首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Cellulase production by a thermophilic clostridium species   总被引:8,自引:5,他引:3       下载免费PDF全文
Strain M7, a thermophilic, anaerobic, terminally sporing bacterium (0.6 by 4.0 μm) was isolated from manure. It degraded filter paper in 1 to 2 days at 60 C in a minimal cellulose medium but was stimulated by yeast extract. It fermented a wide variety of sugars but produced cellulase only in cellulose or carboxymethyl-cellulose media. Cellulase synthesis not only was probably repressed by 0.4% glucose and 0.3% cellobiose, but also cellulase activity appeared to be inhibited by these sugars at these concentrations. Both C1 cellulase (degrades native cellulose) and Cx cellulase (β-1,4-glucanase) activities in strain M7 cultures were assayed by measuring the liberation of reducing sugars with dinitrosalicylic acid. Both activities had optima at pH 6.5 and 67 C. One milliliter of a 48-h culture of strain M7 hydrolyzed 0.044-meq of glucose per min from cotton fibers. The cellulase(s) from strain M7 was extracellular, produced during exponential growth, but was not free in the growth medium until approximately 30% of the cellulose was hydrolyzed. Glucose and cellobiose were the major soluble products liberated from cellulose by the cellulase. ZnCl2 precipitation appeared initially to be a good method for the concentration of cellulase activity, but subsequent purification was not successful. Isoelectric focusing indicated the presence of four Cx cellulases (pI 4.5, 6.3, 6.8, and 8.7). The rapid production and high activity of cellulases from this organism strongly support the basic premise that increased hydrolysis of native cellulose is possible at elevated temperature.  相似文献   

2.
Cellulase yields of 250 to 430 IU/g of cellulose were recorded in a new approach to solid-state fermentation of wheat straw with Trichoderma reesei QMY-1. This is an increase of ca. 72% compared with the yields (160 to 250 IU/g of cellulose) in liquid-state fermentation reported in the literature. High cellulase activity (16 to 17 IU/ml) per unit volume of enzyme broth and high yields of cellulases were attributed to the growth of T. reesei on a hemicellulose fraction during its first phase and then on a cellulose fraction of wheat straw during its later phase for cellulase production, as well as to the close contact of hyphae with the substrate in solid-state fermentation. The cellulase system obtained by the solid-state fermentation of wheat straw contained cellulases (17.2 IU/ml), β-glucosidase (21.2 IU/ml), and xylanases (540 IU/ml). This cellulase system was capable of hydrolyzing 78 to 90% of delignified wheat straw (10% concentration) in 96 h, without the addition of complementary enzymes, β-glucosidase, and xylanases.  相似文献   

3.
Cellulase from Ruminococcus albus and Mixed Rumen Microorganisms   总被引:4,自引:2,他引:2       下载免费PDF全文
Cellulase in the cultural filtrates of Ruminococcus albus and cellulase extracted from mixed rumen microorganisms were investigated with acid-swollen cellulose and carboxymethylcellulose as substrates. Maximal activity occurred at approximately pH 5.8 and 47 C. Apparent Michaelis constants (Km) varied between 0.53 and 0.02% carboxymethylcellulose, depending on the level of activity and the method of assay. R. albus cellulase has a lower Km value than the enzyme extracted from mixed rumen microorganisms. Antisera from rabbits immunized with a cellulase preparation from R. albus inhibited the cellulolytic activity of both systems. Based on the relative degree of inhibition, approximately 20% of the cellulase of the mixed rumen microorganisms was immunologically similar to R. albus cellulase. Ratios of activity in different assay techniques showed the two sources of activity to be similar in the mechanisms of degradation. However, glucose is the main product of cellulose degradation by mixed rumen microorganisms, and cellobiose is the product of degradation by R. albus.  相似文献   

4.
Volvariella volvacea, commonly known as the straw or paddy mushroom, had the following growth characteristics: minimum temperature, 25°C; optimal temperature, 37°C; maximal temperature, 40°C; pH optimum 6.0. Optimal pH for cellulase production was 5.5. The optimal initial pH for cellulase production and mycelial growth was found to be 6.0. The pH and temperature optima for cellulolytic activity were 5.0 and 50°C, respectively. Maximal cellulolytic activity was obtained within 5 days in shake-flask culture. The cellulases were found to be partly cell free and partly cell bound during growth on microcrystalline cellulose. The endoglucanase activity was primarily extracellular, and β-glucosidase activity was found exclusively extracellularly. Weak cellulase activity was detected when cells were grown on cellobiose and lactose. V. volvacea could not digest the lignin portion of newspaper in shake-flask cultivation. Phenol oxidase, an important enzyme in lignin biodegradation, also was lacking in the cell-free filtrate. However, the organism oxidized phenolic compounds when it was cultured on agar plates containing commercial lignin.  相似文献   

5.
The crude extracellular cellulase of Clostridium thermocellum LQRI (virgin strain) was very active and solubilized microcrystalline cellulose at one-half the rate observed for the extracellular cellulase of Trichoderma reesei QM9414 (mutant strain). C. thermocellum cellulase activity differed considerably from that of T. reesei as follows: higher endoglucanase/exoglucanase activity ratio; absence of extracellular cellobiase or β-xylosidase activity; long-chain oligosaccharides instead of short-chain oligosaccharides as initial (15-min) hydrolytic products on microcrystalline cellulose; mainly cellobiose or xylobiose as long-term (24-h) hydrolysis products of Avicel and MN300 or xylan; and high activity and stability at 60 to 70°C. Under optimized reaction conditions, the kinetic properties (Vmax, 0.4 μmol/min per mg of protein; energy of activation, 33 kJ; temperature coefficient, 1.8) of C. thermocellum cellulose-solubilizing activity were comparable to those reported for T. reesei, except that the dyed Avicel concentration at half-maximal velocity was twofold higher (182 μM). The cellulose-solubilizing activity of the two crude cellulases differed considerably in response to various enzyme inhibitors. Most notably, Ag2+ and Hg2+ effectively inhibited C. thermocellum but not T. reesei cellulase at <20 μM, whereas Ca2+, Mg2+, and Mn2+ inhibited T. reesei but not C. thermocellum cellulase at >10 mM. Both enzymes were inhibited by Cu2+ (>20 mM), Zn2+ (>1.0 mM), and ethylene glycol-bis(β-aminoethyl ether)- N,N-tetraacetic acid (>10 mM). T. reesei but not C. thermocellum cellulose-solubilizing activity was 20% inhibited by glucose (73 mM) and cellobiose (29 mM). Both cellulases preferentially cleaved the internal glycosidic bonds of cellooligosaccharides. The overall rates of cellooligosaccharide degradation were higher for T. reesei than for C. thermocellum cellulase, except that the rates of conversion of cellohexaose to cellotriose were equivalent.  相似文献   

6.
Abscission: role of cellulase   总被引:30,自引:25,他引:5       下载免费PDF全文
Abeles FB 《Plant physiology》1969,44(3):447-452
Cellulase (β-1,4-glucan-glucanohydrolase EC 3.2.1.4) activity increased during abscission and was localized in the cell separation layer of Phaseolus vulgaris L. cv. Red Kidney (bean), Gossypium hirsutum L. cv. Acala 4-42 (Cotton) and Coleus blumei Benth. Princeton strain (Coleus) abscission zone explants. Cellulase activity was optimum at pH 7, was reduced by one-half after heating to 55° for 10 min, and was associated with the soluble components of the cell. Explants treated with aging retardants (indoleacetic acid, 6N-benzyladenine, and coumarin), CO2, actinomycin D or cycloheximide had less cellulase activity than untreated controls. Ethylene increased cellulase activity of aged explants after a 3-hr lag period but had no effect on cellulase activity of freshly excised explants. It was concluded that 1 of the roles of ethylene in abscission is to regulate the production of cellulase which in turn is required for cell separation.  相似文献   

7.
A newly isolated mesophilic anaerobe, Bacteroides cellulosolvens, has the ability to produce cellulase and to degrade cellulose to cellobiose and glucose. It does not utilize glucose, and it lacks β-glucosidase activity. This anaerobe appears to degrade cellulose to cellobiose by cellulase action, and the presence of cells appears necessary for the formation of glucose.  相似文献   

8.
The substrate specificities of three cellulases and a beta-glucosidase purified from Thermoascus aurantiacus were examined. All three cellulases partially degraded native cellulose. Cellulase I, but not cellulase II and cellulase III, readily hydrolyzed the mixed beta-1,3; beta-1,6-polysaccharides such as carboxymethyl-pachyman, yeast glucan and laminarin. Both cellulase I and the beta-glucosidase degraded xylan, and it is proposed that the xylanase activity is an inherent feature of these two enzymes. Lichenin (beta-1,4; beta-1,3) was degraded by all three cellulases. Cellulase II cannot degrade carboxymethyl-cellulose, and with filter paper as substrate the end product was cellobiose, which indicates that cellulase II is an exo-beta-1,4-glucan cellobiosylhydrolase. Degradation of cellulose (filter paper) can be catalysed independently by each of the three cellulases; there was no synergistic effect between any of the cellulases, and cellobiose was the principal product of degradation. The mode of action of one cellulase (cellulase III) was examined by using reduced cellulodextrins. The central linkages of the cellulodextrins were the preferred points of cleavage, which, with the rapid decrease in viscosity of carboxymethyl-cellulose, confirmed that cellulase III was an endocellulase. The rate of hydrolysis increased with chain length of the reduced cellulodextrins, and these kinetic data indicated that the specificity region of cellulase III was five or six glucose units in length.  相似文献   

9.
Appropriate perception of cellulose outside the cell by transforming it into an intracellular signal ensures the rapid production of cellulases by cellulolytic Hypocrea jecorina. The major extracellular β-glucosidase BglI (CEL3a) has been shown to contribute to the efficient induction of cellulase genes. Multiple β-glucosidases belonging to glycosyl hydrolase (GH) family 3 and 1, however, exist in H. jecorina. Here we demonstrated that CEL1b, like CEL1a, was an intracellular β-glucosidase displaying in vitro transglycosylation activity. We then found evidence that these two major intracellular β-glucosidases were involved in the rapid induction of cellulase genes by insoluble cellulose. Deletion of cel1a and cel1b significantly compromised the efficient gene expression of the major cellulase gene, cbh1. Simultaneous absence of BglI, CEL1a, and CEL1b caused the induction of the cellulase gene by cellulose to further deteriorate. The induction defect, however, was not observed with cellobiose. The absence of the three β-glucosidases, rather, facilitated the induced synthesis of cellulase on cellobiose. Furthermore, addition of cellobiose restored the productive induction on cellulose in the deletion strains. The results indicate that the three β-glucosidases may not participate in transforming cellobiose beyond hydrolysis to provoke cellulase formation in H. jecorina. They may otherwise contribute to the accumulation of cellobiose from cellulose as inducing signals.  相似文献   

10.
1. Filtrates from cultures of different ages of Botryodiplodia theobromae Pat. were fractionated by gel filtration, ion-exchange chromatography and polyacrylamide-gel electrophoresis. 2. Five cellulases (C1, C2, C3, C4 and C5) were found, and their molecular weights, estimated by gel filtration, were 46000–48000 (C1), 30000–35000 (C2), 15000–18000 (C3), 10000–11000 (C4) and 4800–5500 (C5). 3. Cellulase C5 was absent from old culture filtrates. 4. Cellulase C1 had little or no activity on CM-cellulose (viscometric assay), but degraded cotton flock and Whatman cellulose powder to give cellobiose only. 5. The other components (C2–C5) produced cellobiose and smaller amounts of glucose and cellotriose from cellulosic substrates and were more active in lowering the viscosity of CM-cellulose. 6. The ratio of activities assayed by viscometry and by the release of reducing sugars from CM-cellulose increased with decrease in the molecular weights of cellulases C2–C5. 7. Cellobiose inhibited the activities of the cellulases, but glucose stimulated at low concentrations although it inhibited at high concentrations. 8. A high-molecular-weight β-glucosidase (component B1, mol.wt. 350000–380000) predominated in filtrates from young cultures, but a low-molecular-weight enzyme (B4, mol.wt. 45000–47000) predominated in older filtrates. 9. Intermediate molecular species of β-glucosidase (B2, mol.wt. 170000–180000; B3, mol.wt. 83000–87000) were also found. 10. Cellulases C2–C5 acted in synergism with C1, particularly in the presence of β-glucosidase.  相似文献   

11.
The activity of components of the extracellular cellulase system of the thermophilic fungus Sporotrichum thermophile showed appreciable differences between strains; β-glucosidase (EC 3.2.1.21) was the most variable component. Although its endoglucanase (EC 3.2.1.4) and exoglucanase (EC 3.2.1.91) activities were markedly lower, S. thermophile degraded cellulose faster than Trichoderma reesei. The production of β-glucosidase lagged behind that of endoglucanase and exoglucanase. The latter activities were produced during active growth. When growth was inhibited by cycloheximide treatment, the hydrolysis of cellulose was lower than in the control in spite of the presence of both endoglucanase and exoglucanase activities in the culture medium. Degradation of cellulose was a growth-associated process, with cellulase preparations hydrolyzing cellulose only to a limited extent. The growth rate and cell density of S. thermophile were similar in media containing cellulose or glucose. A distinctive feature of fungal development in media incorporating cellulose or lactose (inducers of cellulase activity) was the rapid differentiation of reproductive units and autolysis of hyphal cells to liberate propagules which were capable of renewing growth immediately.  相似文献   

12.
In the conversion of lignocellulose into high-value products, including fuels and chemicals, the production of cellulase and the enzymatic hydrolysis for producing fermentable sugar are the largest contributors to the cost of production of the final products. The marine bacterium Saccharophagus degradans 2-40T can degrade more than ten different complex polysaccharides found in the ocean, including cellulose and xylan. Accordingly, S. degradans has been actively considered as a practical source of crude enzymes needed for the saccharification of lignocellulose to produce ethanol by others including a leading commercial company. However, the overall enzyme system of S. degradans for hydrolyzing cellulose and hemicellulose has not been quantitatively evaluated yet in comparison with commercial enzymes. In this study, the inductions and activities of cellulase and xylanase of cell-free lysate of S. degradans were investigated. The growth of S. degradans cells and the activities of cellulase and xylanase were promoted by adding 2 % of cellulose and xylan mixture (cellulose:xylan = 4:3 in mass ratio) to the aquarium salt medium supplemented with 0.2 % glucose. The specific cellulase activity of the cell-free lysate of S. degradans, as determined by the filter paper activity assay, was approximately 70 times lower than those of commercial cellulases, including Celluclast 1.5 L and Accellerase 1000. These results imply that significant improvement in the cellulase activity of S. degradans is needed for the industrial uses of S. degradans as the enzyme source.  相似文献   

13.
Neurospora crassa colonizes burnt grasslands and metabolizes both cellulose and hemicellulose from plant cell walls. When switched from a favored carbon source to cellulose, N. crassa dramatically up-regulates expression and secretion of genes encoding lignocellulolytic enzymes. However, the means by which N. crassa and other filamentous fungi sense the presence of cellulose in the environment remains unclear. Previously, we have shown that a N. crassa mutant carrying deletions of three β-glucosidase enzymes (Δ3βG) lacks β-glucosidase activity, but efficiently induces cellulase gene expression and cellulolytic activity in the presence of cellobiose as the sole carbon source. These observations indicate that cellobiose, or a modified version of cellobiose, functions as an inducer of lignocellulolytic gene expression and activity in N. crassa. Here, we show that in N. crassa, two cellodextrin transporters, CDT-1 and CDT-2, contribute to cellulose sensing. A N. crassa mutant carrying deletions for both transporters is unable to induce cellulase gene expression in response to crystalline cellulose. Furthermore, a mutant lacking genes encoding both the β-glucosidase enzymes and cellodextrin transporters (Δ3βGΔ2T) does not induce cellulase gene expression in response to cellobiose. Point mutations that severely reduce cellobiose transport by either CDT-1 or CDT-2 when expressed individually do not greatly impact cellobiose induction of cellulase gene expression. These data suggest that the N. crassa cellodextrin transporters act as “transceptors” with dual functions - cellodextrin transport and receptor signaling that results in downstream activation of cellulolytic gene expression. Similar mechanisms of transceptor activity likely occur in related ascomycetes used for industrial cellulase production.  相似文献   

14.
True cellulase activity has been demonstrated in cell-free preparations from the thermophilic anaerobe Clostridium thermocellum. Such activity depends upon the presence of Ca2+ and a thiol-reducing agent of which dithiothreitol is the most promising. Under these conditions, native (cotton) and derived forms of cellulose (Avicel and filter paper) were all extensively solubilized at rates comparable with cellulase from Trichoderma reesei. Maximum activity of the Clostridium cellulase was displayed at 70°C and at pH 5.7 and 6.1 on Avicel and carboxymethylcellulose, respectively. In the absence of substrate at temperatures up to 70°C, carboxymethylcellulase was much more unstable than the Avicel-hydrolyzing activity.  相似文献   

15.
Cellulases play a key role in enzymatic routes for degradation of plant cell-wall polysaccharides into simple and economically-relevant sugars. However, their low performance on complex substrates and reduced stability under industrial conditions remain the main obstacle for the large-scale production of cellulose-derived products and biofuels. Thus, in this study a novel cellulase with unusual catalytic properties from sugarcane soil metagenome (CelE1) was isolated and characterized. The polypeptide deduced from the celE1 gene encodes a unique glycoside hydrolase domain belonging to GH5 family. The recombinant enzyme was active on both carboxymethyl cellulose and β-glucan with an endo-acting mode according to capillary electrophoretic analysis of cleavage products. CelE1 showed optimum hydrolytic activity at pH 7.0 and 50 °C with remarkable activity at alkaline conditions that is attractive for industrial applications in which conventional acidic cellulases are not suitable. Moreover, its three-dimensional structure was determined at 1.8 Å resolution that allowed the identification of an insertion of eight residues in the β8-α8 loop of the catalytic domain of CelE1, which is not conserved in its psychrophilic orthologs. This 8-residue-long segment is a prominent and distinguishing feature of thermotolerant cellulases 5 suggesting that it might be involved with thermal stability. Based on its unconventional characteristics, CelE1 could be potentially employed in biotechnological processes that require thermotolerant and alkaline cellulases.  相似文献   

16.
Cellulase, an enzymatic complex that synergically promotes the degradation of cellulose to glucose and cellobiose, free or adsorbed onto Si/SiO2 wafers at 60 °C has been employed as catalyst in the hydrolysis of microcrystalline cellulose (Avicel), microcrystalline cellulose pre-treated with hot phosphoric acid (CP), cotton cellulose (CC) and eucalyptus cellulose (EC). The physical characteristics such as index of crystallinity (IC), degree of polymerization (DP) and water sorption values were determined for all samples. The largest conversion rates of cellulose into the above-mentioned products using free cellulase were observed for samples with the largest water sorption values; conversion rates showed no correlation with either IC or DP of the biopolymer. Cellulose with large water sorption value possesses large pore volumes, hence higher accessibility. The catalytic efficiency of immobilized cellulase could not be correlated with the physical characteristics of cellulose samples. The hydrolysis rates of the same cellulose samples with immobilized cellulase were lower than those by the free enzyme, due to the diffusion barrier (biopolymer chains approaching to the immobilized enzyme) and less effective contact between the enzyme active site and its substrate. Immobilized cellulase, unlike its free counterpart, can be recycled at least six times without loss of catalytic activity, leading to higher overall cellulose conversion.  相似文献   

17.
S. Kohring  J. Wiegel    F. Mayer 《Applied microbiology》1990,56(12):3798-3804
The subunit composition of the extracellular complex from Clostridium thermocellum was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Twenty-six bands, representing proteins with apparent molecular sizes ranging from 37,500 to 185,000 Da, could be detected by silver staining. Cultivation of the bacteria with the substrate Avicel, Sigma cellulose, Solka floc, or cellobiose as the carbon source had no influence on the number of detectable protein bands. By activity staining with the substrate carboxymethyl cellulose or xylan added to the SDS-polyacrylamide gels, 15 of the 26 bands exhibited endoglucanase activity and 13 showed xylanase activity. In 8 of the 26 bands, both activities could be found. As minor activities, β-glucosidase, β-xylosidase, β-galactosidase, and β-mannosidase activities could be demonstrated in the cellulase complex. Upon measuring the release of para-nitrophenol (PNP) from PNP-cellobioside and determining the amount of glucose formed, the presence of exoglucanase activity was indicated. Upon glycoprotein staining of SDS-polyacrylamide gels, 14 of the 26 bands reacted positive, indicating the glycoprotein nature of the respective proteins. Four proteins (apparent molecular sizes, 58,000, 72,500, 94,000, and 110,000 Da) could be enriched from the originally bound cellulase complex by preparative SDS-PAGE. The two smaller proteins exhibited xylanase activity, whereas the 94,000-Da protein had endo- and exoglucanase activity, and the 110,000-Da protein degraded PNP-pyranosides.  相似文献   

18.
From 22,791 mutants of a cellulase hyper-producing strain of Trichoderma reesei (Hypocrea jecorina), ATCC66589, as the parent, we selected two mutants, M2-1 and M3-1, that produce cellulases in media containing both cellulose and glucose. The mutation enabled the mutants to produce cellulases, which were measured as p-nitrophenyl β-d-lactopyranoside-hydrolyzing activities, in media with glucose as a sole carbon source, although M2-1 exhibited different sensitivities to glucose from M3-1. When the mutants were grown for 8 days on a medium with cellulose as a sole carbon source, the filter-paper-degrading activities (FPAs) per gram of cellulose were 257 and 281 U for M2-1 and M3-1, respectively, values that were 1.1–1.2 times higher than that of the parental strain. Cellulase production by M2-1 and M3-1 on a medium with a continuously fed mixture of glucose and cellobiose resulted in 214 and 210 U of FPA/gram carbon sources, respectively, whereas less efficient production (140 U of FPA/gram carbon source) was achieved by the parental strain. The improved cellulase productivity of the mutants allows us to use glucose as a carbon source for efficient on-site production of cellulases with quality/quantity-controlled feeding of soluble carbon sources and inducers.  相似文献   

19.
Cellulase enzymes deconstruct cellulose to glucose, and are often comprised of glycosylated linkers connecting glycoside hydrolases (GHs) to carbohydrate-binding modules (CBMs). Although linker modifications can alter cellulase activity, the functional role of linkers beyond domain connectivity remains unknown. Here we investigate cellulase linkers connecting GH Family 6 or 7 catalytic domains to Family 1 or 2 CBMs, from both bacterial and eukaryotic cellulases to identify conserved characteristics potentially related to function. Sequence analysis suggests that the linker lengths between structured domains are optimized based on the GH domain and CBM type, such that linker length may be important for activity. Longer linkers are observed in eukaryotic GH Family 6 cellulases compared to GH Family 7 cellulases. Bacterial GH Family 6 cellulases are found with structured domains in either N to C terminal order, and similar linker lengths suggest there is no effect of domain order on length. O-glycosylation is uniformly distributed across linkers, suggesting that glycans are required along entire linker lengths for proteolysis protection and, as suggested by simulation, for extension. Sequence comparisons show that proline content for bacterial linkers is more than double that observed in eukaryotic linkers, but with fewer putative O-glycan sites, suggesting alternative methods for extension. Conversely, near linker termini where linkers connect to structured domains, O-glycosylation sites are observed less frequently, whereas glycines are more prevalent, suggesting the need for flexibility to achieve proper domain orientations. Putative N-glycosylation sites are quite rare in cellulase linkers, while an N-P motif, which strongly disfavors the attachment of N-glycans, is commonly observed. These results suggest that linkers exhibit features that are likely tailored for optimal function, despite possessing low sequence identity. This study suggests that cellulase linkers may exhibit function in enzyme action, and highlights the need for additional studies to elucidate cellulase linker functions.  相似文献   

20.
Fibrobacter succinogenes S85 is an anaerobic non-cellulosome utilizing cellulolytic bacterium originally isolated from the cow rumen microbial community. Efforts to elucidate its cellulolytic machinery have resulted in the proposal of numerous models which involve cell-surface attachment via a combination of cellulose-binding fibro-slime proteins and pili, the production of cellulolytic vesicles, and the entry of cellulose fibers into the periplasmic space. Here, we used a combination of RNA-sequencing, proteomics, and transmission electron microscopy (TEM) to further clarify the cellulolytic mechanism of F. succinogenes. Our RNA-sequence analysis shows that genes encoding type II and III secretion systems, fibro-slime proteins, and pili are differentially expressed on cellulose, relative to glucose. A subcellular fractionation of cells grown on cellulose revealed that carbohydrate active enzymes associated with cellulose deconstruction and fibro-slime proteins were greater in the extracellular medium, as compared to the periplasm and outer membrane fractions. TEMs of samples harvested at mid-exponential and stationary phases of growth on cellulose and glucose showed the presence of grooves in the cellulose between the bacterial cells and substrate, suggesting enzymes work extracellularly for cellulose degradation. Membrane vesicles were only observed in stationary phase cultures grown on cellulose. These results provide evidence that F. succinogenes attaches to cellulose fibers using fibro-slime and pili, produces cellulases, such as endoglucanases, that are secreted extracellularly using type II and III secretion systems, and degrades the cellulose into cellodextrins that are then imported back into the periplasm for further digestion by β-glucanases and other cellulases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号