首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Filaments ofPhymatodocis nordstedtiana Wolle were isolated from a sample of a Texan lake. Cultures were established and examined by light and scanning electron (SEM) as well as transmission electron microscopy (TEM). It is shown that the pores apparent on light microscopical examination are not of the cosmaroid type as expected. TEM examination disclosed that they are similar to those found in the generaClosterium Ralfs andPenium Bréb. Furthermore, it could be demonstrated by light and SEM microscopy that the primary cell wall is shed during cell division. The remaining secondary cell wall of the mature cell consists of interwoven bands of parallel microfibrils. A conspicuous overlap of the semicell walls clearly denotes the isthmus region. The significance of these deviations unusual for desmids is discussed. Suggestions are made that the taxonomic position ofPh. nordstedtiana should be re-evaluated.  相似文献   

2.
Protoplasts isolated from cotyledons of a number of cultivars of Brassica napus, B. campestris and B. oleracea were cultured in different media to study the characteristics of cell wall regeneration and cell division at early stages of culture. Time course analysis using Calcolfluor White staining indicated that cell wall regeneration began in some protoplasts 2–4 h following isolation in all cultivars. 30–70% of cultured cotyledon protoplasts exhibited cell wall regeneration at 24 h and about 60–90% at 72 h after the initiation of culture. Results also indicated that a low percentage (0.4–5.4%) of cultured cotyledon protoplasts entered their first cell division one day after initial culture in all twelve cultivars. The percentage of dividing cells increased linearly up to 40% from 1 to 7 day, indicating that cotyledon protoplasts of Brassica had a high capacity for cell division. Factors that influence the level of cell wall regeneration and cell division during cotyledon protoplast culture have been investigated in this study. Cotyledons from seedlings germinated in a dark/dim light regime provided a satisfactory tissue source for protoplast isolation and culture for all Brassica cultivars used. The percentages of protoplasts exhibiting cell wall regeneration and division were significantly influenced by cultivar and species examined, with protoplasts from all five cultivars of B. campestris showing much lower rates of cell wall regeneration than those of B. napus and B. oleracea over 24–120 h, and with the levels of cell division in B. napus cultivars being much higher than those in B. campestris and B. oleracea over 1–9 days. The capacity of cell wall regeneration and cell division in cotyledon protoplast culture of the Brassica species appears under strong genetic control. Cell wall regeneration in protoplast culture was not affected by the culture medium used. In contrast, the composition of the culture medium played an important role in determining the level of cell division, and the interaction between medium type and cultivars was very significant.Abbreviations BA benzylaminopurine - CPW Composition of Protoplast Washing-solution - CW Calcolfluor White - EDTA ethylenediamine-tetraacetic acid - KT Kinetin - Md MS modified Murashige and Skoog medium - 2,4-d 2,4-dichlorophenoxyacetic acid - NAA -naphthaleneacetic acid - IAA indole-3-acetic acid - PAR photosynthetically active radiation - SDS sodium dodecyl sulfate  相似文献   

3.
Recently isolated coryneform hydrogen bacteria were investigated under taxonomical aspects. Strains 7 C, RH 10, and 14 g are characterized by the snapping type of cell division, 68.5 to 69.7% GC content, dl-diaminopimelic acid in the cell wall, content of metachromatic granules, weak utilization of sugars and inhibitory effect of citrate. The strains are placed to the group 1—genus Corynebacterium—of the classification of coryneform bacteria of Yamada and Komagata (1972) and the name Corynebacterium autotrophicum sp.nov. is proposed.Strains 11 X and RH 12 are characterized by the bending type of cell division, a GC content of 70.2 and 70.5%, ll-diaminopimelic acid in the cell wall, absence of metachromatic granules, utilization of several sugars and no changes in cell morphology by citrate. The strains have to be placed to group 6 of coryneform bacteria.  相似文献   

4.
L. Lange  L. W. Olson 《Protoplasma》1981,106(1-2):97-108
Summary An ultrastructural study of zoosporangium development ofSynchytrium, endobioticum (Schilb.) Perc. is presented. Emphasis is placed on the location of the parasitic fungal thallus in the potato host cell, on the specific location of organelles in relation to the developing zoosporangial wall, and on the host cell reaction to the fungal infection. The cytoplasmic organization of the individual sporangia after division of the zoosporangium into a sorus of sporangia is characterized by numerous similarly sized nuclei, well developed dictyosomes, and the presence of many lipid bodies of variable size. Cytoplasmic microtubules are observed to flare out from the functional kinetosome both before and after zoospore cleavage.The ultrastructural details of zoosporangium development are used to revaluate the life cycle ofS. endobioticum as described from light microscopic observations made early in the century (Curtis 1921;Köhler 1923, 1932;Percival 1910).  相似文献   

5.
L. W. Olson 《Protoplasma》1980,105(1-2):87-106
Summary InAllomyces neo-moniliformis meiosis takes place during resting sporangium germination. The meiospores are characteristically binucleate and biflagellate as described byEmerson (1938) andTeter (1944). A variation in the number of nuclei and flagella per meiospore from two is correlated with germination of the resting sporangia under reduced oxygen tension. The meiospores are extremely poor swimmers and are typically amoeboid. At encystment the gamma bodies of the cell are mobilized and appear involved in cyst wall synthesis. A single mitotic division of each nucleus gives rise to four nuclei. Gamete cleavage is as described for spore cleavage inBlastocladiella (Lessie andLovett 1968). The assembly of the nuclear cap and side body complex of the spore are extremely late processes in gametogenesis. The gametes are released when the single papilla dissolves. The gametes fuse in pairs and after zygote formation the cell is uninucleate with two flagella. The biflagellate zygote is an active swimming cell. The presence of homothallism or hetero-thallism inA. neo-moniliformis is discussed.  相似文献   

6.
L. Lange  L. W. Olson 《Protoplasma》1981,106(1-2):83-95
Summary An ultrastructural study of the development of the resting sporangium ofSynchytrium endobioticum (Schilb.) Perc. infecting potato cells is presented. The resting sporangium is found to have a single large, centrally placed nucleus with a prominent nucleolus through its entirein situ development. The cytoplasmic organization of the resting sporangium is further characterized by numerous membrane-bound lipid bodies and osmiophilic bodies. The latter have a characteristic sieve-like appearance, probably because certain storage components have been extracted during preparation for electron microscopy. Because of the similar location and appearance of these osmiophilic bodies it is suggested that they are identical to what has earlier (based on light microscopy) been described as chromatin granules; and the ultrastructural studies presented here show that nucleolar discharge which was described from light microscopic observations as leading to chromatin granules in the cytoplasm, and finally forming the nuclei of the zoospores (bally 1912,curtis 1921,percival 1910) simply does not occur.The appearance of dense fibrillar-like structures on the sporangial surface at an early stage of resting sporangium development ultrastructurally distinguishes the resting sporangium from the zoosporangium. The development of the layered portion of the thick sporangial wall is shown to be due to the fusion of vacuoles containing pre-made wall fibrils with the cell membrane. It is suggested that the inner compact wall layer which is essentially substructureless is formed by the membrane itself.The characteristic wings of the matureS. endobioticum resting sporangium originate from the potato host cell wall. Remnants of host cell organelles in the outermost layer of the resting sporangium wall show that degradation of the host cell cytoplasm contributes to wall formation of the parasite.  相似文献   

7.
The highly specialized, two-celled hairs fringing the anthers ofCyclanthera pedata (L.)Schrad. and its relatives aid in pollination by producing a glue which sticks the coarse pollen grains onto insect visitors. This was proven by direct observations, confirming older assumptions. The adhesive is extruded from the big basal cell which bursts upon the slightest touch to the small top cell.—Turgor and, possibly, swelling pressure of the sticky material, are responsible for plasmoptysis and ejaculation. Cell contraction is due to tension of cuticular clips and, to a minor degree, to elasticity of the pectinic wall. A preformed apical dehiscence line disrupts when the top cell is bent aside.—The anthers hairs of a flower develop synchronously. From light and electron microscopic observations, the adhesive appears not to be a product of internal secretion. It originates from the endopolyploid giant nucleus of the basal cell, which finally degenerates by liquefying and swelling. The numerous peculiar elaioplasts apparently do not contribute to the hair's function.—The anther hairs are homologous to, and possibly have evolved from the so-called explosion hairs occurring on the green parts of manyCucurbitaceae.
Herrn Professor Dr.Walter Leinfellner zum 70. Geburtstag gewidmet.  相似文献   

8.
Division and plastic remodelling of the highly differentiated chromatophore inStigeoclonium stagnatile (Hazen)Collins is followed in living cells during their life cycle. In contradistinction to the unicellular algae both processes are separated: During the cell division, when the cell is growing, the highly differentiated chromatophore is simply divided without plastic remodelling and its division is finished before the nuclear division starts. The mode of the chloroplast division is identical with that of other algae. In contrast, during zoospore formation plastic remodelling of the chromatophore takes place: The lobed gutter-shaped chromatophore is transformed into a cup-like one which is adapted to the shape of the zoospore. After the zoospore has changed into a germling the cupshaped chromatophore is turned again into the original lobed gutter-like form of the vegetative cells. The precursory chromatophore division with regard to mitosis as well as the uniform mode of chromatophore division in various algae is stressed.
  相似文献   

9.
The lichenized ascomyceteHypogymnia physodes was collected every second month during a one year period at the same site in a wood near the city of Zürich and investigated with light and electron microscopy techniques. Temperature and relative humidity were measured at the collecting site. Seasonal variations in the germination rate of soredia, in photobiont cell size and cell number, in type and amounts of storage products, and in the density of intramembranous particles of the plasma membrane of theTrebouxia photobiont were observed. Highest germination rates and intense aplanospore formation were observed in January, highest particle densities in both external and internal fracture faces of the plasma membrane in March. Lipids and starch were most abundant in spring to early summer. In summer and autumn numerous photobiont cells died off.This study is dedicated to Prof. DrElisabeth Tschermak-Woess on the occasion of her 70th birthday.  相似文献   

10.
Chemical composition of Eubacterium alactolyticum cell wall peptidoglycan   总被引:2,自引:0,他引:2  
The mechanism of lysis of Eubacterium alactolyticum cell walls by Streptomyces albus G enzyme was studied. The analysis of the peptide terminal groups and peptide subunits isolated from the cell wall digest, released during solubilization of the cell walls, revealed that lytic action of S. albus G enzyme was mainly due to D-alanyl-A2pm endopeptidase, N-acetylmuramyl-L-alanine amidase, N-acetylmuramidase and N-acetylglucosaminidase. E. alactolyticum cell wall peptidoglycan is composed mainly of glucosamine, muramic acid, D-glutamic acid, L- and D-alanine, meso-diaminopimelic acid and glycine. The peptide subunit consists of L-alanyl-D-glutamyl-meso-A2pm-D-alanine. D-Alanine is connected directly with the amino group of the meso-A2pm residue of another peptide subunit. All of the L-amino groups of meso-diaminopimelic acid are involved in cross-linking.The possible structure of the peptide moiety of E. alactolyticum cell wall peptidoglycan is presented.  相似文献   

11.
Summary The behavior of nucleoids during the leucoplast division cycle in the epidermis of onion (Allium cepa) bulbs was investigated using DNA-specific fluorochrome 4'6-diamidino-2-phenylindole (DAPI) staining. The leucoplast was morphologically amoeboid and continuously changed its shape. A dumbbell-shaped leucoplast divided into two spherical daughter ones by constriction in the middle region of the body. Leucoplasts contained 4–10 mostly spherical, oval, partly rodand dumbbell-shaped nucleoids which were dispersed within the bodies. The proportion of one DNA molecule of a T4 phage particle to the small leucoplast nucleoid in the grain density of negative film was 1 to 0.91. Comparison of the present result and another groups' biochemical results suggested that a small leucoplast nucleoid contains one DNA molecule. The dumbbell-shaped leucoplast probably before division contained about twice as many nucleoids as the spherical leucoplast after division, and each half of the dumbbell contained about half the number of nucleoids. Nucleoids increased in number with growth of the leucoplast. The behavior of nucleoids during the leucoplast division cycle in onion bulbs was basically similar to that during the chloroplast division cycle in higher plants and green algae, which was previously reported (Kuroiwa et al. 1981 b).  相似文献   

12.
L. Waterkeyn 《Protoplasma》1981,106(1-2):49-67
Summary Several recent biochemical studies concerning the hemicellulosic content of the developing cotton fibre wall have pointed to an important increase of 1,3-linked glucans at the onset of the secondary wall formation and their slow decrease until the end of fibre development (Meinert andDelmer 1977,Huwyler et al. 1978, 1979,Maltby et al. 1979). These almost insoluble glucans are extra-cellular and possibly associated with the S1 or winding layer, but no other data on their exact localization were given.By means of a specific fluorescence method, using a 0.05% decolourized aniline blue solution, we show that one of these 3-linked glucans,callose, is always localized, independently of the fibre age, in the innermost wall layer bordering the cell lumen, from the onset of the secondary thickening up to the end of fibre development. Some possible roles assumed by these callose deposits are suggested and discussed. They may be involved in the normal mechanism of cellulose biosynthesis, as being effectively consumed by turnover or, more probably, as forming a permanently restored interface or matrix where cellulose microfibrils undergo a sort of maturation and are oriented before their definitive incorporation in the organized cell wall. They are not to be confused with the wound callose deposits which characterize damaged or immature fibres.  相似文献   

13.
The chromosome numbers of the five European seagrasses have been determined in material from several sites along the coasts of the Atlantic Ocean, the North Sea and the Mediterranean:Zostera marina L., 2n = 12;Z. noltii Hornem., 2n = 12;Posidonia oceanica (L.)Delile, 2n = 20;Cymodocea nodosa (Ucria)Aschers., 2n = 14, 2n = 28;Halophila stipulacea (Forsk.)Aschers., 2n = 18. The difference in chromosome morphology betweenZ. marina andZ. noltii supports the division of the genus into two subgenera.  相似文献   

14.
Yamamoto M  Nishikawa T  Kajitani H  Kawano S 《Planta》2007,226(4):917-927
Non-flagellated vegetative green algae of the Trebouxiophyceae propagate mainly by autosporulation. In this manner, the mother cell wall is shed following division of the protoplast in each round of cell division. Binary fission type Nannochloris and budding type Marvania are also included in the Trebouxiophyceae. Phylogenetic trees based on the actin sequences of Trebouxiophyceae members revealed that the binary fission type Nannochloris bacillaris and the budding type Marvania geminata are closely related in a distal monophyletic group. Our results suggest that autosporulation is the ancestral mode of cell division in Trebouxiophyceae. To elucidate how non-autosporulative mechanisms such as binary fission and budding evolved, we focused on the cleavage of the mother cell wall. Cell wall development was analyzed using a cell wall-specific fluorescent dye, Fluostain I. Exfoliation of the mother cell wall was not observed in either N. bacillaris or M. geminata. We then compared the two algae by transmission electron microscopy with rapid freeze fixation and freeze substitution; in both algae, the mother cell wall was cleaved at the site of cell division, but remained adhered to the daughter cell wall. In N. bacillaris, the cleaved mother cell wall gradually degenerated and was not observed in the next cell cycle. In contrast, M. geminata daughter cells entered the growth phase of the next cell cycle bearing the mother and grandmother cell walls, causing the uncovered portion of the plane of division to bulge outward. Such a delay in the degeneration and shedding of the mother cell wall probably led to the development of binary fission and budding.  相似文献   

15.
Summary Observations by light, transmission electron and scanning electron microscopy have shown that intercellular spaces (ICS) are formed schizogenously in expanding leaves ofPhaseolus vulgaris. ICS formation occurs in predictable positions at the junctions between three or more cells, and follows three phases of development. The first, initiation, phase occurs soon after cell division, and is marked by the formation of an electron-dense osmiophilic body, probably proteinaceous, at the end of the cell plate/middle lamella of the daughter cell wall and across the adjacent piece of the primary wall of the mother cell. This part of the mother cell wall is digested, involving cellulolysis. The second phase, of cell separation, is marked by the first appearance of the ICS. InPhaseolus primary leaves this phase begins about day 3 after sowing, at which time the leaf area is about 1 cm2. In the final enlargement phase, lysis of cell wall material continues in the region of the middle lamella, and mechanical tensions arising from the rapid expansion of the lamina lead to further separation of the mesophyll cells so that spaces enlarge and merge.  相似文献   

16.
Cyanocystis violacea isolated from a marine rock sample conforms with the diagnosis ofDermocarpa violacea Crouan in all significant characteristics. The distinct heteropolarity of the cells and simultaneous cell divisions, are stable characters in culture. Development and growth of cells, simultaneous cell division and nanocyte formation have been documented by single-cell slide cultures and fine structural studies. The reddish violet color of the cytoplasm is due to the abundance of phycoerythrin.This paper is dedicated to Prof. DrLothar Geitler, whose monumental contribution to the knowledge of blue-green algae will remain the basis for future studies on these organisms for many years to come. One of us (EIF) was fortunate enough to have had Prof.Geitler as his major professor. All of us consider Prof.Geitler our teacher.  相似文献   

17.
Cells of Schizosaccharomyces pombe grown in the presence of aculeacin A, a peptide antibiotic, were lysed resulting the death of cells. Under high osmolarity, the cellular lysis induced by aculeacin A was considerably reduced. The use of synchronous-culture systems distinguished cell elongation from cell division revealed that the sites of aculeacin A-induced lysis on the fission yeast were the end(s) and the cell plate region, corresponded to the regions of the cell wall synthesis. Aculeacin A-resistant survivors exhibited morphological alterations which were swollen at one or both ends of the cell and appeared drumstick or dumbbel like; the wall of the bulge region was observed to be stained with a fluorescent brightener, as well as that of the cell plate region. These effects of aculeacin A are discussed as compared with effects of 2-deoxy-D-glucose.  相似文献   

18.
Different stages of megaspore and megasporangial development inSelaginella argentea (Wallich)Spring,S. bigelowii Unerw., andS. kraussiana (Kze.)A. Br. have been seen and studied. Megaspore wall units give positive reactions for polysaccharides and protein in young megaspores, and become the thick and resistant wall typical of the genus only later.—Units forming the exospore and the spaces between units enlarge from widths of 5–10nm early during development up to over 200 nm at pregermination stages. The spaces enlarge first. Initially they are circular and mostly about 70 nm in diameter. Later, spaces toward the inner part of the exospore enlarge more than those near the outer surface. During pregermination, wall spaces range in size from 4 to 50 times the width of units with the larger spaces located near the inner surface. As a result the exospore would be under tension to spring outward during germination when the laesurae are lysed.—A gap in the exospore, shaped like a half-moon in polar sections, forms in equatorial and distal portions of the spore. This gap becomes enormous, three times the volume of the central space plus the mesospore, and is filled with lipids and other nutrients. Late in development, during the period of tapetal cell degeneration, the gap contents are moved into the central space and the gap is closed.—Late in development the mesospore is degraded. Its products, along with gap contents, seem to be added to the contents of the central cavity and appear as reserve storage globules. A primary wall-like endospore is formed during this period, at the inner surface of the exospore. During germination this endospore develops further at its inner surface.—Changes in the size and shape of megasporangia occur independently of the size of megaspores.Megaspore development inSelaginella. II. For first part seeMorbelli & Rowley (1993).  相似文献   

19.
Summary An ultrastructural study of cytokinesis, cell wall ontogenesis, and papilla development/form inCarteria crucifera Korsh. andChloromonas rosae Ettl was undertaken. After typical phycoplast-mediated cytokinesis, wall ontogenesis begins at the level of Golgi apparatus activation and secretion to the outside of the daughter cells of fibrillar wall precursors which self assemble into the typical chlamydomonad wall (sensuRoberts 1974). As wall ontogenesis approaches the flagellar region of the cell, several precisely timed events occur: flagellar apparatus formation, flagellar emergence, protoplasmic extension in the future papilla area underlined by series of parallel aligned microtubules, wall formation (at least the W2–W6 layers), retraction of the protoplasmic extension and loss of underlying microtubules, and final wall modification (gap filling by W1 material) to yield the characteristic wall papilla. The transient cytoplasmic extensions mimic the shape of the future wall papilla and are maintained, at least inCarteria, by underlying microtubules. Structural and developmental properties of the papilla are characterized and phylogenetic implications are discussed.This research was supported by National Science Foundation Grant DEB 78-0554.  相似文献   

20.
New data on the development of polarity in the ovules during megasporogenesis and early stages of embryo sac development inOenothera-hybrids are presented. It is confirmed that allOe. hookeri-hybrids show a strong tendency to form heteropolar tetrads, with the micropylar megaspore developing into an embryo sac. This preference is seen in the delay of the second meiotic division on the chalazal side, the absence of callose in the lateral wall of the micropylar megaspore, and the accumulation of starch in this megaspore. However, homopolar tetrads, chalazal preference, and ovules with two developing embryo sacs are also observed with considerable frequency. Quantitative data on the frequency of the different developmental types are compared with earlier genetic results about competition in the haplophase. There is sufficiently good agreement to support the hypothesis ofRenner that there is a correlation between the developmental processes in the megaspore tetrad and the genetic phenomena of competition in the haplophase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号