首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Induction of lactose transport and of beta-galactosidase synthesis was examined in two Escherichia coli strains that require exogenous glycerol for phospholipid synthesis and growth. No preferential inhibition of lactose transport induction was observed when phospholipid synthesis was restricted to 5 to 10% of the normal rate. We conclude that the lactose transport system does not require concurrent phospholipid synthesis for its functional assembly.  相似文献   

2.
The chemical synthesis of lactose operator DNA segments is described. The 31-base-paired duplex contains the DNA recognized by lac repressor protein and twofold rotationally symmetric base pairs on either side of the tight binding region. The synthesis includes the deoxyoligonucleotides d(T-G-T-G-G), d(A-A-T-T-G-T-G-A-G), d(C-G-G-A-T-A-A-C-A-A-T-T), d(T-C-A-C-A), d(T-G-T-G-A-A-A-T-T-G-T), d(T-A-T-C-C-G-C-T-C-A-C), and d(A-A-T-T-C-C-A-C-A). These deoxyoligonucleotides were characterized by two-dimensional sequencing techniques, paper chromatography, and thin-layer chromatography.  相似文献   

3.
4.
Several lines of evidence suggest that sucrose is transported by the lactose carrier of Escherichia coli. Entry of sucrose was monitored by an osmotic method which involves exposure of cells to a hyperosmotic solution of disaccharide (250 mM). Such cells shrink (optical density rises), and if the solute enters the cell, there is a return toward initial values (optical density falls). By this technique sucrose was found to enter cells at a rate approximately one third that of lactose. In addition, the entry of [14C]sucrose was followed by direct analysis of cell contents after separation of cells from the medium by centrifugation. Sucrose accumulated within the cell to a concentration 160% of that in the external medium. The addition of sucrose to an anaerobic suspension of cells resulted in a small alkalinization of the external medium. These data are consistent with the view that the lactose carrier can accumulate sucrose by a proton cotransport system. The carrier exhibits a very low affinity for the disaccharide (150 mM) but a moderately rapid Vmax.  相似文献   

5.
Growth of Escherichia coli strain MM6-13 (ptsI suc lacI sup), which as a suppressor of the succinate-negative phenotype, was inhibited by lactose. Cells growing in yeast extract-tryptone-sodium chloride medium (LB broth) were lysed upon the addition of lactose. In Casamino Acids-salts medium, lactose inhibited growth, but due to the high K+ content no lysis occurred. Lysis required high levels of beta-galctosidase and lactose transport activity. MM6, the parental strain of MM6-13, has lower levels of both of these activities and was resistant to lysis under these conditions. When MM6 was grown in LB broth with exogenous cyclic adenosine monophosphate, however, beta-galactosidase and lactose transport activities were greatly increased, and lysis occurred upon the addition of lactose. Resting cells of both MM6 and MM6-13 were lysed by lactose in buffers containing suitable ions. In the presence of MG2+, lysis was enhanced by 5 mM KCl and 100 mM NaCl. Higher slat concentrations (50 mM KCl or 200 mM NaCl) provided partial protection from lysis. In the absence of Mg2+, lysis occurred without KCl. Lactose-dependent lysis occurred in buffers containing anions such as sulafte, chloride, phosphate, or citrate; however, thiocyanate or acetate protected the cells from lysis. These data indicate that both cations and anions, as well as the levels of lactose transport and beta-galactosidase activity, are important in lysis.  相似文献   

6.
The energetics of D-lactate-driven active transport of lactose in right-side-out Escherichia coli membrane vesicles has been investigated with a microcalorimetric method. Changes of enthalpy (delta Hox), free energy (delta Gox), and entropy (delta Sox) during the D-lactate oxidation reaction in the presence of membrane vesicles are -39.9 kcal, -46.4 kcal, and 22 cal/deg per mole of D-lactate, respectively. The free energy released by this reaction is utilized to form a proton electrochemical potential (delta-microH+) across the membrane. The higher observed heat in the D-lactate oxidation reaction in the presence of carbonylcyanide m-chlorophenylhydrazone (a proton ionophore) supports the postulate that delta-microH+ is formed across the membrane vesicles. Thermodynamic quantities for the formation of delta-microH+ are delta Hm = 14.1 kcal, delta Gm = 0.6 kcal, and delta Sm = 45 cal/deg per mole of D-lactate. The efficiency in the free energy transfer from the oxidation reaction to the formation of delta-microH+ (defined by delta Gm/delta Gox) was 2%, as compared to that in the heat transfer (defined by delta Hm/delta Hox) of 35%. The energetics of the movement of lactose in symport with proton across the membrane as a consequence of the formation of delta-microH+ are delta H1 = -19 kcal, delta G1 = -0.5 kcal, and delta S1 = -62 cal/deg per mole of lactose. No heat of reaction is contributed by lactose movement across the membrane without symport with H+.  相似文献   

7.
Summary A sequence (hlyR) of about 600 bp which enhances the expression of hemolysin (HlyA) more than 50-fold was identified in the plasmid pHly152-specific hemolysin (hly) determinant. Deletion of this entire hlyR sequence led to the same low level of hemolysin synthesis and excretion as that expressed by the recombinant plasmid pANN202-312. HlyR was active in cis but its activity was orientation-dependent. The enhancing sequence, hlyR, is separated from the promoter phlyI transcribing hlyC, hlyA and possibly hlyB by more than 1.5 kb including an IS2 element. Stepwise removal of the hlyR sequence from its 5 end by exonuclease III (ExoIII) digestion yielded several types of deletion mutants which expressed decreasing amounts of hemolysin. A similar observation was made when hlyR was shortened by ExoIII from its 3 end, which suggests that more than one functional region may be present in the hlyR sequence. A deletion of 717 bp within the adjacent IS2 element reduced the activity of hlyR only slightly, indicating that IS2 is not directly involved in the enhancement mechanism but that it may support an optimal positioning in hlyR relative to the hly promoter. The nucleotide sequence of hlyR is rich in A+T and does not contain an extended open reading frame, but exhibits several sequence motives that may represent sites for protein binding and DNA bending.  相似文献   

8.
Lactose killing is a peculiar phenomenon in which 80 to 98% of the Escherichia coli cells taken from a lactose-limited chemostat die when plated on standard lactose minimal media. This unique form of suicide is caused by the action of the lactose permease. Since uptake of either lactose or galactose by the lactose permease caused death, the action of rapid transport across the membrane must be the cause of the phenomenon. Alternative causes of lactose killing, such as accumulation of toxic metabolic intermediates or action of the beta-galactosidase, have been eliminated. It is proposed that rapid uptake of sugars by the lactose permease disrupts membrane function, perhaps causing collapse of the membrane potential.  相似文献   

9.
When the two main energy yielding pathways, respiration and the membrane ATPase of Escherichia coli are poisoned, the lactose permease is unable to accomplish accumulative transport of thiogalactosides, but the efflux of preloaded substrate can be coupled to a transiently uphill transport of exogenous substrate. This transient uphill transport, called overshoot has been reexamined with the possibility of an obligate H+ cotransport in mind. Overshoot can be diminished but not suppressed by a proton-conducting uncoupler, carbonyl cyanide m chlorophenylhydrazone, (CCCP) and by a liposoluble cation, triphenyl-methyl phosphonium (TPMP+). The effect of other factors, such as temperature, amount of permease and pH were also explored. The overshoot was found to decrease with increasing pH, until at pH 8 it became negligible. This is in sharp contrast with the relatively flat pH dependence of uphill and downhill transport in unpoisoned cells. CCCP and TPMP+ had no inhibitory effect on the overshoot at pH 6 and below.  相似文献   

10.
The phoM gene is one of the positive regulatory genes for the phosphate regulon of Escherichia coli. We analyzed the nucleotide sequence of a 4.7-kilobase chromosomal DNA segment that encompasses the phoM gene and its flanking regions. Four open reading frames (ORFs) were identified in the order ORF1-ORF2-ORF3 (phoM)-ORF4-dye clockwise on the standard E. coli genetic map. Since these ORFs are preceded by a putative promotor sequence upstream of ORF1 and followed by a putative terminator distal to ORF4, they seem to constitute an operon. The 157-amino-acid ORF1 protein contains highly hydrophobic amino acids in the amino-terminal portion, which is a characteristic of a signal peptide. The 229-amino-acid ORF2 protein is highly homologous to the PhoB protein, a positive regulatory protein for the phosphate regulon. The ORF3 (phoM gene) protein contains two stretches of highly hydrophobic residues in the amino-terminal and central regions and, therefore, may be a membrane protein. The 450-amino-acid ORF4 protein contains long hydrophobic regions and is likely to be a membrane protein.  相似文献   

11.
A general method has been developed for determining the rate of entry of lactose into cells of Escherichia coli that contain beta-galactosidase. Lactose entry is measured by either the glucose or galactose released after lactose hydrolysis. Since lactose is hydrolyzed by beta-galactosidase as soon as it enters the cell, this assay measures the activity of the lactose transport system with respect to the translocation step. Using assays of glucose release, lactose entry was studied in strain GN2, which does not phosphorylate glucose. Lactose entry was stimulated 3-fold when cells were also presented with readily metabolizable substrates. Entry of omicron-nitrophenyl-beta-D-galactopyranoside (ONPG) was only slightly elevated (1.5-fold) under the same conditions. The effects of arsenate treatment and anaerobiosis suggest that lactose entry may be limited by the need for reextrusion of protons which enter during H+/sugar cotransport. Entry of omicron-nitrophenyl-beta-D-galactopyranoside is less dependent on the need for proton reextrusion, probably because the stoichiometry of H+/substrate cotransport is greater for lactose than for ONPG.  相似文献   

12.
Lactose permease, the lacY gene product in Escherichia coli, is an integral membrane protein. Its induction was examined in secAts and secYts mutants by measuring o-nitrophenyl-beta-galactoside uptake activity. In contrast to the synthesis of the maltose binding protein, the malE gene product, which is dependent on the secA and secY gene products, lactose permease seemed to be produced and integrated functionally into membrane independently of SecA or SecY. Gene fusion of the lamB signal sequence to the N-terminal part of the lactose permease gene resulted in production of active fused permease in the E. coli membrane. The signal sequence did not seem to be processed, judging from its mobility on SDS polyacrylamide gel electrophoresis. E. coli cell growth was super-sensitive to induction of production of the fused permease with the signal sequence in contrast to induction of the normal lactose permease. These results are consistent with the above observation that production and integration of LacY protein into membrane is relatively independent of the SecY protein that may have a certain specificity for the signal sequence or, more generally, membrane translocation intermediates.  相似文献   

13.
The murB gene, which complemented the UDP-N-acetylenolpyruvoylglucosamine reductase (EC 1.1.1.158) mutation in Escherichia coli ST5, was cloned from an E. coli chromosomal library. murB was subcloned on a 2.8-kb PvuII fragment into pUC19 and sequenced. A 1,029-bp open reading frame encoded a 342-amino-acid polypeptide of 37,859 Da. A DNA sequence homology search revealed that murB had almost 100% homology with a previously reported unidentified open reading frame, ORFII, at 89.9 min. Physical and genetic mapping results were consistent with this map position, and minicell analyses of murB subclones showed a plasmid-encoded protein of approximately 37,000 Da, which closely matched the calculated size of the murB protein.  相似文献   

14.
Three DNA restriction fragments of established sequence containing the Escherichia coli lac genetic controlling regions were cloned. In each case a recombinant plasmid was constructed which was suitable for the subsequent large scale purification of the lac fragment. A 789-base pair HindII fragment, containing the lac operator, promoter, and cyclic AMP receptor protein binding site, was ligated into the single HindII site of the amplifiable plasmid minicolicin E1 DNA (pVH51). A 203-base pair Hae III fragment containing the same genetic sites was ligated into the single Eco RI site of pVH51 which had been "filled in" by the Micrococcus luteus DNA polymerase. Thus, the lac fragment was inserted between two Eco RI sites. Plasmids containing multiple copies of this Eco RI fragment were then constructed. A 95-base pair Alu I fragment containing the lac promoter and operator was cloned similarly. Also, the 203-base pair fragment was cloned into the Eco RI site of pVH51 using a 300-base pair linker fragment (isolated by RPC-5 column chromatography) which permitted retention of its Hae III ends. Mapping studies on pVH51 DNA with a number of DNA restriction endonucleases, including Alu I, Taq I, and Hpa II, are described.  相似文献   

15.
A mechanism proposed for lactose/H(+) symport by the lactose permease of Escherichia coli indicates that lactose permease is protonated prior to ligand binding. Moreover, in the ground state, the symported H(+) is shared between His322 (helix X) and Glu269 (helix VIII), while Glu325 (helix X) is charge-paired with Arg302 (helix IX). Substrate binding at the outer surface between helices IV (Glu126) and V (Arg144, Cys148) induces a conformational change that leads to transfer of the H(+) to Glu325 and reorientation of the binding site to the inner surface. After release of substrate, Glu325 is deprotonated on the inside due to re-juxtapositioning with Arg302. The conservative mutation Glu269-->Asp causes a 50-100-fold decrease in substrate binding affinity and markedly reduced active lactose transport, as well as decreased rates of equilibrium exchange and efflux. Gly-scanning mutagenesis of helix VIII was employed systematically with mutant Glu269-->Asp in an attempt to rescue function, and two mutants with increased activity are identified and characterized. Mutant Thr266-->Gly/Met267-->Gly/Glu269-->Asp binds ligand with increased affinity and catalyzes active lactose transport with a marked increase in rate; however, little improvement in efflux or equilibrium exchange is observed. In contrast, mutant Gly262-->Ala/Glu269-->Asp exhibits no improvement in ligand binding but a small increase in the rate of active transport; however, an increase in the steady-state level of accumulation, as well as efflux and equilibrium exchange is observed. Remarkably, when the two sets of mutations are combined, all translocation reactions are rescued to levels approximating those of wild-type permease. The findings support the contention that Glu269 plays a pivotal role in the mechanism of lactose/H(+) symport. Moreover, the results suggest that the two classes of mutants rescue activity by altering the equilibrium between outwardly and inwardly facing conformations of the permease such that impaired protonation and/or H(+) transfer is enhanced from one side of the membrane or the other. When the two sets of mutants are combined, the equilibrium between outwardly and inwardly facing conformations and thus protonation and H(+) transfer are restored.  相似文献   

16.
alpha-p-Nitrophenylgalactoside was found to be accumulated by the lactose transport-system of Escherichia coli. This fact may help to resolve the differences in the reported number of sugar binding sites of the lactose transport protein in nonenergized and energized membrane vesicles.  相似文献   

17.
Deletion analysis of the Escherichia coli lactose promoter P2.   总被引:5,自引:0,他引:5       下载免费PDF全文
  相似文献   

18.
19.
A spontaneous mutant of Escherichia coli K-12, strain SY99, with an inversion in the lactose region was isolated and partially characterized. The inversion was detected due to inverse chromosomal conjugational transfer after introduction of an F42 (F'lac) episome. The termini of the inversion are between proAB and lac on one side and lac and proC on the other. The inverse conjugational transfer in SY99 did not appear to be absolute but was always accompanied by a residual "normal" counterclockwise mobilization. This residual transfer was further shown to be caused by the intrinsic instability of this region (at least in the line W3110). The possible involvement of IS3 elements flanking the lactose operon is discussed.  相似文献   

20.
The Escherichia coli gene purR, encoding a repressor protein, was cloned by complementation of a purR mutation. Gene purR on a multicopy plasmid repressed expression of purF and purF-lacZ and reduced the growth rate of host cells by limiting the rate of de novo purine nucleotide synthesis. The level of a 1.3-kilobase purR mRNA was higher in cells grown with excess adenine, suggesting that synthesis of the repressor may be regulated. The chromosomal locus of purR was mapped to coordinate 1755-kb on the E. coli restriction map (Kohara, Y., Akiyama, K., and Isono, K. (1987) Cell 50, 495-508). Pur repressor bound specifically to purF operator DNA as determined by gel retardation and DNase I footprinting assays. The amino acid sequence of Pur repressor was derived from the nucleotide sequence. Pur repressor subunit contains 341 amino acids and has a calculated Mr of 38,179. Pur repressor is 31-35% identical with the galR and cytR repressors and 26% identical with the lacI repressor. These four repressors are likely homologous. Amino acid sequence similarity is greatest in an amino-terminal region presumed to contain a DNA-binding domain. A similarity is also noted in the operator sites for these repressors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号