首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
1. As long‐term observational lake records continue to lengthen, the historical overlap with lake sediment records grows, providing increasing opportunities for placing the contemporary ecological status of lakes in a temporal perspective. 2. Comparisons between long‐term data sets and sediment records, however, require lake sediments to be accurately dated and for sediment accumulation rates to be sufficiently rapid to allow precise matching with observational data. 3. The critical role of the sediment record in this context is its value in tracking the changing impact of human activity on a lake from a pre‐disturbance reference through to the present day. 4. Here, we use data from a range of lakes across Europe presented as case studies in this Special Section. The seven sites considered all possess both long‐term observational records and high‐quality sediment records. Our objective is to assess whether recent climate change is having an impact on their trophic status and in particular whether that impact can be disentangled from the changes associated with nutrient pollution. 5. The palaeo‐data show clear evidence for the beginning of nutrient pollution varying from the mid‐nineteenth century at Loch Leven to the early and middle twentieth century at other sites. The monitoring data show different degrees of recovery when judged against the palaeo‐reference. 6. The reason for limited recovery is attributed to continuing high nutrient concentrations related to an increase in diffuse nutrient loading or to internal P recycling, but there is some evidence that climate change may be playing a role in offsetting recovery at some sites. If this is the case, then lake ecosystems suffering from eutrophication may not necessarily return to their pre‐eutrophication reference status despite the measures that have been taken to reduce external nutrient loading. 7. The extent to which future warming might further limit such recovery can be evaluated only by continued monitoring combined with the use of palaeo‐records that set the pre‐eutrophication reference.  相似文献   

2.
In this paper, we address the question of the nature of evolutionary forces that account for the oceanic planktonic larva period. Putting the emphasis on coral reef fishes, we first present the most common theories and hypotheses, looking at them critically from the standpoint of individual selection and taking into account new data arising from genetic surveys. We concluded that each individual hypothesis based on short term advantages of a larva period cannot convincingly explain by itself the long term maintenance of such a complex life cycle. We then study the impact of the pelagic interval on species dispersal by compiling data sets from the literature. Following simple analysis of this data, we found that duration of the planktonic larva period drives gene flow in the Great Barrier Reef and colonisation throughout the Pacific. In speculating on the real nature of the short term selective forces responsible for the maintenance of the pelagic interval, we acknowledge the fact that long term constraints alone will not withstand erosion if they are not reinforced by some sort of short term mechanism. We tentatively arrive at the conclusion that these short term forces may be different from what could be expected from functional studies of planktonic life.  相似文献   

3.
A large amount of soil loss is caused by a small number of extreme events that are mainly responsible for the time compression of geomorphic processes. The aim of this study was to analyze suspended sediment transport during extreme erosion events in a mountainous watershed. Field measurements were conducted in Wangjiaqiao, a small agricultural watershed (16.7 km2) in the Three Gorges Area (TGA) of China. Continuous records were used to analyze suspended sediment transport regimes and assess the sediment loads of 205 rainfall–runoff events during a period of 16 hydrological years (1989–2004). Extreme events were defined as the largest events, ranked in order of their absolute magnitude (representing the 95th percentile). Ten extreme erosion events from 205 erosion events, representing 83.8% of the total suspended sediment load, were selected for study. The results of canonical discriminant analysis indicated that extreme erosion events are characterized by high maximum flood-suspended sediment concentrations, high runoff coefficients, and high flood peak discharge, which could possibly be explained by the transport of deposited sediment within the stream bed during previous events or bank collapses.  相似文献   

4.
Soil organic carbon (SOC) displaced by soil erosion is the subject of much current research and the fundamental question, whether accelerated soil erosion is a source or sink of atmospheric CO2, remains unresolved. A toposequence of terraced fields as well as a long slope was selected from hilly areas of the Sichuan Basin, China to determine effects of soil redistribution rates and processes on SOC stocks and dynamics. Soil samples for the determination of caesium‐137 (137Cs), SOC, total N and soil particle size fractions were collected at 5 m intervals along a transect down the two toposequences. 137Cs data showed that along the long slope transect soil erosion occurred in upper and middle slope positions and soil deposition appeared in the lower part of the slope. Along the terraced transect, soil was lost over the upper parts of the slopes and deposition occurred towards the downslope boundary on each terrace, resulting in very abrupt changes in soil redistribution over short distances either side of terrace boundaries that run parallel with the contour on the steep slopes. These data reflect a difference in erosion process; along the long slope transect, water erosion is the dominant process, while in the terraced landscape soil distribution is mainly the result of tillage erosion. SOC inventories (mass per unit area) show a similar pattern to the 137Cs inventory, with relatively low SOC content in the erosional sites and high SOC content in depositional areas. However, in the terraced field landscape C/N ratios were highest in the depositional areas, while along the long slope transect, C/N ratios were highest in the erosional areas. When the samples are subdivided based on 137Cs‐derived erosion and deposition data, it is found that the erosional areas have similar C/N ratios for both toposequences, while the C/N ratios in depositional areas are significantly different from each other. These differences are attributed to the difference in soil erosion processes; tillage erosion is mainly responsible for high‐SOC inventories at depositional positions on terraced fields, whereas water erosion plays a primary role in SOC storage at depositional positions on the long slope. These data support the theory that water erosion may cause a loss of SOC due to selective removal of the most labile fraction of SOC, while on the other hand tillage erosion only transports the soil over short distances with less effect on the total SOC stock.  相似文献   

5.
Temporal scale, phytoplankton ecology and palaeolimnology   总被引:1,自引:0,他引:1  
1. Scales of temporal analysis in limnology generally cover dial through to interannual changes, with occasional longer studies with up to 50 years continuous sampling data. Lakes, however, have been changing over much longer time periods than this, as is apparent from palaeolimnological studies. Temporal scales are, however, largely relative, with an individual's perspective controlling what is deemed short or long term. 2. Phytoplankton populations are variable over a variety of timescales, and the sediment record can readily record these changes from interannual through to 103-year timescales. Because of anthropogenic influences, such as acidification and eutrophication, phytoplankton communities probably have been altered dramatically in many lakes, often before routine sampling began. Records of changing phytoplankton populations at timescales relevant to limnologists can be derived from, for example, varved sediments and used to address specific problems, such as the degree of long-term interannual variability and timescales of sexual reproduction. 3. Palaeolimnologists tend to interpret changes in sediment assemblages in terms of ecological and physiological processes which are relevant at scales that may not be resolvable in lake sediments. There is a clear need for sediment records to be interpreted in terms of the processes which operate at timescales that match the resolution of that sediment sequence. 4. Increasingly fine sampling resolutions are being attempted by palaeolimnologists, often without consideration of the reasons for such an approach or to the repeatability of the results. The increased variability associated with high-resolution sampling can make it difficult to separate noise from the ecological signal. There is a clear need for replication. 5. The necessary temporal resolution is defined by the aim of any given palaeolimnological study. If the main emphasis of a study is, for example, establishing background phosphorus concentrations, a coarser sampling resolution is probably acceptable than that required for many ‘ecological’studies.  相似文献   

6.
For comparative demography studies, 2 prerequisites are usually needed: 1) using typical parameter values for species, 2) correctly accounting for the uncertainty in the species specific estimates. However, although within‐species variability may be essential, it is typically not considered in analytical procedures, resulting in parameter estimates that may not be representative of the species. Further, data are analysed in 2 steps, first separately for each species, then estimates are compared among species. Accounting for the uncertainty in the species specific estimates is then difficult. Here we propose the application of multilevel Bayesian models on mark—recapture (MR) data for comparative studies on survival probabilities that solves these problems. Our models account for within‐species variability in space and time in the form of random effects. Models reflecting different biological predictions related to the species’ ecology and life‐history traits may further be contrasted. To illustrate our approach, we used long‐term data from 5 temperate tree‐roosting bat species and compared their survival probabilities. Results suggest that species foraging in open space, high reproductive output and short longevity records have lower survival than species foraging at short distances, with low reproductive output and high longevity records. Multilevel models provided relatively precise estimates, away from the edges of the parameter space, even for species with low encounter rates and short study duration. This is particularly valuable for less studied taxa such as bats for which available data are often more sparse. Our approach can be easily extended to include additional groups or levels of interest and effects at the individual level (e.g. sex or age). Different hypotheses regarding differences or similarities in parameters among species can be tested through the application of different models. Overall, it offers a flexible tool to ecologists, and population and evolutionary biologists for comparative studies, explicitly accounting for multilevel structures often encountered in MR data.  相似文献   

7.
Two diastems in the King Ferry Shale Member (Ludlowville Formation) are the result of local submarine erosion. These discontinuities, traceable from the Cayuga Valley to Seneca Lake, are marked by bioencrusted hiatus-concretions, and both diastems display westward erosional overstep of underlying beds. Hiatus-concretions show complex sequential histories of in situ formation, exhumation, and biodegradation. Activity of bottom organisms influenced erosion; substrate modification by infauna acted to trigger or accelerate sediment loss in a low energy setting. Both diasterns are developed along a depth related paleoenvironmental gradient; submarine erosion in this area is controlled, in part, by the presence of a gentle northwest dipping paleoslope. Juxtaposition of three conditions: bioturbation of surface muds, episodic wave or current impingement on these muds, and substrate inclination resulted in local sea floor erosion through a process of downslope sediment transport and dispersion. King Ferry diastems are termed stratomictic . Stratomictic discontinuities are erosional breaks which lack discrete hiatal surfaces due to vertical sediment mixing by infauna. They include several other examples from the New York Devonian and probably have analogs in numerous sedimentary sequences world-wide.  相似文献   

8.
黄土高原流域水沙变化研究进展   总被引:12,自引:8,他引:4  
人类活动和气候变化是影响流域水文过程的两大驱动因素,径流输沙是流域水文过程的总体反映,变化环境下径流输沙的变化规律与成因分析是水文学和全球变化研究的热点问题。黄土高原是我国水土流失最严重的地区。20世纪50年代以来,黄土高原地区开展了大规模的生态环境建设和水土流失综合治理,显著改变了流域土地利用和植被覆盖。下垫面条件改变与气候变化综合作用,使得流域水沙情势发生剧变。围绕黄土高原流域水沙变化的时空尺度特征与驱动机制,总结了径流输沙和水沙关系变化特征的研究结果,归纳了径流输沙变化的归因分析方法与人类活动和气候变化影响的贡献分割结果,探讨了气候变化、植被恢复、水土保持工程措施以及流域景观格局对水沙变化的影响机制。未来应加强流域水沙演变的时空尺度特征特别是水沙关系非线性特征的定量研究,阐明极端事件对水沙动态的影响与贡献;开展水沙变化影响机制的多要素综合解析,发展耦合地表覆被动态特征和气候变化的降雨-径流-输沙模型,揭示生态恢复与水沙演变过程互馈机制;开展未来气候变化、社会经济发展和生态建设工程情景下水沙动态的趋势预测,为黄土高原生态综合治理和水资源管理与黄河水沙调控提供策略建议。  相似文献   

9.
The boundaries between terrestrial and aquatic ecosystems, known as critical transition zones (CTZ), are dynamic interfaces for fluxes of water, sediment, solutes, and gases. Moreover, they often support unique or diverse biotas. Soils, especially those of riparian zones, have not been recognized as CTZ even though they play a critical role in regulating the hydrologic pathways of infiltration and leaching, or runoff and erosion, which can cumulatively affect biogeochemical processes and human livelihoods at landscape scales. In this review, we show how the processes that regulate hydrologic fluxes across and through soil CTZ are influenced by the activities of soil biota. Our message is fourfold. First, there are a variety of ways in which soil biodiversity, in terms of richness and dominance, can influence hydrological pathways in soil and thus the transfer of materials from terrestrial to aquatic ecosystems. Second, the influence of soil organisms on these hydrological pathways is very much interlinked with other environmental, soil biophysical, and vegetation factors that operate at different spatial and temporal scales. Third, we propose that the influence of soil biodiversity on hydrological pathways is most apparent (or identifiable), relative to other factors, in situations that lead to the dominance of certain organisms, such as larger fauna. Fourth, soils are buffered against environmental change by biophysical properties that have developed over long periods of time. Therefore, the effects of changes in soil biodiversity on hydrological processes at the ecosystem scale might be delayed and become most apparent in the long term. Received 25 February 2000; accepted 11 December 2000.  相似文献   

10.
针对东北黑土区长缓坡地形条件下坡面产汇流集中易加剧土壤侵蚀的问题,本研究基于GIS和SIMWE(SIMulated Water Erosion)模型,引入连通性指数和水深空间分布作为水文连通性与径流路径的衡量指标.通过量化不同典型水土保持措施对土壤入渗速率和地表曼宁糙率的影响,构建梯田数字高程模型(DEM)模拟表征地表...  相似文献   

11.
12.
1. As future climate change is expected to have a major impact on freshwater lake ecosystems, it is important to assess the extent to which changes taking place in freshwater lakes can be attributed to the degree of climate change that has already taken place. 2. To address this issue, it is necessary to examine evidence spanning many decades by combining long‐term observational data sets and palaeolimnological records. 3. Here, we introduce a series of case studies of seven European lakes for which both long‐term data sets and sediment records are available. Most of the sites have been affected by eutrophication and are now in recovery. 4. The studies attempt to disentangle the effects of climate change from those of nutrient pollution and conclude that nutrient pollution is still the dominant factor controlling the trophic state of lakes. 5. At most sites, however, there is also evidence of climate influence related in some cases to natural variability in the climate system, and in others to the trend to higher temperatures over recent decades attributed to anthropogenic warming. 6. More generally and despite some problems, the studies indicate the value of combining limnological and palaeolimnological records in reconstructing lake history and in disentangling the changing role of different pressures on lake ecosystems.  相似文献   

13.
A 'large infrequent disturbance' in an East African savanna   总被引:1,自引:0,他引:1  
There is growing interest in large infrequent disturbances (LIDs), but by definition they occur rarely and long‐term data are needed in order to study their effects and frequency. Palaeoecological records have the potential to provide information on the effects and frequency of LIDs. By comparing recent sedimentary records with known historical data, the effects of LIDs on pollen, charcoal and sedimentary sequences can be assessed. In this study, a LID in East Africa is described, and its representation in the palaeoecological record is explored. Historical records show that there was severe drought and famine in East Africa at the end of the 19th century. Fossil pollen and charcoal records from this period show evidence of a disturbance event that occurred at approximately this time. Statistical comparison of pollen and charcoal data from before, during and after the disturbance event identified it as a LID. The data also suggest that an erosion event occurred part way through the drought, indicating that an environmental threshold was exceeded.  相似文献   

14.
王计平  杨磊  卫伟  陈利顶  黄志霖 《生态学报》2011,31(19):5739-5748
在黄土丘陵沟壑区,景观格局对侵蚀产沙过程有着复杂的影响,且与尺度密切相关。选取河口-龙门区间内42个水文站控制流域为研究对象,以侵蚀模数、输沙模数和泥沙输移比作为表征各流域单元内土壤侵蚀、产沙及泥沙输移过程的特征指标,运用景观指数和CCA排序,系统分析了斑块类型水平上景观格局对流域侵蚀产沙过程的影响。结果表明:流域侵蚀产沙及泥沙输移过程中,空间分异特征随景观类型不同而异;对于不同用地类型,影响"过程"空间分异的景观格局指标不同,显著影响流域侵蚀产沙及泥沙输移过程的景观指数有草地平均斑块面积(AREA_MN3)、居民建设用地景观面积百分比(PLAND5)、居民建设用地和其它类型用地景观的斑块密度(PD5和PD6),其中斑块密度(PD)是影响流域侵蚀产沙及泥沙输移过程的共性指标;草地、居民建设用地、其它类型用地的景观格局特征对"过程"变化的解释程度要高于其它景观类型。开展景观格局与生态过程关系研究时,不仅需要考虑景观格局的整体效应,更应关注单一景观类型及其格局特征对一些生态过程的指示意义。  相似文献   

15.
1. Palaeolimnology and contemporary ecology are complementary disciplines but are rarely combined. By reviewing the literature and using a case study, we show how linking the timescales of these approaches affords a powerful means of understanding ecological change in shallow lakes. 2. Recently, palaeolimnology has largely been pre‐occupied with developing transfer functions which use surface sediment‐lake environment datasets to reconstruct a single environmental variable. Such models ignore complex controls over biological structure and can be prone to considerable error in prediction. Furthermore, by reducing species assemblage data to a series of numbers, transfer functions neglect valuable ecological information on species’ seasonality, habitat structure and food web interactions. These elements can be readily extracted from palaeolimnological data with the interpretive assistance of contemporary experiments and surveys. For example, for one shallow lake, we show how it is possible to infer long‐term seasonality change from plant macrofossil and fossil diatom data with the assistance of seasonal datasets on macrophyte and algal dynamics. 3. On the other hand, theories on shallow lake functioning have generally been developed from short‐term (<1–15 years) studies as opposed to palaeo‐data that cover the actual timescales (decades–centuries) of shallow lake response to stressors such as eutrophication and climate change. Palaeolimnological techniques can track long‐term dynamics in lakes whilst smoothing out short‐term variability and thus provide a unique and important means of not only developing ecological theories, but of testing them. 4. By combining contemporary ecology and palaeolimnology, it should be possible to gain a fuller understanding of changing ecological patterns and processes in shallow lakes on multiple timescales.  相似文献   

16.
Summary A horizon with pot casts (potholes) is described from shallow-marine limestones of thespinosus-zone (‘Discitesschichten’, Upper Muschelkalk) near Weimar/Thuringia. The erosional structures are not developed as sole marks but occur as isolated structures. They differe distinctly in size and composition from pot casts described from the Muschelkalk of Southern Germany. Vertical sedimentary zonation and varying sediment infill in the structures suggest continuous erosion and deposition contemporaneous with the background sedimentation. Deposition may have been caused by oscillatory and unidirectional flows as well as a long period of micrite deposition. Early diagenetic deformations (e.g. dewatering, brecciation, pressure solution) have controlled by a higher continuous water flux inside the pot casts and higher intergranular dispersal pressure.  相似文献   

17.
Many studies have documented the individual effects of variables such as vegetation, long‐term climate and short‐term weather on biodiversity. Few, however, have explicitly explored how interactions among these major drivers can influence species abundance. We used data from a 15‐year study (2002–2017) in the endangered temperate woodlands of south‐eastern Australia to test hypotheses associated with the effects of vegetation type, long‐term climate and short‐term weather on population trajectories of seven species of (largely) nocturnal mammals and birds. Despite prolonged drought conditions, there was a significant increase in the abundance of some species over time (e.g. the Eastern Grey Kangaroo). It is possible that destocking of domestic livestock may have reduced competition with Kangaroos, thereby facilitating increases in abundance. The Common Brushtail Possum and Common Ringtail Possum were significantly less likely to occur in replanted woodlands, possibly because of the paucity of nesting sites. We found no evidence that replanted woodlands are refuges for exotic pest species like the European Rabbit and Red Fox. Short‐ and long‐term rainfall and vegetation type had important independent and combined effects on animal abundance. That is, responses to periods of high short‐term rainfall were dependent on vegetation type and whether sites occurred in long‐term climatically wet versus climatically dry locations. For example, the Red Fox responded positively to high levels of short‐term rainfall, but only at climatically dry sites. Our results highlight the complementary value of different vegetation types across the landscape and the context‐specific responses of animals to short‐term fluctuations in moisture availability. They also underscore the value of long‐term monitoring at a landscape scale for examining how multiple interacting factors influence trends in animal abundance.  相似文献   

18.
1. We describe the changes in trophic dynamics in Lake Maggiore from c. 1943 to 2002 using subfossil cladoceran data from a high resolution sediment record, long‐term contemporary data series and historical information. During this period the lake went through a eutrophication phase until 1980 followed by oligotrophication. 2. During the eutrophication period a major increase occurred in the abundance of Chydorus sphaericus, the proportion of planktonic cladocerans and total abundance of cladocerans in the sediment. Since 1980 the abundance declined again and subfossil Eubosmina mucro length and contemporary Daphnia body length increased, most probably as a result of higher abundance of invertebrate predators. 3. Changes in the fish stock composition caused by the introduction of exotic fish during the pre‐eutrophication period and a complete ban on fishing because of Dichloro‐diphenil‐ethanes (DDTs) pollution of the lake (during oligotrophication) could also be detected in the community assemblage and size structure of the sediment zooplankton. 4. We found good correspondence between trophic changes inferred from cladoceran subfossils (community composition, size and predation pressure) and contemporary data, suggesting that sediment samples can be used to infer past development in trophic dynamics, including predation by fish and pelagic invertebrates in lakes with scarce neolimnological data. 5. Furthermore, by combining palaeolimnological cladoceran data rarely obtained from contemporary samples (e.g. benthic and plant‐associated cladocerans, mucro length of bosminids) with contemporary data of organisms poorly represented in the sediment record (e.g. remains of Bythotrephes and fishes) a more complete understanding of changes in trophic dynamics was obtained. 6. The detection in the sediments of meteorological events whose effects on zooplankton had been recorded in the long‐term studies also provided evidence that eutrophication tends to override climate signals. 7. We conclude that a combined palaeo‐neolimnological approach can be a powerful tool for elucidating past changes in the trophic dynamics of lakes and the interaction with climate induced changes, not least when high resolution sediment records are available.  相似文献   

19.
Current knowledge regarding the flow preferences of benthic stream invertebrates is mostly based on qualitative data or expert knowledge and literature analysis. These established flow preferences are difficult to use in predictions of the effects of global change on aquatic biota. To complement the existing categories, we performed a large-scale analysis on the distribution of stream invertebrates at stream monitoring sites in order to determine their responses to various hydrological conditions.We used 325 invertebrate surveys from environmental agencies at 238 sites paired to 217 gauges across Germany covering a broad range of hydrological conditions. Based on these data, we modelled the respective probabilities of occurrences for 120 benthic invertebrate taxa within this hydrological range using hierarchical logistic regression models.Our analyses revealed that more than one-third of the taxa (18–40%) can be considered as ubiquitous and having a broad hydrological tolerance. Furthermore, 22–41% of the taxa responded to specific ranges of flow conditions with detectable optima. “Duration high flow event” represented the flow parameter that correlated best with the abundance of individual taxa, followed by “rate of change average event”, with 41 and 38% of the taxa showing a peak in their probability of occurrence at specific ranges of these metrics, respectively. The habitat suitability for these taxa may be potentially affected by global change-induced hydrological changes.Quantified hydrological traits of individual taxa might therefore support stream management and enable the prediction of taxa responses to flow alteration. The hydrological traits of stream benthic invertebrates may be used in forecasting studies in central Europe, and the methods used in this study are suitable for application in other regions with different flow regimes.  相似文献   

20.
泥沙输移比及其尺度依存研究进展   总被引:2,自引:0,他引:2  
张晓明  曹文洪  周利军 《生态学报》2014,34(24):7475-7485
泥沙输移比是反映流域侵蚀产沙及输移能力的指标,对评价水土保持减沙效益有重要意义。基于对国内外泥沙输移比研究的系统梳理,1阐述了泥沙输移比的内涵,并对泥沙输移比基本定义中不同学科常用的表征变量作了清晰的界定,流域产沙量所涵尺度较流域输沙量小,且泥沙输移比与归槽率无论在内涵及定量描述上均不可等同;2归纳提出泥沙输移比现存的测算方法,包括4种形式的类比计算法和3种形式的建模计算法,并分别评述了其优缺点;3揭示了泥沙输移比的影响因素随时空尺度变化表现出分异性;4基于对泥沙输移比内涵与测算中的"尺度问题"以及泥沙输移比是否存在尺度效应等问题剖析,明确了泥沙输移比客观存在着尺度依存性及其尺度域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号