首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously proposed on the basis of studies in hepatectomized animals that low density lipoproteins are degraded at a significant rate by peripheral tissues. To test the capacity of one peripheral cell type to catabolize low density lipoprotein, cultures of swine aortic smooth muscle cells were incubated with homologous 125I-labeled low density lipoprotein and uptake and degradation measured. Degradation of 125I-labeled low density lipoprotein to products soluble in trichloroacetic acid showed an initial lag period of 1--2 h after which the rate increased and remained linear for the following 15 h. Rates of degradation increased sharply with low density lipoprotein concentration over the lower range (from 0--25 mug protein/ml) and then more slowly up to the highest concentration tested, 300 mug protein/ml. Even at very low concentrations, 1 mug low density lipoprotein protein/ml (less than 10% of the plasma low density lipoprotein concentration), the in vitro degradation rate (per kg of smooth muscle cells) exceeded the in vivo degradation rate (per kg of total body weight). To the extent that smooth muscle cells are representative of other peripheral cells, the results support the proposal that peripheral degradation of low density lipoprotein apoprotein may be quantitatively important. The rate of incorporation of labeled acetate into sterols was suppressed in cells incubated with whole serum, low density and very low density lipoproteins, or suspensions of free cholesterol. In this respect, the results were similar to those observed in human skin fibroblasts studied concurrently. However, high density lipoprotein inhibited sterol synthesis by about 25% in swine smooth muscle cells while it had no effect in human skin fibroblasts.  相似文献   

2.
Age-related macular degeneration is the most common cause of vision loss in the elderly, which starts from aging processes of retinal pigment epithelial cells. Among variable risk factors in occurrence and progression of age-related macular degeneration, oxidized low density lipoprotein could be causally involved in pathobiological changes of RPE cells. Herein we showed that oxidized low density lipoprotein-induced senescence of retinal pigment epithelial cells is followed by outer blood-retinal barrier dysfunction. Under sub-lethal concentration, oxidized low density lipoprotein could promote advanced senescence of retinal pigment epithelial cells. Interestingly expression of CRALBP and RPE 65, indicators of retinal pigment epithelial cell differentiation, was decreased by oxidized low density lipoprotein. In addition, oxidized low density lipoprotein induced reactive oxygen species production and up-regulated inflammatory factors such as tumor necrosis factor-α and vascular endothelial growth factor, when β-catenin, a critical mediator of the canonical Wnt pathway, was also elevated. Oxidized low density lipoprotein increased paracellular permeability of retinal pigment epithelial cells, when zonula occludens-1 at intercellular junctions markedly decreased as well. Furthermore, in retinal pigment epithelial cells and choriocapillaris of human apolipoprotein E2 transgenic mouse eye, increased vascular endothelial growth factor and decreased zonula occludens-1 expression was observed. Therefore, our results suggest that oxidized low density lipoprotein could promote senescence of retinal pigment epithelial cells which leads to induce outer blood-retinal barrier dysfunction as an early pathogenesis of age-related macular degeneration.  相似文献   

3.
The toxicity of oxidized low density lipoprotein (Ox-LDL) to cultured vascular endothelial cells was investigated. The modification of low density lipoprotein (LDL) by copper led to the production of thiobarbituric acid-reacting substance (TBARS) and lipid hydroperoxide (LPO). TBARS was distributed not only in lipoprotein, but also in the aqueous phase, whereas LPO was observed only in the lipoprotein particle. During the incubation of LDL with copper, the copper bound to lipoprotein and formed a complex. The toxicity of products resulting from the oxidation of LDL to endothelial cells was recognized in Ox-LDL particles, not in the aqueous phase. Following dialysis of Ox-LDL against EDTA, copper which had bound to the Ox-LDL particle was released and the toxicity of Ox-LDL disappeared. The addition of copper to the dialyzed Ox-LDL restored the cytotoxicity. To a lesser extent this effect was also observed with the addition of iron. A study of the time-course of LDL oxidation showed that the toxicity of Ox-LDL depends upon the level of LPO, not upon the content of TBARS, the extent of negative charge or the protein adduct of aldehydes. These results demonstrate that transition metal is required for Ox-LDL toxicity and that the toxic moiety of the products resulting from LDL oxidation is LPO associated with the Ox-LDL particle.  相似文献   

4.
When 125I-labeled native low density lipoprotein was incubated with skin fibroblasts from a patient with homozygous familial hypercholesterolemia, the observed rate of degradation of the protein moiety was less than 5% the rate observed with normal fibroblasts, in agreement with previous studies. When the low density lipoprotein had been first treated with trypsin, with release of about 20% of the protein, its degradation by the patient's fibroblasts was markedly increased 8-20-fold. In contrast, the rate of degradation of the trypsin-treated lipoprotein by normal fibroblasts was, if anything, slightly reduced. In neither the normal cells nor the patient's cells was binding to the cell surface appreciably altered by trypsin treatment of the lipoprotein. Prior incubation with cholesterol and 7-ketocholesterol reduced binding of trypsin-treated low density lipoprotein to normal cells by 67% but did not affect its binding to the patient's cells. The results show that the structural modifications induced by trypsin do not interfere with binding of low density lipoprotein to its normal high affinity receptor nor its degradation by normal cells. However, the modified lipoprotein is much more readily internalized and degraded by cells from the patient with homozygous familial hypercholesterolemia.  相似文献   

5.
Metallothionein inhibits peroxynitrite-induced DNA and lipoprotein damage   总被引:13,自引:0,他引:13  
Previous studies have demonstrated that metallothionein functions as an antioxidant that protects against oxidative DNA, protein, and lipid damage induced by superoxide anion, hydrogen peroxide, hydroxyl radical, and nitric oxide. The present study was undertaken to test the hypothesis that metallothionein also protects from DNA and lipoprotein damage induced by peroxynitrite, an important reactive nitrogen species that causes a diversity of pathological processes. A cell-free system was used. DNA damage was detected by the mobility of plasmid DNA in electrophoresis. Oxidation of low density lipoprotein was measured by a thiobarbituric acid-reactive substance, which was confirmed by lipid hydroperoxide assay. Plasmid DNA damage and low density lipoprotein oxidation were induced by 3-morpholinosydnomine, which produces peroxynitrite through the reaction between nitric oxide and superoxide anion or by synthesized peroxynitrite directly. DNA damage by 3-morpholinosydnomine was prevented by both metallothionein and superoxide dismutase, whereas the damage caused by peroxynitrite was prevented by metallothionein only. The oxidation of low density lipoprotein by 3-morpholinosydnomine and peroxynitrite was also significantly inhibited by metallothionein. This study thus demonstrates that metallothionein may react directly with peroxynitrite to prevent DNA and lipoprotein damage induced by this pathological reactive nitrogen species.  相似文献   

6.
The formation of oxidised low density lipoprotein (LDL) within the atherosclerotic plaque appears to be a factor in the development of advanced atherosclerotic plaques. LDL oxidation is dependent on the balance of oxidants and antioxidants within the intima. In addition to producing various oxidants, human macrophages release 7,8-dihydroneopterin which in vivo is oxidised to the inflammation marker neopterin. Using macrophage-like THP-1 cells and human monocyte-derived macrophages, we demonstrate that 7,8-dihydroneopterin is a potent inhibitor of cell-mediated LDL oxidation. 7,8-Dihydroneopterin scavenges the chain propagating lipid peroxyl radical, inhibiting both lipid and protein hydroperoxide formation. A significant amount of the hydroperoxide formed during cell-mediated LDL oxidation was protein hydroperoxide. 7,8-Dihydroneopterin oxidation to 7,8-dihydroxanthopterin was only observed in the presence of both cells and LDL, showing that 7,8-dihydroneopterin had no effect on initiating oxidant generation by the cells. 7,8-Dihydroneopterin did not regenerate alpha-tocopherol but competed with it for the lipid peroxyl radical. Although stimulation of both cell types with gamma-interferon failed to produce sufficient 7,8-dihydroneopterin to inhibit LDL oxidation in tissue culture, analysis of advanced atherosclerotic plaque removed from patients showed that total neopterin levels could reach low micromolar concentrations. This suggests that 7,8-dihydroneopterin synthesis by macrophages could play a significant role in the development of atherosclerotic plaques.  相似文献   

7.
The degradation of 125I-labeled low density lipoprotein by cultured human skin fibroblasts was enhanced 25% by preincubation of cells with insulin. This effect of insulin appeared to be mediated via stimulation of low density lipoprotein binding to its cell surface receptor, since binding and subsequent internalization of low density lipoprotein were stimulated to a similar extent as was degradation. In addition, insulin enhanced binding of low density lipoprotein at 4 degrees C, at which temperature internalization of the lipoprotein does not occur. A similar effect of insulin on the interaction of very low density lipoprotein with cultured fibroblasts was observed. Insulin-induced changes in the degradation of low density lipoprotein and very low density lipoprotein appeared to be a function of the change in lipoprotein binding. Thus, insulin may play a role in the regulation of low density lipoprotein and very low density lipoprotein degradation by peripheral cells by influencing the receptor-mediated transport of these lipoproteins.  相似文献   

8.
Porcine granulosa cells cultured under serum free conditions responded by increased progesterone secretion to the addition of the leuteotropic hormones, LH, prolactin, and estradiol. Provision of extracellular substrate for steroidogenesis in the form of porcine high density lipoprotein or low density lipoprotein enhanced progesterone accumulation by granulosa cell cultures. Estradiol, LH, and prolactin all greatly increased progesterone accumulation in the presence of either high or low density lipoproteins. Increases in progesterone accumulation following addition of prolactin or LH in combination with estradiol suggested the presence of a synergistic interaction among leuteotropins. Pre-exposure of granulosa cell cultures to estradiol increased the subsequent stimulatory effect of prolactin on lipoprotein utilization. It is concluded that all three leuteotropins function to enhance and may interact in the utilization of extracellular lipoprotein substrate for progesterone synthesis.  相似文献   

9.
Adhesion of phagocytes to endothelial cells constitutes a crucial step in atherogenesis. Oxidized low density lipoproteins (LDL) are supposed to facilitate the adhesion process. We investigated the molecular mechanisms by which mildly and extensively hypochlorite-oxidized LDL force adhesion of murine macrophages and human neutrophils to human umbilical venous endothelial cells. After 1h of co-incubation of macrophages, endothelial cells, and lipoproteins adhesion significantly increased to 160+/-13% (S.E.M., n=5) in the presence of mildly oxidized lipoprotein, and 210+/-11% (S.E.M., n=5) in the presence of extensively oxidized lipoprotein. Similar results were obtained with neutrophils. CD36 antibody (FA6-152) significantly reduced adhesion to 102+/-7% (S.E.M., n=5) using mildly oxidized low density lipoprotein and to 179+/-16% (S.E.M., n=5) using extensively oxidized low density lipoprotein. Native high density lipoprotein and to a lesser extent methionine-oxidized high density lipoprotein significantly counteracted the effects of low density lipoprotein. Prior incubation of endothelial cells with modified lipoproteins followed by their removal and subsequent incubation with macrophages or neutrophils resulted in only minor changes of adhesion. This suggests that the direct contact of low density lipoprotein with phagocytes followed by activation of a respiratory burst with release of reactive oxygen species facilitates the adhesion process. Accordingly, the addition of antioxidants (superoxide dismutase and catalase) to the co-incubation medium was followed by a significant decrease in phagocyte adhesion. It is concluded that oxidized low density lipoprotein-induced respiratory burst activation of phagocytes with subsequent release of oxidants constitutes a crucial step in promoting the adhesion of phagocytes to endothelial cells.  相似文献   

10.
在兔主动脉平滑肌细胞 ( SMC)培养基中分别加入正常低密度脂蛋白 ( N- LDL)、氧化低密度脂蛋白 ( ox- LDL)、正常极低密度脂蛋白 ( N- VLDL)、氧化极低密度脂蛋白 ( ox- VLDL)和 β-极低密度脂蛋白 (β- VLDL )培养 2 4 h后 ,用定量 RT- PCR和配体结合实验检测平滑肌细胞 LRP的m RNA和蛋白质水平的表达 .结果表明 :五种脂蛋白均能在转录和翻译水平诱导兔主动脉平滑肌细胞的 LRP表达 ,尤以富含胆固醇的 N- LDL ,ox- LDL和β- VLDL的刺激作用更明显 .用胆固醇单独或与脂蛋白共同温育 SMC后 ,发现胆固醇本身可促进 SMC的 LRP蛋白水平的表达 ,脂蛋白与胆固醇的共同刺激作用更为显著 .结果提示 :上述五种脂蛋白对 SMC上 LRP的表达有上调作用 ,其机制可能主要是通过其中的胆固醇来实现的 .  相似文献   

11.
12.
The effect of ethanol exposure on the binding and metabolism of bovine low density lipoprotein by bovine arterial smooth muscle cells was studied. In cells exposed to ethanol (80 mM) for 48 hr or 14 days and incubated with low density lipoprotein for 24 hr there was a reduction in the amount of low density lipoprotein internalised at all concentrations of lipoprotein. There was no effect on the rate of degradation of the low density lipoprotein and no demonstrable changes in the amount of low density lipoprotein bound to the cell surface at high concentrations of low density lipoprotein. Similar results for internalisation and degradation were obtained in a time dependent study. Binding was shown to be reduced in the ethanol treated cells (48 hr) when low concentrations (5 micrograms/ml) of low density lipoprotein were incubated for short periods (less than 3 hr). Scatchard plot analysis indicated that this reduced binding may be due to a reduction of receptor numbers in these cells.  相似文献   

13.
There is increasing evidence that oxidative stress may play a role in the pathophysiology of hyperemesis gravidarum. Serum paraoxonase-1 (PON-1) is a high density lipoprotein (HDL)-associated enzyme that prevents oxidative modification of low density lipoprotein. The aim of the study was to measure the serum levels of PON-1 activity in women with hyperemesis gravidarum. Thirty-four women with hyperemesis gravidarum and 31 healthy pregnant women were enrolled in the study. Serum PON-1 activity was measured spectrophotometrically. Lipid hydroperoxide (LOOH) levels were measured by iodometric assay. PON-1 activity was significantly lower and LOOH levels were significantly higher in pregnant women with hyperemesis gravidarum than in healthy pregnant women (P < 0.0001, for all). There were significant correlations between PON-1 and LOOH, triglyceride, total cholesterol, HDL, low density lipoprotein (LDL) and high sensitive C-reactive protein (HSCRP; P < 0.0001, for all). By using multiple regression analysis LDL, HDL, HSCRP and LOOH were independent determinants of serum PON-1 activity in the study. Decreased PON-1 activity might be related to increased oxidative stress and inflammation in pregnant women with hyperemesis gravidarum. Subjects with hyperemesis gravidarum might be more prone to the development of atherogenesis due to low serum PON-1 activity.  相似文献   

14.
Primary monolayers of calf aortic endothelial cells were presented with isolated human very low density lipoproteins that had been labeled with radioactive triglyceride. The cells were observed to take up triglyceride over a 24 hr period; incorporation increased with exogenous lipoprotein concentrations, and up to 60% of the triglyceride taken up was converted to other cell lipids within 24 hr. When [2-3H]glyceryl tri[1-14C]oleate-labeled very low density lipoprotein was used, the 3H/14C ratio in the cell triglyceride was always similar to that of the exogenous lipoprotein triglyceride. Moreover, no significant hydrolysis of the exogenous very low density lipoprotein triglyceride was observed during the time of exposure to the cells. Similar experiments using doubly-labeled triglyceride exposed to endothelial cells in triglyceride-phospholipid liposome preparations also resulted in incorporation of the exogenous triglyceride without evidence of extracellular hydrolysis. The results indicate that primary monolayers of endothelial cells in culture are able to incorporate and metabolize very low density lipoprotein triglyceride. However, triglyceride does not appear to be significantly hydrolyzed during uptake, suggesting an absence of lipoprotein lipase activity in these cells.  相似文献   

15.
Normal human monocyte-macrophages were cholesterol-loaded, and the rates of uptake and degradation of several lipoproteins were measured and compared to rates in control cells. Receptor activities for 125I-rabbit beta-very low density lipoproteins (beta-VLDL), 125I-human low density lipoprotein, and 125I-human chylomicrons were down-regulated in cholesterol-loaded cells; however, the rate of uptake and degradation of 125I-human chylomicron remnants was unchanged from control cells. Cholesterol-loaded alveolar macrophages from a Watanabe heritable hyperlipidemic rabbit, which lack low density lipoprotein receptors, showed receptor down-regulation for 125I-beta-VLDL but not for 125I-human chylomicron remnants. In addition to chylomicron remnants, apo-E-phospholipid complexes competed for 125I-chylomicron remnant uptake, but apo-A-I-phospholipid complexes did not. Chylomicrons competed for lipoprotein uptake in control cells but were not recognized under conditions of cholesterol loading. Chylomicron remnants and beta-VLDL were equally effective in competing for 125I-beta-VLDL and 125I-chylomicron remnant uptake in cholesterol-loaded macrophages. When normal human monocyte-macrophages were incubated in serum supplemented with chylomicron remnants, the cholesteryl ester content increased 4-fold over cells incubated in serum with low density lipoprotein added. We conclude: 1) specific lipoprotein receptor activity persists in cholesterol-loaded cells; 2) this receptor activity recognizes lipo-proteins (at least in part) by their apo-E content; and 3) cholesteryl ester accumulation can occur in monocyte-macrophages incubated with chylomicron remnants.  相似文献   

16.
The alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein (alpha 2MR/LRP) has several ligands including activated alpha 2-macroglobulin, pregnancy zone protein, and very low density lipoproteins enriched with apolipoprotein E. The diversity of ligands suggests a role for the alpha 2MR/LRP in a variety of processes including tissue remodeling and lipoprotein metabolism. We examined alpha 2MR/LRP in placental trophoblasts, invasive cells that also function in lipid transport and cholesterol metabolism. alpha 2MR/LRP protein was localized by immunohistochemistry in the syncytiotrophoblast of term placenta. Cytotrophoblasts did not stain prominently. alpha 2MR/LRP (protein and message) in primary cultures of human trophoblast cells increased as cytotrophoblasts differentiated into syncytiotrophoblast. 8-Bromo-cAMP prevented this increase and suppressed alpha 2MR/LRP expression. The cyclic nucleotide had similar suppressive effects on alpha 2MR/LRP in BeWo choriocarcinoma cells. In contrast, low density lipoprotein receptor gene expression was increased. We conclude that: 1) there is a differentiation-dependent pattern of alpha 2MR/LRP expression in the human trophoblast; 2) cAMP negatively regulates alpha 2MR/LRP; 3) there is an inverse relationship between alpha 2MR/LRP and low density lipoprotein receptor gene expression in trophoblast cells.  相似文献   

17.
Mitogen-induced lymphocyte DNA synthesis measured by [3H]thymidine incorporation and lymphocyte proliferation assessed by counting the number of cells were reduced by greater than 95% when cells were cultured at low density in the absence of serum. Supplementation with either transferrin or lipoprotein alone only partially restored lymphocyte responses. Addition of both transferrin and lipoproteins of each major subclass permitted mitogen-induced lymphocyte DNA synthesis and proliferation equal to that observed in serum-containing medium. The degree of enhancement was dependent on the concentration of the lipoprotein added and could not be explained by the nonspecific addition of protein to the defined medium. The mechanisms of growth promotion by various lipoprotein fractions did not appear to be explained by provision of cholesterol to the cells. Neither cholesterol nor cholesteryl ester from endogenous sources or supplied exogenously was able to enhance mitogen-induced lymphocyte responses. In contrast, fatty acids, phospholipid, and triglyceride alone supported lymphocyte responses. Furthermore, lipoproteins retained the capacity to enhance lymphocyte responses following extraction of neutral lipid. Both low density lipoprotein and high density lipoprotein, subclass 3, increased the number of cells initially activated by mitogenic stimulation and supported the subsequent continued growth of the activated cells. Low density lipoprotein was more efficient than high density lipoprotein, subclass 3, in this latter regard. These results indicate that lipoproteins can promote maximal growth of mitogen-activated lymphocytes in transferrin-containing medium by providing growth factors other than cholesterol necessary for initial activation and required for continued lymphocyte proliferation.  相似文献   

18.
A method is described for measuring lipid peroxides by means of the color reagent of a commercially available test kit for cholesterol estimation. In principle, this assay makes use of the oxidative capacity of lipid peroxides to convert iodide to iodine, which can be measured photometrically at 365 nm. Calibration curves were obtained using peroxides such as H2O2, t-butyl hydroperoxide, and cumene hydroperoxide. A stoichiometric relationship was observed between the amount of organic peroxides assayed and the concentration of iodine produced. Concentrations of lipid peroxides as small as 1 nmol/ml could be measured. The ability to estimate lipid peroxides of isolated low density lipoprotein was demonstrated.  相似文献   

19.
HDLc, a cholesterol-rich lipoprotein that accumulates in the plasma of cholesterol-fed swine, was shown to resemble functionally human and swine low density lipoprotein in its ability to bind to the low density lipoprotein receptor in monolayers of cultured human fibroblasts. This binding occurred even though HDLc lacked detectable apoprotein B, which is the major protein of low density lipoprotein. After it was bound to the low density lipoprotein receptor, HDLc, like human and swine low density lipoprotein, delivered its cholesterol to the cells, and this, in turn, caused a suppression of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity, an activation of the cholesterol-esterifying system, and a net accumulation of free and esterified cholesterol within the cells. Swine HDLc, like human high density lipoprotein, did not bind to the low density lipoprotein receptor nor did it elicit any of the subsequent metabolic events. HDLc, like human low density lipoprotein, was incapable of producing a metabolic effect in fibroblasts derived from a subject with the homozygous form of familial hypercholesterolemia, which lack low density lipoprotein receptors. These results indicate that two lipoproteins that have been associated with athersclerosis--low density lipoprotein in humans and HDLc in cholesterol-fed swine--both can cause the accumulation of cholesterol and cholesteryl esters within cells through an interaction with the low density lipoprotein receptor.  相似文献   

20.
Abstract

There is increasing evidence that oxidative stress may play a role in the pathophysiology of hyperemesis gravidarum. Serum paraoxonase-1 (PON-1) is a high density lipoprotein (HDL)-associated enzyme that prevents oxidative modification of low density lipoprotein. The aim of the study was to measure the serum levels of PON-1 activity in women with hyperemesis gravidarum. Thirty-four women with hyperemesis gravidarum and 31 healthy pregnant women were enrolled in the study. Serum PON-1 activity was measured spectrophotometrically. Lipid hydroperoxide (LOOH) levels were measured by iodometric assay. PON-1 activity was significantly lower and LOOH levels were significantly higher in pregnant women with hyperemesis gravidarum than in healthy pregnant women (P < 0.0001, for all). There were significant correlations between PON-1 and LOOH, triglyceride, total cholesterol, HDL, low density lipoprotein (LDL) and high sensitive C-reactive protein (HSCRP; P < 0.0001, for all). By using multiple regression analysis LDL, HDL, HSCRP and LOOH were independent determinants of serum PON-1 activity in the study. Decreased PON-1 activity might be related to increased oxidative stress and inflammation in pregnant women with hyperemesis gravidarum. Subjects with hyperemesis gravidarum might be more prone to the development of atherogenesis due to low serum PON-1 activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号