首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glycosaminoglycan synthesis in mouse mastocytoma   总被引:4,自引:4,他引:0       下载免费PDF全文
The glycosaminoglycan synthesis in Furth solid mastocytoma tissue has been studied. Approx. 10% of the polysaccharide isolated after incubation in vitro with [(14)C]-glucosamine was digestible with chondroitinase ABC and the product of digestion was identified as 2-acetamido-2-deoxy-3-O-(beta-d-gluco-4-enepyranosyluronic acid)-4-O-sulpho-d-galactose. Similarly, labelling of polysaccharide in vivo with (35)SO(4) (2-) followed by isolation of mast-cell fractions by density-gradient centrifugation on colloidal silica revealed the presence of a polysaccharide which migrated as did chondroitin sulphate on electrophoresis in barium acetate. Chondroitinase ABC produced the same digestion product as before. Finally, the presence of the UDP-N-acetylgalactosamine-chondroitin 6-sulphate hexasaccharide N-acetylgalactosaminyltransferase previously implicated in chondroitin sulphate biosynthesis was demonstrated in microsomal particles from fractions of purified mast cells.  相似文献   

2.
Human cumuli-oophori were cultured in vitro in the presence of radioactive protein and polysaccharide precursors. The time course of the cumulus cell secretion was traced by histoautoradiography. Matrix solubilization, and sodium dodecyl sulphate polyacrylamide gel electrophoresis and high-performance liquid chromatography showed that proteoglycan (Mr greater than 1,700,000) was the main cumulus cell product that was prevailingly deposited in the cumulus intercellular matrix and partly released into the culture medium. It was capable of accelerating the conversion of proacrosin to acrosin and this activity was abolished by enzymatic removal of chondroitin sulphate, the predominant glycosaminoglycan of this proteoglycan fraction. None of the other fractions, including a proteoglycan of Mr 80,000-90,000, containing heparan sulphate, accelerated the conversion of proacrosin to acrosin under the conditions used. The results suggest that chondroitin sulphate is the active component of the high-Mr proacrosin activator of the human cumulus-oophorus.  相似文献   

3.
Mouse mastocytoma cells grown in suspension culture produce chondroitin 4-sulphate. A Golgi-apparatus-enriched fraction from these cells was prepared and examined for chondroitin-synthesizing activity. When Golgi-apparatus-enriched fractions were incubated with UDP-[14C]glucuronic acid and UDP-N-acetylgalactosamine, they demonstrated a greater than 13-fold increase in chondroitin-synthesizing activity over cell homogenates. Similar incubations with the addition of a pentasaccharide from chondroitin sulphate resulted in a greater than 40-fold increase in [14C]glucuronic acid-incorporating activity over cell homogenates. Other membrane fractions had much less activity, suggesting that the Golgi apparatus is the most active location for chondroitin biosynthesis. Products of the incubations indicated the formation of [14C]chondroitin glycosaminoglycan on endogenous primers and formation of [14C]-hexasaccharide and somewhat larger [14C]oligosaccharides on exogenous pentasaccharide acceptors. There was, however, a significant amount of large [14C]-chondroitin glycosaminoglycan formed on pentasaccharide, indicating that some pentasaccharide did serve as a true primer for polysaccharide synthesis.  相似文献   

4.
1. Chondroitin sulphate was isolated from different regions of rat costal cartilage after extensive proteolysis of the tissues. The molecular weight, determined by gel chromatography, of the polysaccharide obtained from an actively growing region (lateral zone) near the osteochondral junction was higher than that of the polysaccharide isolated from the remaining portion of the costal cartilage (medial zone). 2. In both types of cartilage the molecular weight of chondroitin sulphate, labelled with [(35)S]sulphate, remained unchanged in vivo over a period of 10 days, approximately corresponding to the half-life of the chondroitin sulphate proteoglycan. The molecular-weight distribution of chondroitin [(35)S]sulphate, labelled in vivo or in vitro, was invariably identical with that of the bulk polysaccharide from the same tissue. It is concluded that the observed regional variations in molecular-weight distribution were established at the time of polysaccharide biosynthesis. 3. In tissue culture more than half of the (35)S-labelled polysaccharide-proteins of the two tissues was released into the medium within 10 days of incubation. The released materials were of smaller molecular size than were the corresponding native proteoglycans. In contrast, the molecular-weight distribution of the chondroitin [(35)S]sulphate (single polysaccharide chains) remained constant throughout the incubation period. 4. A portion (about 20%) of the total radioactive material released from (35)S-labelled cartilage in tissue culture was identified as inorganic [(35)S]sulphate. No corresponding decrease in the degree of sulphation of the labelled polysaccharide could be detected. These findings suggest that a limited fraction of the proteoglycan molecules had been extensively desulphated. 5. It is suggested that the initial phase of degradation involves proteolytic cleavage of the proteoglycan, but the constituent polysaccharide chains remain intact. The partially degraded proteoglycan may be eliminated from the cartilage by diffusion into the circulatory system. An additional degradative process, which may occur intracellularly, includes desulphation of the polysaccharide, probably in conjunction with a more extensive breakdown of the polymer.  相似文献   

5.
Glycosaminoglycans synthesized in polymorphonuclear (PMN) leucocytes isolated from blood (peripheral PMN leucocytes) and in those induced intraperitoneally by the injection of caseinate (peritoneal PMN leucocytes) were compared. Both peripheral and peritoneal PMN leucocytes were incubated in medium containing [35S]sulphate and [3H]glucosamine. Each sample obtained after incubation was separated into cell, cell-surface and medium fractions by trypsin digestion and centrifugation. The glycosaminoglycans secreted from peripheral and peritoneal PMN leucocytes were decreased in size by alkali treatment, indicating that they existed in the form of proteoglycans. Descending paper chromatography of the unsaturated disaccharides obtained by the digestion of glycosaminoglycans with chondroitinase AC and chondroitinase ABC identified the labelled glycosaminoglycans of both the cell and the medium fractions in peripheral PMN leucocytes as 55-58% chondroitin 4-sulphate, 16-19% chondroitin 6-sulphate, 16-19% dermatan sulphate and 6-8% heparan sulphate. Oversulphated chondroitin sulphate and oversulphated dermatan sulphate were found only in the medium fraction. In peritoneal PMN leucocytes there is a difference in the composition of glycosaminoglycans between the cell and the medium fractions; the cell fraction was composed of 60% chondroitin 4-sulphate, 5.5% chondroitin 6-sulphate, 16.8% dermatan sulphate and 13.9% heparan sulphate, whereas the medium fraction consisted of 24.5% chondroitin 4-sulphate, 28.2% chondroitin 6-sulphate, 33.7% dermatan sulphate and 10% heparan sulphate. Oversulphated chondroitin sulphate and oversulphated dermatan sulphate were found in the cell, cell-surface and medium fractions. On the basis of enzymic assays with chondro-4-sulphatase and chondro-6-sulphatase, the positions of sulphation in the disulphated disaccharides were identified as 4- and 6-positions of N-acetylgalactosamine. Most of the 35S-labelled glycosaminoglycans synthesized in peripheral PMN leucocytes were retained within cells, whereas those in peritoneal PMN leucocytes were secreted into the culture medium. Moreover, the amount of glycosaminoglycans in peritoneal PMN leucocytes was significantly less than that in peripheral PMN leucocytes. Assay of lysosomal enzymes showed that these activities in peritoneal PMN leucocytes were 2-fold higher than those in peripheral PMN leucocytes.  相似文献   

6.
Degradation of heparin in mouse mastocytoma tissue   总被引:8,自引:6,他引:2  
1. Heparin was prepared from mouse mastocytoma tissue by mild procedures, including extraction of mast-cell granules with 2m-potassium chloride, precipitation of the extracted polysaccharide with cetylpyridinium chloride from 0.8m-potassium chloride and finally digestion of the isolated material with testicular hyaluronidase. The resulting product (fraction GE(H)) represented approx. 40% of the total heparin content of the tissue. 2. Fraction GE(H) was fractionated by gel chromatography on Sepharose 4B into three subfractions, with average molecular weights ( M(w)) of approx. 60000-70000 (highly polydisperse material), 26000 and 9000 respectively. Treatment of each of the subfractions with alkali or with papain did not affect their behaviour on gel chromatography. Amino acid and neutral sugar analyses indicated that the two low-molecular-weight fractions consisted largely of single polysaccharide chains lacking the carbohydrate-protein linkage region. It was suggested that these heparin molecules had been degraded by an endopolysaccharidase. 3. Pulse labelling in vivo of mastocytoma heparin with [(35)S]sulphate showed initial labelling of large molecules followed by a progressive shift of radioactivity toward fractions of lower molecular weight. Further, heparin-depolymerizing activity was demonstrated by incubating (35)S-labelled heparin in vitro with a mastocytoma 10000g-supernatant fraction. Appreciable degradation of the polysaccharide occurred, as demonstrated by gel chromatography. In contrast, no depolymerization was observed on subjecting (14)C-labelled chondroitin sulphate to the same procedure.  相似文献   

7.
1. The non-ultrafilterable acidic glycosaminoglycans from pooled urine of normal men, aged about 20, were isolated and characterized. The isolation procedure included digestion with sialidase and pronase, and fractionation by stepwise elution from an ECTEOLA-cellulose column. The glycosaminoglycans in each fraction were separated from each other by preparative electrophoresis in sodium barbital buffer and in barium acetate. 2. Approximate relative amounts of the different glycosaminoglycans were: chondroitin sulphate 60%, chondroitin 2%, hyaluronic acid 4%, dermatan sulphate 1%, heparan sulphate 15% and keratan sulphate 18%. Chondroitin sulphate-dermatan sulphate hybrids seemed to occur in trace amounts. 3. Chondroitin sulphate, heparan sulphate and keratan sulphate were heterogeneous with respect to degree of sulphation. Two distinct groups of chondroitin sulphate fractions were found, with sulphate/hexosamine molar ratios of about 0.5 and 1 respectively. The sulphate/hexosamine molar ratios in the heparan sulphate fractions varied from 0.5 to 0.9; the N-sulphate/hexosamine ratio was about 0.5 in all fractions. The sulphate/hexosamine molar ratios in the keratan sulphate fractions varied from 0.2 to 0.7.  相似文献   

8.
Incorporation of [35S]]sulphate, [3H]glucose and [3H]serine into glycosaminoglycans and proteoglycans of embryonic-chicken sternum was measured in vitro in incubation medium containing 4-methylumbelliferyl beta-D-xyloside or p-nitrophenyl beta-D-xyloside at low concentrations, and in the absence of inhibitors of protein synthesis. Incorporation of sulphate was decreased by 80% in incubations in which 1mM-4-methylumbelliferyl beta-xyloside or 2.5 mM-p-nitrophenyl beta-xyloside was present; under these conditions, serum factors stimulated incorporation to only a small extent. When the concentration of the xyloside was decreased tenfold, incorporation of sulphate was inhibited by 60-70%, but when normal human serum or L-3,3',5-tri-iodothyronine or both were also added to the incubation medium, incorporation was markedly stimulated. Experiments in which [35S]sulphate and [3H]glucose were incorporated simultaneously, and enzymic analysis of glycosaminoglycans formed in such experiments, indicated that chondroitin sulphate formed in the presence of 0.1 mM-4-methylumbelliferyl beta-xyloside contained 30-40% less sulphate than did chondrotin sulphate synthesized in the absence of xylosides. Similar experiments, with [3H]serine instead of [3H]glucose, suggested also a 20-30% decrease in chain length of the chondroitin sulphate; this was confirmed by direct gel filtration of labelled glycosaminoglycans on a calibrated column. Incorporation of [3H]glucose or [3H]serine was stimulated by serum and tri-iodothyronine in parallel with incorporation of sulphate. The changes seen in the total chondroitin sulphate were mirrored in the major proteoglycan fraction, purified by isopycnic centrifugation of salt-extracted proteoglycans. The labelling pattern of chondroitin sulphate from this proteoglycan indicated that decreased sulphation of chondroitin sulphate was largely due to the inferior ability of short polysaccharide chains to accept sulphate, with some direct interference with transfer of sulphate to all chains. The results also suggested that the action of serum factors on synthesis of proteochondroitin sulphate is exercised at the level of either protein synthesis or transport to the sites of initiation of polysaccharide synthesis.  相似文献   

9.
The acid glycosaminoglycans were extracted from the skins of young rats less than 1 day post partum. The isolated products were fractionated by a cetylpyridinium chloride-cellulose column technique and identified by chemical analysis, electrophoretic mobility and susceptibility to testicular hyaluronidase digestion. Hyaluronic acid (56%) dermatan sulphate (15.6%) and chondroitin 6-sulphate (9.1%) were the major components, but chondroitin 4-sulphate, heparan sulphate and heparin were also present, together with two further fractions tentatively suggested to be a heparan sulphate-like fraction and a dermatan sulphate fraction, both of short chain length or low degree of sulphation.  相似文献   

10.
Protein-polysaccharides of pig laryngeal cartilage   总被引:23,自引:18,他引:5  
1. Protein-polysaccharides of chondroitin 4-sulphate were extracted with neutral calcium chloride from pig laryngeal cartilage that was not completely homogenized. The protein-polysaccharides were purified by precipitation with 9-aminoacridine. On zone electrophoresis in compressed glass fibre at pH7.2 it was separated into two fractions, although two distinct zones were not obtained. These fractions, which had already been shown to differ in their antigenic determinants, also differed considerably in amino acid composition, total protein, hexose and glucosamine contents. 2. The fraction of higher mobility contained approx. 2% of protein and only traces of glucosamine. Serine and glycine accounted for over half the total amino acid residues, but aromatic, basic and sulphur-containing amino acids were not detected. The weight-average molecular weight, determined by sedimentation, was 230000. 3. Assuming that there was the same sequence of neutral sugars at the linkage points as in PP-L fraction (protein-polysaccharide light fraction), the approximate molar ratio of hexose to serine suggested that most of the serine residues were linked to chondroitin sulphate chains. Support for this was derived from the agreement between the weight-average molecular weight of the chondroitin sulphate-peptide after proteolysis, and the chain weight calculated from its serine content. The chain weight based on the serine content of the fraction of higher electrophoretic mobility was approximately similar. 4. In contrast, the fraction of lower electrophoretic mobility resembled PP-L fraction in its amino acid composition, protein and glucosamine contents. The presence of glucosamine, together with the higher hexose content, suggested that this fraction contained some keratan sulphate. 5. The relatively low molecular weight of the fraction of higher mobility enabled it to be extracted without complete disintegration of the cartilage. The unlikelihood of its being produced by autolytic enzymes is discussed.  相似文献   

11.
Articular cartilage from cow and calf femoral condyles was incubated in Tyrodes solution containing [35S]sulphate for different periods up to 80 min. Glycosaminoglycans from the cartilage tissue and incubation medium were fractionated on Cetylpyridinium chloride and ECTEOLA cellulose microcolumns. The incorporation of [35S]sulphate into all individual fractions of chondroitin sulphate and keratan sulphate was found to be linear from 20 to 80 min incubation time. As a rule the total specific activities of keratan sulphate and chondroitin sulphate were similar for both calves and cows. The proteoglycan material recovered from the medium amounted to about 1% of the tissue dry weight and was found to have a higher chondroitin sulphate: keratan sulphate ratio than the corresponding cartilage tissue for both calf and cow. The solubility profiles for the newly synthesised glycosaminoglycans, obtained from determination of the radioactivity in the individual fractions, were compared with those of glycosaminoglycans already present. These curves indicated that newly synthesised chondroitin sulphate had a higher average molecular size than that present in the tissue whereas the newly synthesised keratan sulphate had a smaller average molecular size. These newly synthesised components were also detected in the proteoglycans recovered from the incubation medium.  相似文献   

12.
Fractionation of proteoglycans from bovine corneal stroma.   总被引:4,自引:0,他引:4       下载免费PDF全文
Proteoglycans were extracted from bovine corneal stroma with 4M-guanidinum chloride, purified by DEAE-dellulose chromatography (Antonopoulos et al., 1974) and fractionated by precipitation with ethanol into three fractions of approximately equal weight. One of these fractions consisted of a proteoglycan that contained keratan sulphate as the only glycosaminoglycan. In the othertwo fractions proteoglycans that contained chondroitin sulphate, dermatan sulphate and keratan sulphate were present. Proteoglycans which had a more than tenfold excess of galactosaminoglycans over keratan sulphate could be obtianed by further subfractionation. The gel-chromatographic patterns of the glucosaminoglycans before and after digestion with chondroitinase AC differed for the fractions. The individual chondroitin sulphate chains seemed to be larger in cornea than in cartilage. Oligosaccharides, possibly covalently linked to the protein core of the proteoglycans, could be isolated from all fractions. The corneal proteoglycans were shown to have higher protein contents and to be of smaller molecular size than cartilage proteoglycans.  相似文献   

13.
Articular cartilage from cow and calf femoral condyles was incubated in Tyrodes solution containing [35S]sulphate for different periods up to 80 min. Glycosaminoglycans from the cartilage tissue and incubation medium were fractionated on Cetylpyridinium chloride and ECTEOLA cellulose microcolumns.The incorporation of [35S]sulphate into all individual fractions of chondroitin sulphate and keratan sulphate was found to be linear from 20 to 80 min incubation time. As a rule the total specific activities of keratan sulphate and chondroitin sulphate were similar for both calves and cows.The proteoglycan material recovered from the medium amounted to about 1% of the tissue dry weight and was found to have a higher chondroitin sulphate: keratan sulphate ratio than the corresponding cartilage tissue for both calf and cow.The solubility profiles for the newly synthesised glycosaminoglycans, obtained from determination of the radioactivity in the individual fractions, were compared with those of glycosaminoglycans already present. These curves indicated that newly synthesised chondroitin sulphate had a higher average molecular size than that present in the tissue whereas the newly synthesised keratan sulphate had a smaller average molecular size. These newly synthesised components were also detected in the proteoglycans recovered from the incubation medium.  相似文献   

14.
Summary Monoclonal antibodies specific to chondroitin sulphate (CS-56) and keratan sulphate (AH12) were used to localize proteoglycans in the proximal tibial articular cartilage and growth plate of broiler chickens. There was no CS-56 labelling in the proliferative zone of the growth plate. In contrast, intense labelling with this antibody was observed in the transitional and hypertrophic zones of the growth plate and the articular cartilage. This was confirmed by extracting chondroitin sulphate fractions from different zones of the growth plate and articular cartilage, and examining their antigenicities to CS-56 by ELISA inhibition assay. It was suggested that the maturation of chondrocytes in the growth plate is related to the production of chondroitin sulphate with CS-56 epitope, which may be a prerequisite for normal endochondral bone formation in the chicken tibia. The role of chondroitin sulphate recognized by CS-56 in the articular cartilage is unknown.  相似文献   

15.
Macrophages were obtained from the mouse peritoneal cavity and culturedin vitro. The cells were exposed to35S-sulphate for 20 h, and labelled proteoglycans were recovered from both medium and cell fractions by sodium dodecylsulphate solubilization. The cell fraction contained both proteoglycans and glycosaminoglycans, whereas only intact proteoglycans could be recovered from the medium fraction. 35S-Glycosaminoglycans isolated from cell and medium fractions by papain digestion were shown to contain approximately 25% heparan sulphate and 75% galactosaminoglycans comprising 55% chondroitin sulphate and 20% dermatan sulphate. The galactosaminoglycans were shown by paper chromatography to contain more than 95% 4-sulphated units. Pulse-chase experiments showed that approximately 80% of the cell-associated material was released within 6 h of incubation.35S-Proteoglycans released did not bind to the macrophages, but were recovered in a soluble form from the culture medium.Abbreviations CSPG chondroitin sulphate proteoglycan - HSPG heparan sulphate proteoglycan - SDS sodium dodecylsulphate - DME Dulbecco's Minimum Essential Medium - GAG glycosaminoglycan  相似文献   

16.
The synthesis of proteoglycans by human T lymphocytes   总被引:1,自引:0,他引:1  
We have examined the proteoglycans produced by highly-purified cultures of human T-lymphocytes. The proteoglycans were metabolically labelled with [35S]sulphate and analysed in cellular and medium fractions using DEAE-cellulose chromatography, gel filtration and specific enzymatic and chemical degradations. The results showed that the T cells synthesized a relatively homogeneous, proteinase-resistant chondroitin 4-sulphate proteoglycan that accumulated in the culture medium during a 48 h incubation period. The cellular fraction contained a significant amount of free chondroitin sulphate chains that were not secreted into the medium. These polysaccharides were formed by intracellular degradation of proteoglycan in a chloroquine-sensitive process, indicating a requirement for an acidic environment. In contrast to chondroitin sulphate derived from proteoglycan, chondroitin sulphates synthesized on the exogenous primer, beta-D-xyloside, were mainly secreted by the cells. beta-D-Xylosides caused an 8-fold stimulation in the synthesis of chondroitin sulphate, but decreased the synthesis of proteoglycan by about 50%. These proteoglycans contained shorter chondroitin sulphate chains than their normal counterparts. The results indicate that although proteoglycans are mainly secretory components in human T-cell cultures, a specific metabolic step leads to the intracellular accumulation of free glycosaminoglycans. Separate functions are likely to be associated with the intracellular and secretory pools of chondroitin sulphate.  相似文献   

17.
The degradation of chondroitin 4-[(35)S]sulphate isolated from chick-embryo cartilage was studied in the rat by experiments on free-range animals, on wholly anaesthetized animals with ureter cannulae, by perfusion of isolated liver, by whole-body radioautography and by isolation of liver lysosomes. After injection into rats 68% of the radioactivity was recovered in the urine after 24h, approximately one-half of this being in the form of low-molecular-weight material, chiefly inorganic sulphate. Cannulation experiments demonstrated that the proportion of low-molecular-weight components excreted in the urine increased with time until, after 12h, virtually all was inorganic sulphate. Whole-body radioautography identified the liver as the major site of radioisotope accumulation after injection of labelled polysaccharide. Perfusion through isolated liver indicated that this organ has the ability to metabolize the polymer with the release of low-molecular-weight products, principally inorganic sulphate. Incubation of a lysosomal fraction prepared from rat liver after injection of chondroitin 4-[(35)S]sulphate gave rise to degradation products of low molecular weight, and experiments in vitro with rat liver lysosomes confirmed that these organelles are capable of the entire degradative process from chondroitin sulphate to free inorganic sulphate.  相似文献   

18.
Glycosaminoglycans were extracted from normal, inflamed and phenytoin induced overgrowth of human gingival tissue by proteolysis and alcohol precipitation. Extracts were run in a Dowex-1 column and the fractions were treated with mucopolysaccharidases. Cellulose acetate electrophoresis was carried out with or without enzyme digestion for identification of individual glycosaminoglycans. Glycosaminoglycans were found to be decreased in inflammation but were observed to increase in the overgrowth. Hyaluronic acid was found to be increased in both the pathological conditions. Dermatan sulphate, chondroitin sulphate and heparan sulphate were observed to be decreased in inflammation. In overgrowth, dermatan sulphate and chondroitin sulphate were found to increase while the presence of heparan sulphate was not significant. The changes in the pattern of individual glycosaminoglycan in the two varied conditions are discussed.Abbreviations GAG glycosaminoglycan - MPS mucopolysaccharide - DS dermatan sulphate - HS heparan sulphate - CS chondroitin sulphate - HA hyaluronic acid - KS keratan sulphate  相似文献   

19.
1. The role of UDP-xylose in the regulation of corneal glycosaminoglycan biosynthesis was investigated. Bovine corneas were incubated with [U-(14)C]-glucose in the presence and in the absence of the nucleotide, and the radioactivity of chondroitin, chondroitin sulphate and keratan sulphate, as well as of their monosaccharide constituents, was determined. 2. A decrease in the rate of biosynthesis of chondroitin and chondroitin sulphate and an increase in that of keratan sulphate were observed in the samples incubated with UDP-xylose. 3. The UDP-glucuronic acid isolated after the incubation in the presence of UDP-xylose showed a noticeable decrease in the amount of radioactivity incorporated; this result suggests that UDP-xylose inhibits the UDP-glucose dehydrogenase, causing an accumulation of UDP-glucose and consequently an increase in the formation of UDP-galactose and keratan sulphate. 4. Galactose and galactosamine isolated from the polysaccharides showed variations in the amount of radioactivity incorporated in accordance with those observed for the macromolecules; this fact confirms that in the system we used in vitro a real biosynthesis of the polysaccharide chain took place and that the regulatory effect of UDP-xylose was active at the monosaccharide level.  相似文献   

20.
1. Glycosaminoglycans were extracted with 2m-potassium chloride from bovine aorta and purified by precipitation with cetylpyridinium chloride from 0.5m-potassium chloride. The yield amounted to 24% of the total glycosaminoglycan content of the tissue. 2. After removal of chondroitin sulphate by digestion with testicular hyaluronidase, the residual glycosaminoglycan material (11% of the extracted polysaccharide) was fractionated by gel chromatography on Sephadex G-200. Two peaks (I and II) were obtained, the more retarded of which (II) corresponded to single polysaccharide chains. 3. The macromolecular properties of fraction I were investigated by repeated gel chromatography, after treatment of the fraction with alkali or digestion with papain. In both cases the elution position of fraction I was shifted towards that of the single polysaccharide chains. 4. Analysis of fraction I showed approximately equal amounts of heparan sulphate and dermatan sulphate. It is concluded that these glycosaminoglycans both occur in the aortic wall as multichain proteoglycans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号