共查询到20条相似文献,搜索用时 15 毫秒
1.
In a study of the interactions between glycolytic enzymes and cytoskeletal structure, the effect of increasing the degree of molecular crowding by the addition of physiological concentrations of saline and protein was studied. Increasing the ionic strength to physiological levels resulted in only a slight decrease in the retention of most of enzymes, whereas the establishment of physiological concentrations of both saline and protein, caused a markedly increased degree of binding of all the glycolytic enzymes. The implications of this data have been discussed in relation to the relative affinities of interaction of the individual components, the influence of molecular crowding and the physiological significance of this phenomenon. 相似文献
2.
In order to provide information on the influence of Ca2+ ions on the adsorption of glycolytic enzymes to cellular structure, the release of these enzymes from digitonized cells has been studied. Increases in the calcium ion concentration were found to cause corresponding decreases in the extent of release of all the glycolytic enzymes, as well as a parallel increase in the extent of polymerization of actin. These observations have been discussed in relation to the effect of physiological concentrations of these ions on the association between glycolytic enzymes and the cytoskeleton. 相似文献
3.
In a continuing study of the interactions between glycolytic enzymes and cytoskeletal structure, the influence of a variation of the pH of the eluting medium has been investigated. This treatment resulted in an increased degree of binding of most of the glycolytic enzymes with a decrease in pH, with the most marked increases in binding occurring with phosphofructokinase, glyceraldehydephosphate dehydrogenase, enolase and pyruvate kinase. The significance of this data has been discussed with reference to the relative affinities of interaction of the individual glycolytic components and the physiological correlations of these phenomena. 相似文献
4.
The influence of insulin and glucagon on the release of glycolytic enzyme activities and actin from cultured pig kidney cells treated with digitonin has been studied. Both insulin and glucagon reduced the release of all glycolytic enzymes except for phosphofructokinase, and concurrently reduced the release of actin. These data have been discussed in relation to their contribution to knowledge of the interactions between glycolytic enzymes and actin filaments of the cytoskeleton, and to the influence of hormones on these interactions. 相似文献
5.
6.
Chebotareva NA 《Biochemistry. Biokhimii?a》2007,72(13):1478-1490
Cell cytoplasm contains high concentrations of macromolecules occupying a significant part of the cell volume (crowding conditions). According to modern concepts, crowding has a pronounced effect on the rate and equilibrium of biochemical reactions and stimulates the formation of more compact structures. This review considers different aspects of the crowding effect in vivo and in vitro, its role in regulation of cell volume, the effect of crowding on various interactions, such as protein-ligand and protein-protein interactions, as well as on protein denaturation, conformation transitions of macromolecules, and supramolecular structure formation. The influence of crowding arising from the presence of high concentrations of osmolytes on the interactions of the enzymes of glycogenolysis has been demonstrated. It has been established that, in accordance with predictions of crowding theory, trimethylamine N-oxide (TMAO) and betaine highly stimulate the association of phosphorylase kinase (PhK) and its interaction with glycogen. However, high concentrations of proline, betaine, and TMAO completely suppress the formation of PhK complex with phosphorylase b (Phb). The protective effect of osmolyte-induced molecular crowding on Phb denaturation by guanidine hydrochloride is shown. The influence of crowding on the interaction of Phb with allosteric inhibitor FAD has been revealed. The results show that, under crowding conditions, the equilibrium of the isomerization of Phb shifts towards a more compact dimeric state with decreased affinity for FAD. 相似文献
7.
In order to provide information on the relative binding characteristics of glycolytic enzymes, the effect of fructose-1,6-bisphosphate (FBP) on the release of glycolytic enzymes from cultured pig kidney cells treated with digitonin has been studied. In the absence of FBP, a differential release of these enzymes was observed, with the order of retention being aldolase greater than glyceraldehyde-3-phosphate dehydrogenase greater than glucosephosphate isomerase, triosephosphate isomerase, phosphoglycerokinase, phosphoglucomutase, lactate dehydrogenase, enolase, pyruvate kinase and phosphofructokinase. In the presence of fructose-1,6-bisphosphate, the release of aldolase was considerably enhanced, whereas the release of phosphofructokinase and pyruvate kinase was decreased by this metabolite. No significant alterations in the rate of release of the other enzymes was caused by FBP. These data have been discussed in relation to their contribution to the knowledge of the degree of association and order of binding between glycolytic enzymes and the cytoplasmic matrix. 相似文献
8.
C Masters 《The International journal of biochemistry》1992,24(3):405-410
1. In reviewing the microenvironmental factors involved in the binding of the glycolytic enzymes to contractile filaments, consideration has been given to the significance of molecular crowding in maintaining these interactions under cellular conditions, and the influence of hormones, metabolites, pH and enzyme modifications on these phenomena. 2. Overall, these data serve to emphasize the biological reality of these associations, and their micro-organizational adaptations during physiological activities. 相似文献
9.
10.
R E Jordan G M Oosta W T Gardner R D Rosenberg 《The Journal of biological chemistry》1980,255(21):10073-10080
A low molecular weight preparation of porcine heparin (specific anticoagulation activity = 125 units/mg) was fractionated to obtain a mucopolysaccharide product of 6500 daltons (specific anticoagulant activity = 373 units/mg) that is homogeneous with respect to its interaction with antithrombin. This material was treated with fluorescamine in order to introduce a fluorescent tag into the mucopolysaccharide. Initially, we showed that the fluorescamine-heparin conjugate and the unlabeled mucopolysaccharide interacted with antithrombin in a virtually identical fashion. Subsequently, we demonstrated that labeled heparin could be utilized in conjunction with fluorescence polarization spectroscopy to monitor the binding of mucopolysaccharide to thrombin, factor IXa, factor Xa, and plasmin. The interaction of this complex carbohydrate with thrombin exhibited a stoichiometry of 2:1 with KH1T DISS = KH2T DISS = 8 x 10(-7) M. The formation of mucopolysaccharide . factor IXa complex is characterized by a stoichiometry of 1:1 with KHIXa DISS = 2.58 x 10(-7) M. The binding of heparin to factor Xa or plasmin occurred with low avidity. Therefore, the stoichiometries of these processes could not be established. However, our experimental data were compatible with a single-site binding residue with KHXa DISS = 8.73 x 10(-6) M and KHPL DISS = approximately 1 x 10(-4) M, respectively. 相似文献
11.
T.P. Walsh C.J. Masters D.J. Morton F.M. Clarke 《Biochimica et Biophysica Acta (BBA)/General Subjects》1981,675(1):29-39
The extent of binding of glycolytic enzymes to the particulate fraction of homogenates was measured in sheep hind muscles after electrical stimulation. As compared to the control muscles, stimulation led to significant increases in the amount of phosphofructokinase, aldolase and glyceraldehyde-3-phosphate dehydrogenase bound to the particulate fraction. The bindng of other glycolytic enzymes was not significantly altered. A servey of different hind limb muscles at variable rates of stimulation revealed that each muscle exhibited its own characteristic response pattern in terms of the level of increased enzyme binding. Generally, an increased stimulation rate led to greater enzyme adsorption. The increase in enzyme binding was rapidly reversible for it was shown that the amount of enzyme bound quickly returned to control values when the muscles were allowed to recover in the live anaesthetised animal following cessation of stimulation. Those muscles which exhibited increased enzyme binding were characterised by a marked loss of glycogen and accumulation of lactate suggesting that accelerated glycolytic flux was a necessary condition for the observation of increased enzyme binding. In support of this, enzyme adsorption was observed to be greatest on stimulation of ischemic muscles, whereas in trained muscles, or muscles with depleted glycogen stores induced by prior adrenalin treatment, the increased enzyme binding response was greatly diminished. It is concluded that the variable binding of key glycolytic enzymes has a role to play in the regulation of glycolytic behaviour in skeletal muscle. 相似文献
12.
In an endeavour to extend the available information on the biological significance of the interactions between glycolytic enzymes and cellular ultrastructure, the role of release of enzymes from digitonized fibroblasts has been studied. Lactate dehydrogenase and phosphofructokinase were rapidly and quantitatively eluted under the experimental conditions, while glyceraldehyde-3-phosphate dehydrogenase and aldolase were retained to an appreciably greater extent by the cells. This differential release of glycolytic enzymes has been related to the known binding propensities between those enzymes and subcellular structures, and are interpreted as providing additional confirmatory evidence of the importance of aldolase and glyceraldehyde-3-phosphate dehydrogenase, in particular, to these associations. The data also shed light on the order of binding of these glycolytic components - phosphofructokinase being indicated as binding subsequently (and probably separately) to aldolase and glyceraldehyde-3-phosphate dehydrogenase. These results have been discussed in relation to the available data on the associations between glycolytic enzymes and cellular structure, the possible physiological significance of this phenomenon, and the access to these problems provided by the present technique. 相似文献
13.
Fatigue of isolated gastrocnemius muscles from R. pipiens leads to a marked increase in the proportion of phosphofructokinase bound to the particulate fraction and a decrease in the binding of lactate dehydrogenase, pyruvate kinase, creatine phosphokinase and glyceraldehyde-3-phosphate dehydrogenase. Only the proportion of aldolase bound to the particulate fraction was unaffected by fatigue. This pattern was unchanged when fatigued muscles were extracted at pH 6.5 rather than 7.5. Thus, muscle fatigue leads to opposite changes in the binding of the glycolytic enzymes. 相似文献
14.
In permeabilized cells, deoxyribonuclease I has been demonstrated to cause a decrease in the extent of binding to cellular structure of all of the glycolytic enzymes other than phosphofructokinase, with this decrease being most marked for aldolase and glyceraldehydephosphate dehydrogenase. Cytochalasin D, in contrast, did not produce this type of effect. These results have been discussed in relation to the evidence for the existence of a complex of glycolytic enzymes which binds to elements of the cytoplasmic matrix, and the possible organization of this complex. 相似文献
15.
Chloroquine at pH 8.0 and 10 mM concentration inhibits about 30% glucose consumption and ethanol formation in yeast cells. Out of the 11 glycolytic enzymes assayed, phosphoglycerate kinase and pyruvate decarboxylase have been found to be most sensitive to chloroquine. Next sensitive are hexokinase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase. Kinetic studies with the three kinases studied revealed competitive inhibition of chloroquine with ATP (hexokinase, phosphoglycerate kinase) or ADP (pyruvate kinase). 相似文献
16.
17.
Evolution of glycolytic enzymes 总被引:4,自引:0,他引:4
M G Rossman 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》1981,293(1063):191-203
The requirements for glycolysis are examined in relation to other essential metabolic processes in the most primitive organisms. The construction of more complex enzymes from primitive domain building blocks is assessed with respect to glycolytic enzymes. Special attention is given to the evolution of the NAD binding domain in dehydrogenases and the related, frequently observed nucleotide binding domain. An attempt is made to differentiate between convergence and divergence of frequently observed domains. Consideration is given to the structure-function relation of these domains and the development of quaternary structure in later stages of evolution. Some attention is also given to the evolution of the structural adaptation to extreme environments as a means of differentiating between essential functions and specific modifications. 相似文献
18.
The cytoskeletal architecture of the presynaptic terminal and molecular structure of synapsin 1 总被引:15,自引:12,他引:15
下载免费PDF全文

We have examined the cytoskeletal architecture and its relationship with synaptic vesicles in synapses by quick-freeze deep-etch electron microscopy (QF.DE). The main cytoskeletal elements in the presynaptic terminals (neuromuscular junction, electric organ, and cerebellar cortex) were actin filaments and microtubules. The actin filaments formed a network and frequently were associated closely with the presynaptic plasma membranes and active zones. Short, linking strands approximately 30 nm long were found between actin and synaptic vesicles, between microtubules and synaptic vesicles. Fine strands (30-60 nm) were also found between synaptic vesicles. Frequently spherical structures existed in the middle of the strands between synaptic vesicles. Another kind of strand (approximately 100 nm long, thinner than the actin filaments) between synaptic vesicles and plasma membranes was also observed. We have examined the molecular structure of synapsin 1 and its relationship with actin filaments, microtubules, and synaptic vesicles in vitro using the low angle rotary shadowing technique and QF.DE. The synapsin 1, approximately 47 nm long, was composed of a head (approximately 14 nm diam) and a tail (approximately 33 nm long), having a tadpole-like appearance. The high resolution provided by QF.DE revealed that a single synapsin 1 cross-linked actin filaments and linked actin filaments with synaptic vesicles, forming approximately 30-nm short strands. The head was on the actin and the tail was attached to the synaptic vesicle or actin filament. Microtubules were also cross-linked by a single synapsin 1, which also connected a microtubule to synaptic vesicles, forming approximately 30 nm strands. The spherical head was on the microtubules and the tail was attached to the synaptic vesicles or to microtubules. Synaptic vesicles incubated with synapsin 1 were linked with each other via fine short fibrils and frequently we identified spherical structures from which two or three fibril radiated and cross-linked synaptic vesicles. We have examined the localization of synapsin 1 using ultracryomicrotomy and colloidal gold-immunocytochemistry of anti-synapsin 1 IgG. Synapsin 1 was exclusively localized in the regions occupied by synaptic vesicles. Statistical analyses indicated that synapsin 1 is located mostly at least approximately 30 nm away from the presynaptic membrane. These data derived via three different approaches suggest that synapsin 1 could be a main element of short linkages between actin filaments and synaptic vesicles, and between microtubules and synaptic vesicles, and between synaptic vesicles in the nerve terminals.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
19.
Ye Sol Oh Jin Ha Park Sung Wook Han 《Journal of biomolecular structure & dynamics》2013,31(12):3035-3046
Meso-tetrakis(N-methyl pyridinium-4-yl)porphyrin (TMPyP) intercalates between the base-pairs of DNA at a low [TMPyP]/[DNA base] ratio in aqueous solutions and molecular crowding conditions, which is induced by the addition of Poly(ethylene glycol) (PEG). Studied DNA-binding drugs, including TMPyP, 9-aminoacridine, ethidium bromide, and DAPI (4′,6-diamidino-2-phenylindole) showed similar binding properties in the presence or absence of PEG molecules which is examined by circular and linear dichroism. According to the LDr (reduced linear dichroism) results of the binding drugs examined in this work, PEG molecules induced no significant change compared to their binding properties in aqueous buffering systems. These results suggest that the transition moments are not expected to be perturbed significantly by PEG molecules. In this study, the experimental conditions of PEG 8000 were maintained at 35% (v/v) of total reaction volume, which is equal to the optimal molar concentration (0.0536 M as final concentration for PEG 8000) to maintain suitable cell-like conditions. Therefore, there was no need to focus on the conformational changes of the DNA helical structure, such as forming irregular aggregate structures, induced by large quantities of molecular crowding media itself at this stage. 相似文献
20.
On the basis of the analysis of the data on adsorption of glycolytic enzymes to structural proteins of skeletal muscles and to the erythrocyte membranes, the data on enzyme-enzyme interactions and the data on the regulation of activity of glycolytic enzymes by cellular metabolites, the structure of the glycolytic enzymes complex adsorbed to a biological support has been proposed. The key role in the formation of multienzyme complex belongs to 6-phosphofructokinase. The enzyme molecule has two association sites, one of which provides the fixation of 6-phosphofructokinase on the support and another is saturated by fructose-1,6-bisphosphate aldolase. The multienzyme complex contains one tetrameric molecule of 6-phosphofructokinase and two molecules of each of other glycolytic enzymes. Hexokinase is not a part of the complex. The molecular mass of the multienzyme complex is about 2.6 X 10(6) daltons. The multienzyme complex has symmetry axis of second order. The formation of the multienzyme complex leads to the compartmentation of glycolytic process. The problem of integration of physico-chemical mechanisms of enzyme activity regulation (allosteric, dissociative and adsorptive mechanisms) is discussed. 相似文献