首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to motilin's relation to the migrating motor complex (MMC), the physiology of motilin has been mostly studied in man and dog. The cat does not have an MMC pattern, and little is known about cat motilin. Therefore we identified the cat motilin precursor (GenBank accession no. AF127917) and developed a quantitative polymerase chain reaction (PCR) to explore its distribution in the gastrointestinal tract and in the central nervous system (CNS). The precursor is closely related to the dog precursor and consists of an open reading frame of 348bp encoding the signal peptide (25 amino acids), the motilin sequence (22 amino acids) and the motilin associated peptide (69 amino acids). One amino acid of the signal peptide was subject to gene polymorphism. Quantification of motilin messenger RNA (mRNA) was for the first time achieved. It is most abundant in the gastrointestinal tract, with the highest concentration in the duodenum, the lowest in the colon and is not detectable in the corpus. However an important expression was also observed in several regions of the CNS, except the striatum and cerebral cortex. The highest level was in the hypothalamus (although 23-fold lower than in the duodenum), the lowest level in the pons. Moderate levels were found in the thyroid. These data suggest that the physiological role of motilin may extend beyond its effect on gastrointestinal motility.  相似文献   

2.
To elucidate the role of bile delivery into the duodenum on the regulation of plasma motilin and on the interdigestive migrating complex, three dogs were operated upon to ligate the main bile duct and divert the biliary flow into the urinary bladder via a Foley catheter. After the operation, despite the chronic diversion of bile from the digestive tract, all animals maintained an excellent health status and exhibited recurrent periods of phase III motor activity migrating from the duodenum to the ileum, which were associated with cyclic increases in plasma motilin. Following the infusion of pooled dog bile (1 mL/min for 10 min) into the duodenum, a premature phase III and a concomitant rise in plasma motilin were observed. These results suggest, that although bile delivery into the duodenum can induce motilin increase in plasma and period of phase III activity in the gut, this phenomenon does not constitute an essential stimulus for the release of motilin and for the induction of the phase III of the interdigestive migrating complex.  相似文献   

3.
Motilin is an intestinal peptide that stimulates contraction of gut smooth muscle. The motilin receptor has not been cloned yet, but motilin-receptor agonists appear to be potent prokinetic agents for the treatment of dysmotility disorders. The aim of this study was to determine neural or muscular localization of motilin receptors in human upper gastrointestinal tract and to investigate their pharmacological characteristics. The binding of (125)I-labeled motilin to tissue membranes prepared from human stomach and duodenum was studied; rabbit tissues were used for comparison. Solutions enriched in neural synaptosomes or in smooth muscle plasma membranes were obtained. Various motilin analogs were used to displace the motilin radioligand from the various tissue membranes. The highest concentration of human motilin receptors was found in the antrum, predominantly in the neural preparation. Human motilin receptors were sensitive to the NH(2)-terminal portion of the motilin molecule, but comparison with rabbit showed that both species had specific affinities for various motilin analogs [i.e., Mot-(1-9), Mot-(1-12), Mot-(1-12) (CH(2)NH)(10-11), and erythromycin]. Motilin receptors obtained from synaptosomes or muscular plasma membranes of human antrum expressed different affinity for two motilin-receptor agonists, Mot-(1-12) and Mot-(1-12) (CH(2)NH)(10-11), suggesting that they correspond to specific receptor subtypes. We conclude that human motilin receptors are located predominantly in nerves of the antral wall, are functionally (and probably structurally) different from those found in other species such as the rabbit, and express specific functional (and probably structural) characteristics dependent on their localization on antral nerves or muscles, suggesting the existence of specific receptor subtypes, potentially of significant physiological or pharmacological relevance.  相似文献   

4.
Motilin receptors in rabbit stomach and small intestine   总被引:10,自引:0,他引:10  
Motilin receptors in rabbit antral and duodenal smooth muscle tissue were characterized by direct binding technique using 125I-labeled porcine motilin as a tracer ligand. Binding at 30 degrees C was maximal at 90 min, was saturable and partially reversible. Displacement studies with natural porcine motilin, synthetic leucine-motilin or norleucine-motilin indicated a dissociation constant (Kd) of 1.1 +/- 0.3 nM and a maximal binding capacity (Bmax) of 42 +/- 10 fmol/mg protein. Binding was unaffected by glucagon, pancreatic polypeptide and somatostatin, but substance P interfered via an unknown mechanism. By density gradient centrifugation motilin receptors were shown to be present in plasma membranes. Binding could only be demonstrated in preparations from antrum and upper duodenum. These observations provide evidence for a localized target region for motilin in the gastrointestinal tract, and for a direct interaction of motilin with gastrointestinal smooth muscle tissue.  相似文献   

5.
Somatostatin and the interdigestive migrating motor complex in man   总被引:6,自引:0,他引:6  
The relationship between somatostatin and the interdigestive migrating motility complex (MMC) was determined in human volunteers. Motor activity was monitored manometrically by means of seven perfused catheters: four in the stomach, one in the duodenum, two in the jejunum. Blood samples were drawn every 10 min and radioimmunoassayed for motilin, pancreatic polypeptide and somatostatin. In four volunteers two activity fronts (AF) were recorded and somatostatin levels correlated to the manometric data. The start of an AF in the upper duodenum was accompanied by somatostatin peaks. Peak values, taken as the mean of the levels in the sample obtained after the start of an AF, the preceding sample and the next one, averaged 32 +/- 4 pM compared to 12 +/- 2 pM in the remaining period. In four volunteers somatostatin was infused in doses of 1.2, 2.4 and 4.8 pM/kg per min over three consecutive periods of 90 min, causing dose-dependent increments in plasma somatostatin levels of 7, 32 and 76 pM. In all volunteers and for all doses all gastric activity was completely inhibited. In the intestine phase 2 was abolished but phase 3 stimulated: during somatostatin infusion phase 3 occurred with an interval of 39 +/- 6 min. Motilin and PP levels were decreased. As the two lowest infusion doses caused increases in somatostatin levels that might be considered as physiological, somatostatin seems to have a physiological role in the regulation of the migrating motor complex. We propose that it facilitates the progressing of the activity front into the small intestine.  相似文献   

6.
Although the physiologic function of the gastrointestinal hormone motilin remains uncertain, plasma levels of this peptide vary with migrating myoelectric complexes (MMCs) in the small intestine. In the fed state, both MMCs and plasma motilin are suppressed. During fasting, cyclical peaks of motilin in plasma occur at the same time as Phase III of the MMC cycle occurs in the duodenum. This dependence of motilin concentrations in plasma on the feeding state of the animal prompted an investigation of the effects of motilin on feeding behavior. Intraperitoneal injection of motilin into fasted, but not fed, rats stimulated eating in a dose dependent manner. A significant stimulation of feeding was seen at doses of 5 and 10 μg/kg. Sated rats did not eat whether injected with motilin or vehicle. The feeding response to motilin was blocked by prior injection of the rats with naloxone, naltrexone, or pentagastrin. The dose response suppression of food intake by naloxone was similar in fasted animals treated with motilin or vehicle. Motilin may function as a hunger hormone during periods of fasting.  相似文献   

7.
The role of pancreatic polypeptide (PP) and motilin in the regulation of the migrating motor complex (MMC) was studied in normal subjects. Both plasma motilin and PP levels changed cyclically in the fasted state and were highest in the late phase II period preceding the activity front in the duodenum. A continental breakfast invariably disrupted the MMC and induced a fed pattern of motility. After the meal plasma motilin levels decreased whereas PP levels rose significantly. Infusion of pure porcine motilin during the fasted state induced an activity front and a rise in plasma PP levels. Infusion of bovine PP in doses producing plasma PP levels above the postprandial values neither induced an activity front nor prevented its occurrence. During PP infusion, however, plasma motilin levels were low, although the activity front was not inhibited. PP seems to have no clear role in the regulation of the motor component of the MMC of man. The role of motilin in the production of the activity front of the MMC is discussed.  相似文献   

8.
Motilin and ghrelin are the gastrointestinal (GI) hormones released in a fasting state to stimulate the GI motility of the migrating motor complex (MMC). We focused on coordination of the ghrelin/motilin family in gastric contraction in vivo and in vitro using the house musk shrew (Suncus murinus), a ghrelin- and motilin-producing mammal. To measure the contractile activity of the stomach in vivo, we recorded GI contractions either in the free-moving conscious or anesthetized S. murinus and examined the effects of administration of motilin and/or ghrelin on spontaneous MMC in the fasting state. In the in vitro study, we also studied the coordinative effect of these hormones on the isolated stomach using an organ bath. In the fasting state, phase I, II, and III contractions were clearly recorded in the gastric body (as observed in humans and dogs). Intravenous infusion of ghrelin stimulated gastric contraction in the latter half of phase I and in the phase II in a dose-dependent manner. Continuous intravenous infusion of ghrelin antagonist (d-Lys3-GHRP6) significantly suppressed spontaneous phase II contractions and prolonged the time of occurrence of the peak of phase III contractions. However, intravenous infusion of motilin antagonist (MA-2029) did not inhibit phase II contractions but delayed the occurrence of phase III contractions of the MMC. In the in vitro study, even though a high dose of ghrelin did not stimulate contraction of stomach preparations, ghrelin administration (10(-10)-10(-7) M) with pretreatment of a low dose of motilin (10(-10) M) induced gastric contraction in a dose-dependent manner. Pretreatment with 10(-8) M ghrelin enhanced motilin-stimulated gastric contractions by 10 times. The interrelation of these peptides was also demonstrated in the anesthetized S. murinus. The results suggest that ghrelin is important for the phase II contraction and that coordination of motilin and ghrelin are necessary to initiate phase III contraction of the MMC.  相似文献   

9.
Motilin, a 22-amino acid peptide hormone secreted by endocrine cells of the intestinal mucosa, plays an important role in the regulation of gastrointestinal motility. The actions of motilin agonists have been extensively investigated in dogs due to physiological similarities between the dog and human alimentary tracts. The amino acid sequence of the dog motilin receptor, however, was previously unknown. We have cloned a cDNA from dog stomach corresponding to the motilin receptor. The deduced protein shared 71% and 72% sequence identity with the human and rabbit motilin receptors, respectively. Expression of the dog motilin receptor in CHO cells promoted the typical cellular responses to the agonists, motilin and erythromycin. The rank order of potency determined for these agonists was similar to that found for the human motilin receptor, with motilin being more potent than erythromycin. Immunohistochemistry of the dog stomach revealed that the motilin receptor was localized in neuronal cell bodies and fibers. This is the first study detailing the cloning, expression, and functional characterization of the dog motilin receptor. Determination of the full sequence and functional properties of the dog motilin receptor will provide useful information enabling us to interpret previous and future studies of motilin agonists in dogs.  相似文献   

10.
The effects of [Leu13]motilin were examined in vivo after its intravenous administration into anesthetized dogs and in vitro with isolated preparations of canine mesenteric artery. [Leu13]Motilin (0.1-10 nmol x kg(-1), i.v.) induced both strong and clustered phasic contractions in the gastric antrum and duodenum. At doses of over 1 nmol x kg(-1), [Leu13]motilin also produced transient decreases in arterial blood pressure, left ventricular pressure, maximum rate of rise of left ventricular pressure, and total peripheral resistance, and an increase in aortic blood flow and heart rate. A selective motilin antagonist, GM-109 (Phe-cyclo[Lys-Tyr(3-tBu)-betaAla] trifluoroacetate), completely abolished the gastric antrum and duodenal motor responses induced by [Leu13]motilin. In contrast, hypotension induced by [Leu13]motilin (1 nmol x kg(-1)) was unchanged in the presence of GM-109. In isolated mesenteric artery preparations precontracted with U-46619 (10(-7) M), [Leu13]motilin (10(-8)-10(-5) M) induced an endothelium-dependent relaxation, and this was inhibited by a pretreatment with N(omega)-nitro-L-arginine, a competitive inhibitor of NO synthase (10(-4) M). A high dose (10(-4) M) of GM-109 slightly decreased [Leu13]motilin-induced relaxation, and shifted the concentration-response curve of [Leu13]motilin to the right. However, the pA2 value (4.09) of GM-109 for [Leu13]motilin in the present study was conspicuously lower than that previously demonstrated in the rabbit duodenum (7.37). These results suggest that [Leu13]motilin induces hypotension via the endothelial NO-dependent relaxation mechanism and not through the receptor type that causes upper gastrointestinal contractions.  相似文献   

11.
In this study, we assessed whether endogenous CCK is involved in the regulation of interdigestive gastrointestinal and gallbladder motility in conscious dogs with force transducers chronically implanted in the gastric antrum, duodenum, jejunum and gallbladder. L364718 at a dose of 1.0 mg/kg was used as a specific and potent CCK receptor blocker, and its effect on spontaneous interdigestive motility and plasma motilin release were examined. Additionally, the contractile activity of exogenous synthetic canine motilin (20-100 ng/kg) with or without pretreatment with L364718 at a dose of 1.0 mg/kg was assessed. Whether the blocking effect of L364718 on CCK receptors was sufficient or not was verified by giving CCK-OP at a bolus dose of 10 ng/kg. As a result, cyclic changes in interdigestive motor activity and the plasma motilin concentration were not affected by pretreatment with L364718. L364718 also did not affect motilin-induced interdigestive contractile activity in the gastrointestinal tract and gallbladder. On the other hand, the effect of CCK-OP was completely abolished by pretreatment with L364718. It is concluded that endogenous CCK is not involved in the regulation of spontaneous and motilin-induced interdigestive contractions in the canine gastrointestinal tract and gallbladder.  相似文献   

12.
Neural and muscular receptors for motilin in the rabbit colon   总被引:5,自引:0,他引:5  
Motilin receptors were classically recognized in the gastroduodenal area, where they help to regulate interdigestive motility. More recently, motilin receptors were identified in the colon where their biologic significance remains unclear. We aimed here to characterize the motilin receptors of the rabbit colon. Distal colon and duodenum were obtained from sacrificed rabbits. Tissues homogenized by Polytron were submitted to differential centrifugation to obtain neural synaptosomes or smooth muscle plasma membranes enriched solutions. Motilin binding to these membranes was determined by the displacement of (125)I MOT by the native peptide MOT 1-22, or by peptide analogues MOT 1-12 [CH(2)NH](10-11) or GM-109 and by erythromycin derivative GM-611. Motilin binding capacity was maximum in colon nerves (49.5 +/- 6.5 fmol/mg protein vs. 19.9 +/- 2.5 in colon muscles or 9.4 +/- 2.8 and 6.6 +/- 1.2 in duodenal muscles and antral nerves respectively); all tissues expressed similar affinity for MOT 1-22, and the motilin agonist GM-611 bound equally to neural or muscle tissues from the rabbit colon; the synthetic antagonist MOT 1-12 [CH(2)NH](10-11) showed greater affinity for colon nerves than for colon muscles (plC50: 7.23 +/- 0.07 vs. 6.75 +/- 0.03). Similar results were obtained with the peptide antagonist GM-109; receptor affinity toward MOT 1-12 [CH(2)NH(10-11)] was always five times superior in neural tissues, whether they came from the colon or the antrum, than in muscle tissues, whether they were obtained from colon or from duodenum. Motilin receptors are found in very high concentration in nerves and in muscles from rabbit colon; specific motilin receptor subtypes are identified in nerves (N) and muscles (M) of the rabbit colon; N and M receptor subtypes seem independent of the organ location.  相似文献   

13.
The role of motilin in the generation of the gastric component of phase 3 of the migrating myoelectric complex (MMC) was studied in human volunteers. Interdigestive motor activity was recorded manometrically in five normal subjects after a fast of at least 15 h. Intraluminal pressures were measured in the gastric antrum at 4 levels 3 cm apart and in the upper small bowel at 3 levels 25 cm apart. Blood samples were drawn every 10 min for radioimmunoassay of motilin and PP. After 2 spontaneously occurring activity fronts (AF) had been recorded, bovine PP was infused intravenously at a rate of 50 μg/h. Following the third AF a combination of PP (50 μg/h) and 13-norleucine-motilin (30 μg/h) was infused until after the next AF. It was found that 90% of the spontaneous AFs originated in the stomach. They were preceded by a motilin peak. During the PP infusion, plasma PP levels increased from 29 to 256 pmol/l, motilin decreased from 42 to 15 pmol/l, and all AFs originated in the small bowel. During the combined PP and motilin infusion, plasma motilin increased to 330 pmol/l, and all AFs again originated in the stomach. It is concluded that motilin has an important role in the regulation of the MMC activity front in the stomach, but not in the small intestine. Postprandial rises in plasma PP might be involved in lowering motilin levels after a meal, and indirectly, in the disruption of gastric MMCs during digestion.  相似文献   

14.
Experiments were performed to determine how postprandial motilin, gastrin, and pancreatic polypeptide plasma concentrations measured during vagal blockade relate to coincident small intestinal motility patterns. Feeding produced a postprandial pattern of intestinal motility coincident with a sustained increase in gastrin and pancreatic polypeptide and a decline in motilin plasma concentrations. Vagal blockade replaced the fed pattern with one similar to migrating motor complex (MMC) activity. Highest motilin plasma concentrations were observed during phase III of this MMC-like activity, as occurs in the fasted state. Vagal blockade reduced but did not abolish the postprandial increase in plasma gastrin and pancreatic polypeptide concentrations. Termination of vagal cooling produced a decline in motilin and an elevation in gastrin and pancreatic polypeptide concentrations, coincident with the return of the fed pattern. In conclusion, during vagal blockade in the fed state (i) motilin, but not gastrin or pancreatic polypeptide plasma concentrations, fluctuate with the MMC-like activity, and any measurement of motilin concentration under these circumstances must be interpreted on the basis of gut motility patterns, and (ii) gastrin and pancreatic polypeptide concentrations are marginally elevated, but these changes are not enough to disrupt the MMC or have any motor effect. Lastly, the fed pattern and the postprandial changes in motilin, gastrin, and pancreatic polypeptide concentrations are in part dependent upon intact vagal pathways.  相似文献   

15.
Motilin is an important endogenous regulator of gastrointestinal motor function, mediated by the class I G protein-coupled motilin receptor. Motilin and erythromycin, two chemically distinct full agonists of the motilin receptor, are known to bind to distinct regions of this receptor, based on previous systematic mutagenesis of extracellular regions that dissociated the effects on these two agents. In the present work, we examined the predicted intracellular loop regions of this receptor for effects on motilin- and erythromycin-stimulated activity. We prepared motilin receptor constructs that included sequential deletions throughout the predicted first, second, and third intracellular loops, as well as replacing the residues in key regions with alanine, phenylalanine, or histidine. Each construct was transiently expressed in COS cells and characterized for motilin- and erythromycin-stimulated intracellular calcium responses and for motilin binding. Deletions of receptor residues 63-66, 135-137, and 296-301 each resulted in substantial loss of intracellular calcium responses to stimulation by both motilin and erythromycin. Constructs with mutations of residues Tyr66, Arg136, and Val299 were responsible for the negative impact on biological activity stimulated by both agonists. These data suggest that action by different chemical classes of agonists that are known to interact with distinct regions of the motilin receptor likely yield a common activation state of the cytosolic face of this receptor that is responsible for interaction with its G protein. The identification of functionally important residues in the predicted cytosolic face provides strong candidates for playing roles in receptor-G protein interaction.  相似文献   

16.
Ghrelin is an endogenous ligand for growth hormone secretagogue-receptor 1a (GHS-R1a) and stimulates gastrointestinal (GI) motility in the chicken. Since ghrelin stimulates GH release, which regulates growth, it might be interesting to compare ghrelin-induced responses in GI tract of different-aged chickens. Motilin is a ghrelin-related gut peptide that induces strong contraction in the small intestine. Aim of this study was to clarify age-dependent changes in ghrelin- and motilin-induced contractions of the chicken GI tract and expression of their receptor mRNAs. Chicken ghrelin caused contraction of the crop and proventriculus. Ghrelin-induced contraction in the proventriculus decreased gradually up to 100 days after hatching, but the responses to ghrelin in the crop were the same during the growth period. GHS-R1a mRNA expression in the crop tended to increase, but that in the proventriculus decreased depending on the age. Chicken motilin caused contraction of the chicken GI tract. Atropine decreased the responses to motilin in the proventriculus but not in the ileum. Motilin-induced contraction in the proventriculus but not that in the ileum decreased depending on post-hatching days. On the other hand, motilin receptor mRNA expression in every region of the GI tract decreased with age, but the decrease was more marked in the proventriculus than in the ileum. In conclusion, ghrelin- and motilin-induced GI contractions selectively decreased in the chicken proventriculus depending on post-hatching days, probably due to the age-related decrease in respective receptors expression. The results suggest an age-related contribution of ghrelin and motilin to the regulation of chicken GI motility.  相似文献   

17.
During fasting, gastrointestinal (GI) motility is characterized by cyclical motor contractions. These contractions have been referred to as interdigestive migrating contractions (IMCs). In dogs and humans, IMCs are known to be regulated by motilin. However, in rats and mice, IMCs are regulated by ghrelin. It is not clear how these peptides influence each other in vivo. The aim of the present study was to investigate the relationship between ghrelin and motilin in conscious dogs. Twenty healthy beagles were used in this study. Force transducers were implanted in the stomach, duodenum, and jejunum to monitor GI motility. Subsequent GI motility was recorded and quantified by calculating the motility index. In examination 1, blood samples were collected in the interdigestive state, and levels of plasma ghrelin and motilin were measured. Plasma motilin peaks were observed during every gastric phase III, and plasma ghrelin peaks occurred in nearly every early phase I. Plasma motilin and ghrelin levels increased and decreased cyclically with the interdigestive states. In examination 2, saline or canine ghrelin was administered intravenously during phase II and phase III. After injection of ghrelin, plasma motilin levels were measured. Ghrelin injection during phases II and III inhibited phase III contractions and decreased plasma motilin levels. In examination 3, ghrelin was infused in the presence of the growth hormone secretagogue receptors antagonist [D-Lys3]-GHRP-6. Continuous ghrelin infusion suppressed motilin release, an effect abrogated by the infusion of [D-Lys3]-GHRP-6. Examination 4 was performed to evaluate the plasma ghrelin response to motilin administration. Motilin infusion immediately decreased ghrelin levels. In this study, we demonstrated that motilin and ghrelin cooperatively control the function of gastric IMCs in conscious dogs. Our findings suggest that ghrelin regulates the function and release of motilin and that motilin may also regulate ghrelin.  相似文献   

18.
Pharmacological studies indicate that in man and in rabbit, but not in dog, motilin has a direct influence upon gastrointestinal smooth muscle. In accordance with this hypothesis we have presented direct biochemical evidence for the presence of motilin receptors on rabbit smooth muscle tissue. We have now extended our studies to human and canine tissue. Tissue homogenates were studied in binding experiments with iodinated porcine [Leu13]motilin and iodinated canine motilin. It was ascertained that the iodination procedure had little effect on the biological activity of the porcine analogue. In the human antrum specific binding of the iodinated porcine analogue was only found in the smooth muscle layer. It was absent in mucosal or serosal preparations. At 30 degrees C and pH 8.0, binding was maximal after 60 min of incubation, and was reversed by the addition of unlabeled porcine motilin. Binding was enhanced in the presence of calcium and magnesium ions. At a concentration of 10 mM MgCl2, binding was 220% of the binding observed in its absence. Displacement studies with synthetic porcine [Leu13]motilin or synthetic natural porcine motilin indicated a dissociation constant (Kd) of 3.6 +/- 1.6 nM and a maximal binding capacity (Bmax) of 77 +/- 9 fmol per mg protein. Canine motilin displaced iodinated porcine motilin with an apparent Kd of 2.2 +/- 0.9 nM. Compared to antral binding, receptor density decreased aborally and orally, and was absent in jejunum and ileum. In dog specific binding could not be demonstrated in antral and duodenal tissue, neither with labeled porcine nor with labeled canine motilin. However, labeled canine motilin was equipotent to labeled porcine motilin in binding studies with human tissue: the dissociation constant was 0.9 +/- 0.6 nM. The present studies therefore demonstrate the existence of a specific motilin receptor in the antroduodenal region of the human gut. Apparently, such receptors are not present in the canine gut. Our data support the hypothesis that in the human gastrointestinal tract, the gastroduodenal area is motilin's target region.  相似文献   

19.
Identification and expression of the motilin precursor in the guinea pig   总被引:6,自引:0,他引:6  
Motilin has never been isolated from rodents, the most frequently used laboratory animals, despite several attempts. We have isolated and sequenced the motilin precursor from duodenal mucosa of guinea pig (GenBank accession number AF323752) and studied its expression in several tissues. The percent homology with human motilin is the lowest yet observed due to several unique substitutions in the C-terminal end. As expected, the precursor was present in the gut mucosa with the exception of the gastric corpus. It was also present in medulla oblongata, nucleus of the solitary tract, hypophysis, spinal cord, hypothalamus, and cerebellum but not in the cerebral cortex. For the first time we demonstrated motilin expression in the thyroid.  相似文献   

20.
We previously identified ghrelin and motilin genes in Suncus murinus (suncus), and also revealed that motilin induces phase III-like strong contractions in the suncus stomach in vivo, as observed in humans and dogs. Moreover, repeated migrating motor complexes were found in the gastrointestinal tract of suncus at regular 120-min intervals. We therefore proposed suncus as a small laboratory animal model for the study of gastrointestinal motility. In the present study, we identified growth hormone secretagogue receptor (GHS-R) and motilin receptor (GPR38) genes in the suncus. We also examined their tissue distribution throughout the body. The amino acids of suncus GHS-R and GPR38 showed high homology with those of other mammals and shared 42% amino acid identity. RT-PCR showed that both the receptors were expressed in the hypothalamus, medulla oblongata, pituitary gland and the nodose ganglion in the central nervous system. In addition, GHS-R mRNA expressions were detected throughout the stomach and intestine, whereas GPR38 was expressed in the gastric muscle layer, lower intestine, lungs, heart, and pituitary gland. These results suggest that ghrelin and motilin affect gut motility and energy metabolism via specific receptors expressed in the gastrointestinal tract and/or in the central nervous system of suncus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号