleus and in the cerebral cortex. In animals treated with colchicine, prolactin-immunoreactive perikarya were essentially located within the periventricular and perifornical regions of the hypothalamus, and within the bed nucleus of the stria terminalis. Although corticotropin (ACTH 17-39)-immunoreactive fibers could be detected in several regions found to contain prolactin fibers, the distribution and organization of both fiber types clearly differed in numerous brain regions, and the regions containing the corresponding perikarya did not overlap. The ultrastructural organization of the prolactin-immunoreactive fibers revealed by electronmicroscopic immunocytochernistry in various brain regions, allowed the characterization of two main types of prolactinergic neurons including: (i) endocrine neurons, whose axons terminated in close vicinity to portal blood vessels in the external median eminence, and (ii) neurons projecting to extrahypothalamic regions, whose axons formed typical synaptic connections with unidentified neuronal units.  相似文献   

14.
Localization of antisera to neurofilament antigens derived from rat peripheral nerve was carried out in tissues of rat and human peripheral and central nervous systems by indirect immunofluorescence. Unfixed and chloroform-methanol-fixed frozen sections of tissues were incubated in purified IgG of the experimental rabbit antisera and subsequently exposed to goat anti-rabbit IgG conjugated with fluorescein isothiocyanate. Control studies were conducted on identical tissue preparations incubated in the same concentrations of nonspecific rabbit IgG or in experimental rabbit IgG absorbed with extracts of rat peripheral nerve containing neurofilament antigen. Extensive immunofluorescence was observed in rat and human peripheral and central nervous systems. The distribution and configuration of immunofluorescence corresponded to neurofilament-rich structural components of these tissues. Prominent immunofluorescence was also noted in neuronal cell bodies of spinal sensory ganglia, especially in perikarya of the large neuronal type. Immunofluorescence of the central nervous system was located predominantly in myelinated axons of the white matter in cerebrum, cerebellum, brain stem, and spinal cord. Less intense immunofluorescence was also seen in neuronal perikarya and in short thin linear processes of grey matter.  相似文献   

15.
The localization of thyrotropin releasing hormone (TRH) in rat brain determined by use of avidin-biotin immunoperoxidase histochemistry was compared with the distribution and quantitation by radioimmunoassay (RIA). Male Sprague-Dawley rats received intracisternal injections of 100 micrograms of colchicine or saline and were sacrificed 24 hours later. Brains were either perfused with lysine-periodate fixative and processed for TRH immunohistochemistry or were dissected into 9 brain regions for TRH RIA. In colchicine pretreated rats. TRH immunoreactive perikarya were observed only in nuclei of the hypothalamus and brain stem. No cell body staining was observable in non-colchicine treated rats. With the exception of the olfactory bulb, brain regions exhibiting dense TRH staining contained high concentrations of TRH as measured by RIA. Colchicine pretreatment did not alter the concentration of TRH in most brain regions, however, there was a significant increase in brain stem TRH content 24 hours following colchicine administration. These findings indicate that immunohistochemical localization of TRH corresponds well with endogenous concentrations of TRH determined by RIA.  相似文献   

16.
17.
Gonadotropin-releasing hormone (GnRH) neurons and pathways in the rat brain   总被引:8,自引:0,他引:8  
Merchenthaler  I.  Göres  T.  Sétáló  G.  Petrusz  P.  Flerkó  B. 《Cell and tissue research》1984,237(1):15-29
Summary Gonadotropin-releasing hormone (GnRH) neurons and their pathways in the rat brain were localized by immunocytochemistry in 6-to 18-day-old female animals, by use of thick frozen or vibratome sections, and silver-gold intensification of the diaminobenzidine reaction product. GnRH-immunoreactive perikarya were observed in the following regions: olfactory bulb and tubercle, vertical and horizontal limbs of the diagonal band of Broca, medial septum, medial preoptic and suprachiasmatic areas, anterior and lateral hypothalamus, and different regions of the hippocampus (indusium griseum, Ammon's horn). In addition to the known GnRH-pathways (preoptico-terminal, preoptico-infundibular, periventricular), we also observed GnRH-immunopositive processes in several major tracts and areas of the brain, including the medial and cortical amygdaloid complex, stria terminalis, stria medullaris thalami, fasciculus retroflexus, medial forebrain bundle, indusium griseum, stria longitudinalis medialis and lateralis, hippocampus, periaqueductal gray of the mesencephalon, and extracerebral regions, such as the lamina cribrosa, nervus terminalis and its associated ganglia. By use of the silver-gold intensification method we present Golgi-like images of GnRH perikarya and their pathways. The possible distribution of efferents from each GnRH cell group is discussed.  相似文献   

18.
Our goal was to elucidate the pathway of newly synthesized phospholipid into the growing neurite. This was accomplished in pulse-chase studies with the phospholipid precursor [3H]glycerol, using sprouting explant cultures of rat superior cervical ganglion as an experimental system. After the pulse with the precursor and various chase periods, we separated perikarya and neurites microsurgically and extracted their phospholipids. The phospholipid extract from the perikarya exhibited a steep rise followed by a rapid decline in specific radioactivity. In contrast, an increase in neuritic specific radioactivity of phospholipid was observed only after a lag period of approximately 60 min. Nearly quantitative transfer of newly synthesized phospholipid from the perikarya into the neurites could be demonstrated. Both the decline in perikaryal specific radioactivity and the increase in its neuritic counterpart, i.e., the proximodistal transfer, could be blocked with the microtubule drug colchicine and the metabolic uncoupler, 2,4-dinitrophenol. These observations indicate preferential export of newly synthesized phospholipid from the perikaryon (the major or exclusive site of synthesis) into the growing neurites, most likely by rapid axoplasmic transport of formed elements.  相似文献   

19.
The distribution of perikarya and fibers containing corticotropin-releasing factor (CRF) was studied in the brain of the teleost Sparus aurata by immunocytochemistry using the peroxidase-antiperoxidase method. Antisera against rat CRF, arginine vasotocin, and human adrenocorticotropin (ACTH) were used. Most CRF-immunoreactive neurons were located in the nucleus lateralis tuberis, but they were absent from the nucleus preopticus, which only contained arginine vasotocin neurons. Few CRF perikarya were identified in the nucleus preopticus periventricularis and in the mesencephalic tegmentum. A conspicuous bundle of immunoreactive fibers ran along the diencephalic floor and pituitary stalk to end near the cells of the hypophysial pars intermedia. No CRF was seen near the adenohypophysial rostral pars distalis. Our results suggest that, in Sparus aurata, CRF is a releasing factor for melanotropic cells. Its role as a releasing factor for ACTH is discussed.  相似文献   

20.
The immunocytochemical localization of neurons containing the 41 amino acid peptide corticotropin-releasing factor (CRF) in the rat brain is described. The detection of CRF-like immunoreactivity in neurons was facilitated by colchicine pretreatment of the rats and by silver intensification of the diaminobenzidine end-product. The presence of immunoreactive CRF in perikarya, neuronal processes, and terminals in all major subdivisions of the rat brain is demonstrated. Aggregates of CRF-immunoreactive perikarya are found in the paraventricular, supraoptic, medial and periventricular preoptic, and premammillary nuclei of the hypothalamus, the bed nuclei of the stria terminalis and of the anterior commissure, the medial septal nucleus, the nucleus accumbens, the central amygdaloid nucleus, the olfactory bulb, the locus ceruleus, the parabrachial nucleus, the superior and inferior colliculus, and the medial vestibular nucleus. A few scattered perikarya with CRF-like immunoreactivity are present along the paraventriculo-infundibular pathway, in the anterior hypothalamus, the cerebral cortex, the hippocampus, and the periaqueductal gray of the mesencephalon and pons. Processes with CRF-like immunoreactivity are present in all of the above areas as well as in the cerebellum. The densest accumulation of CRF-immunoreactive terminals is seen in the external zone of the median eminence, with some immunoreactive CRF also present in the internal zone. The widespread but selective distribution of neurons containing CRF-like immunoreactivity supports the neuroendocrine role of this peptide and suggests that CRF, similarly to other neuropeptides, may also function as a neuromodulator throughout the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号