首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Valencene is a natural sesquiterpene with desirable bioactivity and aroma, making it a valuable ingredient in the food and cosmetics industries. Traditionally, valencene was extracted from the citrus fruits, and its applications were restricted by the low concentrations in natural sources and high costs for extraction. Photosynthetic biomanufacturing represents a promising route for efficient and stable production of valencene, while cyanobacteria have been considered one of the most promising platforms regarding biotechnological routes for the direct conversion of CO2. In this work, we engineered Synechocystis sp. PCC 6803 to synthesize valencene. By introducing a heterologous valencene synthase and modifying the native MEP pathway, we obtained an efficient cyanobacterial cell factory that produced 154 mg/L valencene during a semi-continual cultivation, with an average productivity of 4.3 mg/L/day, and the cell factory exhibited robust growth and production in non-sterilized conditions. We also achieved the production of other sesquiterpenes including bisabolene, amorpha-4,11-diene, farnesene, and nerolidol by engineered cyanobacteria with enhanced MEP pathway flux, showing promising potentials as a universal chassis.  相似文献   

2.
The natural plant product bisabolene serves as a precursor for the production of a wide range of industrially relevant chemicals. However, the low abundance of bisabolene in plants renders its isolation from plant sources non-economically viable. Therefore, creation of microbial cell factories for bisabolene production supported by synthetic biology and metabolic engineering strategies presents a more competitive and environmentally sustainable method for industrial production of bisabolene. In this proof-of-principle study, for the first time, we engineered the oleaginous yeast Yarrowia lipolytica to produce α-bisabolene, β-bisabolene and γ-bisabolene through heterologous expression of the α-bisabolene synthase from Abies grandis, the β-bisabolene synthase gene from Zingiber officinale and the γ-bisabolene synthase gene from Helianthus annuus respectively. Subsequently, two metabolic engineering approaches, including overexpression of the endogenous mevalonate pathway genes and introduction of heterologous multidrug efflux transporters, were employed in order to improve bisabolene production. Furthermore, the fermentation conditions were optimized to maximize bisabolene production by the engineered Y. lipolytica strains from glucose. Finally, we explored the potential of the engineered Y. lipolytica strains for bisabolene production from the waste cooking oil. To our knowledge, this is the first report of bisabolene production in Y. lipolytica using metabolic engineering strategies. These findings provide valuable insights into the engineering of Y. lipolytica for a higher-level production of bisabolene and its utilization in converting waste cooking oil into various industrially valuable products.  相似文献   

3.
Nootkatone is one of the major terpenes in the heartwood of the Nootka cypress Callitropsis nootkatensis. It is an oxidized sesquiterpene, which has been postulated to be derived from valencene. Both valencene and nootkatone are used for flavouring citrus beverages and are considered among the most valuable terpenes used at commercial scale. Functional evaluation of putative terpene synthase genes sourced by large‐scale EST sequencing from Nootka cypress wood revealed a valencene synthase gene (CnVS). CnVS expression in different tissues from the tree correlates well with nootkatone content, suggesting that CnVS represents the first dedicated gene in the nootkatone biosynthetic pathway in C. nootkatensis The gene belongs to the gymnosperm‐specific TPS‐d subfamily of terpenes synthases and its protein sequence has low similarity to known citrus valencene synthases. In vitro, CnVS displays high robustness under different pH and temperature regimes, potentially beneficial properties for application in different host and physiological conditions. Biotechnological production of sesquiterpenes has been shown to be feasible, but productivity of microbial strains expressing valencene synthase from Citrus is low, indicating that optimization of valencene synthase activity is needed. Indeed, expression of CnVS in Saccharomyces cerevisiae indicated potential for higher yields. In an optimized Rhodobacter sphaeroides strain, expression of CnVS increased valencene yields 14‐fold to 352 mg/L, bringing production to levels with industrial potential.  相似文献   

4.
Saccharomyces cerevisiae utilizes several regulatory mechanisms to maintain tight control over the intracellular level of farnesyl diphosphate (FPP), the central precursor to nearly all yeast isoprenoid products. High-level production of non-native isoprenoid products requires that FPP flux be diverted from production of sterols to the heterologous metabolic reactions. To do so, expression of the gene encoding squalene synthase (ERG9), the first committed step in sterol biosynthesis, was down-regulated by replacing its native promoter with the methionine-repressible MET3 promoter. The intracellular levels of FPP were then assayed by expressing the gene encoding amorphadiene synthase (ADS) and converting the FPP to amorphadiene. Under certain culture conditions amorphadiene production increased fivefold upon ERG9 repression. With increasing flux to amorphadiene, squalene and ergosterol production each decreased. The levels of these three metabolites were dependent not only upon the level of ERG9 repression, but also the timing of its repression relative to the induction of ADS and genes responsible for enhancing flux to FPP.  相似文献   

5.
Sufficient supply of reduced nicotinamide adenine dinucleotide phosphate (NADPH) is a prerequisite of the overproduction of isoprenoids and related bioproducts in Saccharomyces cerevisiae. Although S. cerevisiae highly depends on the oxidative pentose phosphate (PP) pathway to produce NADPH, its metabolic flux toward the oxidative PP pathway is limited due to the rigid glycolysis flux. To maximize NADPH supply for the isoprenoid production in yeast, upper glycolytic metabolic fluxes are reduced by introducing mutations into phosphofructokinase (PFK) along with overexpression of ZWF1 encoding glucose‐6‐phosphate (G6P) dehydrogenase. The PFK mutations (Pfk1 S724D and Pfk2 S718D) result in less glycerol production and more accumulation of G6P, which is a gateway metabolite toward the oxidative PP pathway. When combined with the PFK mutations, overexpression of ZWF1 caused substantial increases of [NADPH]/[NADP+] ratios whereas the effect of ZWF1 overexpression alone in the wild‐type strain is not noticeable. Also, the introduction of ZWF1 overexpression and the PFK mutations into engineered yeast overexpressing acetyl‐CoA C‐acetyltransferase (ERG10), truncated HMG‐CoA reductase isozyme 1 (tHMG1), and amorphadiene synthase (ADS) leads to a titer of 497 mg L–1 of amorphadiene (3.7‐fold over the parental strain). These results suggest that perturbation of upper glycolytic fluxes, in addition to ZWF1 overexpression, is necessary for efficient NADPH supply through the oxidative PP pathway and enhanced production of isoprenoids by engineered S. cerevisiae.  相似文献   

6.
(?)‐5‐Epieremophilene, an epimer of the versatile sesquiterpene (+)‐valencene, is an inaccessible natural product catalyzed by three sesquiterpene synthases (SmSTPSs1‐3) of the Chinese medicinal herb Salvia miltiorrhiza, and its biological activity remains less explored. In this study, three metabolically engineered Escherichia coli strains were constructed for (?)‐5‐epieremophilene production with yields of 42.4–76.0 mg/L in shake‐flask culture. Introducing an additional copy of farnesyl diphosphate synthase (FDPS) gene through fusion expression of SmSTPS1‐FDPS or dividing the FDP synthetic pathway into two modules resulted in significantly improved production, and ultimately 250 mg of (?)‐5‐epieremophilene were achieved. Biological assay indicated that (?)‐5‐epieremophilene showed significant antifeedant activity against Helicoverpa armigera (EC50=1.25 μg/cm2), a common pest of S. miltiorrhiza, implying its potential defensive role in the plant. The results provided an ideal material supply for studying other potential biological activities of (?)‐5‐epieremophilene, and also a strategy for manipulating terpene production in engineered E. coli using synthetic biology.  相似文献   

7.
The genes encoding the mevalonate-based farnesyl pyrophosphate (FPP) biosynthetic pathway were encoded in two operons and expressed in Escherichia coli to increase the production of sesquiterpenes. Inefficient translation of several pathway genes created bottlenecks and led to the accumulation of several pathway intermediates, namely, mevalonate and FPP, and suboptimal production of the sesquiterpene product, amorphadiene. Because of the difficulty in choosing ribosome binding sites (RBSs) to optimize translation efficiency, a combinatorial approach was used to choose the most appropriate RBSs for the genes of the lower half of the mevalonate pathway (mevalonate to amorphadiene). RBSs of various strengths, selected based on their theoretical strengths, were cloned 5′ of the genes encoding mevalonate kinase, phosphomevalonate kinase, mevalonate diphosphate decarboxylase, and amorphadiene synthase. Operons containing one copy of each gene and all combinations of RBSs were constructed and tested for their impact on growth, amorphadiene production, enzyme level, and accumulation of select pathway intermediates. Pathways with one or more inefficiently translated enzymes led to the accumulation of pathway intermediates, slow growth, and low product titers. Choosing the most appropriate RBS combination and carbon source, we were able to reduce the accumulation of toxic metabolic intermediates, improve growth, and improve the production of amorphadiene approximately fivefold. This work demonstrates that balancing flux through a heterologous pathway and maintaining steady growth are key determinants in optimizing isoprenoid production in microbial hosts.  相似文献   

8.
The ability to transfer metabolic pathways from the natural producer organisms to the well-characterized cell factory Saccharomyces cerevisiae is well documented. However, as many secondary metabolites are produced by collaborating enzymes assembled in complexes, metabolite production in yeast may be limited by the inability of the heterologous enzymes to collaborate with the native yeast enzymes. This may cause loss of intermediates by diffusion or degradation or due to conversion of the intermediate through competitive pathways. To bypass this problem, we have pursued a strategy in which key enzymes in the pathway are expressed as a physical fusion. As a model system, we have constructed several fusion protein variants in which farnesyl diphosphate synthase (FPPS) of yeast has been coupled to patchoulol synthase (PTS) of plant origin (Pogostemon cablin). Expression of the fusion proteins in S. cerevisiae increased the production of patchoulol, the main sesquiterpene produced by PTS, up to 2-fold. Moreover, we have demonstrated that the fusion strategy can be used in combination with traditional metabolic engineering to further increase the production of patchoulol. This simple test case of synthetic biology demonstrates that engineering the spatial organization of metabolic enzymes around a branch point has great potential for diverting flux toward a desired product.  相似文献   

9.
解脂耶氏酵母是一种重要的产油酵母,由于其能利用多种疏水性底物,具有良好的耐酸、耐盐等胁迫耐受性,具有高通量的三羧酸循环,可提供充足的乙酰辅酶A前体等特点,被认为是生产萜类、聚酮类和黄酮类等天然产物的理想宿主,在代谢工程领域有着广泛的应用。近年来,越来越多的基因编辑、表达和调控工具被逐渐开发,这促进了解脂耶氏酵母合成各种天然产物的研究。文中综述了近年来解脂耶氏酵母中基因表达和天然产物合成方面的研究进展,并探讨了在该酵母中异源合成天然产物所面临的挑战和可能的解决方案。  相似文献   

10.
Reconstructing synthetic metabolic pathways in microbes holds great promise for the production of pharmaceuticals in large-scale fermentations. By recreating biosynthetic pathways in bacteria, complex molecules traditionally harvested from scarce natural resources can be produced in microbial cultures. Here we report on a strain of Escherichia coli containing a heterologous, nine-gene biosynthetic pathway for the production of the terpene amorpha-4,11-diene, a precursor to the anti-malarial drug artemisinin. Previous reports have underestimated the productivity of this strain due to the volatility of amorphadiene. Here we show that amorphadiene evaporates from a fermentor with a half-life of about 50 min. Using a condenser, we take advantage of this volatility by trapping the amorphadiene in the off-gas. Amorphadiene was positively identified using nuclear magnetic resonance spectroscopy and determined to be 89% pure as collected. We captured amorphadiene as it was produced in situ by employing a two-phase partitioning bioreactor with a dodecane organic phase. Using a previously characterized caryophyllene standard to calibrate amorphadiene production and capture, the concentration of amorphadiene produced was determined to be 0.5 g/L of culture medium. A standard of amorphadiene collected from the off-gas showed that the caryophyllene standard overestimated amorphadiene production by approximately 30%.  相似文献   

11.
12.
(+)-Nootkatone is a natural sesquiterpene ketone used in grapefruit and citrus flavour compositions. It occurs in small amounts in grapefruit and is a major component of Alaska cedar (Callitropsis nootkatensis) heartwood essential oil. Upon co-expression of candidate cytochrome P450 enzymes from Alaska cedar in yeast with a valencene synthase, a C. nootkatensis valencene oxidase (CnVO) was identified to produce trans-nootkatol and (+)-nootkatone. Formation of (+)-nootkatone was detected at 144 ± 10 μg/L yeast culture. CnVO belongs to a new subfamily of the CYP706 family of cytochrome P450 oxidases.  相似文献   

13.
Terpenes are natural products with a remarkable diversity in their chemical structures and they hold a significant market share commercially owing to their distinct applications. These potential molecules are usually derived from terrestrial plants, marine and microbial sources. In vitro production of terpenes using plant tissue culture and plant metabolic engineering, although receiving some success, the complexity in downstream processing because of the interference of phenolics and product commercialization due to regulations that are significant concerns. Industrial workhorses’ viz., Escherichia coli and Saccharomyces cerevisiae have become microorganisms to produce non-native terpenes in order to address critical issues such as demand-supply imbalance, sustainability and commercial viability. S. cerevisiae enjoys several advantages for synthesizing non-native terpenes with the most significant being the compatibility for expressing cytochrome P450 enzymes from plant origin. Moreover, achievement of high titers such as 40?g/l of amorphadiene, a sesquiterpene, boosts commercial interest and encourages the researchers to envisage both molecular and process strategies for developing yeast cell factories to produce these compounds. This review contains a brief consideration of existing strategies to engineer S. cerevisiae toward the synthesis of terpene molecules. Some of the common targets for synthesis of terpenes in S. cerevisiae are as follows: overexpression of tHMG1, ERG20, upc2-1 in case of all classes of terpenes; repression of ERG9 by replacement of the native promoter with a repressive methionine promoter in case of mono-, di- and sesquiterpenes; overexpression of BTS1 in case of di- and tetraterpenes. Site-directed mutagenesis such as Upc2p (G888A) in case of all classes of terpenes, ERG20p (K197G) in case of monoterpenes, HMG2p (K6R) in case of mono-, di- and sesquiterpenes could be some generic targets. Efforts are made to consolidate various studies (including patents) on this subject to understand the similarities, to identify novel strategies and to contemplate potential possibilities to build a robust yeast cell factory for terpene or terpenoid production. Emphasis is not restricted to metabolic engineering strategies pertaining to sterol and mevalonate pathway, but also other holistic approaches for elsewhere exploitation in the S. cerevisiae genome are discussed. This review also focuses on process considerations and challenges during the mass production of these potential compounds from the engineered strain for commercial exploitation.  相似文献   

14.
Although optimality of microbial metabolism under genetic and environmental perturbations is well studied, the effects of introducing heterologous reactions on the overall metabolism are not well understood. This point is important in the field of metabolic engineering because heterologous reactions are more frequently introduced into various microbial hosts. The genome-scale metabolic simulations of Escherichia coli strains engineered to produce 1,4-butanediol, 1,3-propanediol, and amorphadiene suggest that microbial metabolism shows much different responses to the introduced heterologous reactions in a strain-specific manner than typical gene knockouts in terms of the energetic status (e.g., ATP and biomass generation) and chemical production capacity. The 1,4-butanediol and 1,3-propanediol producers showed greater metabolic optimality than the wild-type strains and gene knockout mutants for the energetic status, while the amorphadiene producer was metabolically less optimal. For the optimal chemical production capacity, additional gene knockouts were most effective for the strain producing 1,3-propanediol, but not for the one producing 1,4-butanediol. These observations suggest that strains having heterologous metabolic reactions have metabolic characteristics significantly different from those of the wild-type strain and single gene knockout mutants. Finally, comparison of the theoretically predicted and 13C-based flux values pinpoints pathways with non-optimal flux values, which can be considered as engineering targets in systems metabolic engineering strategies. To our knowledge, this study is the first attempt to quantitatively characterize microbial metabolisms with different heterologous reactions. The suggested potential reasons behind each strain’s different metabolic responses to the introduced heterologous reactions should be carefully considered in strain designs.  相似文献   

15.
Plants produce a high diversity of natural products or secondary metabolites which are important for the communication of plants with other organisms. A prominent function is the protection against herbivores and/or microbial pathogens. Some natural products are also involved in defence against abiotic stress, e.g. UV-B exposure. Many of the secondary metabolites have interesting biological properties and quite a number are of medicinal importance. Because the production of the valuable natural products, such as the anticancer drugs paclitaxel, vinblastine or camptothecin in plants is a costly process, biotechnological alternatives to produce these alkaloids more economically become increasingly important. This review provides an overview of the state of art to produce alkaloids in recombinant microorganisms, such as bacteria or yeast. Some progress has been made in metabolic engineering usually employing a single recombinant alkaloid gene. More importantly, for benzylisoquinoline, monoterpene indole and diterpene alkaloids (taxanes) as well as some terpenoids and phenolics the proof of concept for production of complex alkaloids in recombinant Escherichia coli and yeast has already been achieved. In a long-term perspective, it will probably be possible to generate gene cassettes for complete pathways, which could then be used for production of valuable natural products in bioreactors or for metabolic engineering of crop plants. This will improve their resistance against herbivores and/or microbial pathogens.  相似文献   

16.
Sesquiterpene lactones are characteristic natural products in Asteraceae, which constitutes ∼8% of all plant species. Despite their physiological and pharmaceutical importance, the biochemistry and evolution of sesquiterpene lactones remain unexplored. Here we show that germacrene A oxidase (GAO), evolutionarily conserved in all major subfamilies of Asteraceae, catalyzes three consecutive oxidations of germacrene A to yield germacrene A acid. Furthermore, it is also capable of oxidizing non-natural substrate amorphadiene. Co-expression of lettuce GAO with germacrene synthase in engineered yeast synthesized aberrant products, costic acids and ilicic acid, in an acidic condition. However, cultivation in a neutral condition allowed the de novo synthesis of a single novel compound that was identified as germacrene A acid by gas and liquid chromatography and NMR analyses. To trace the evolutionary lineage of GAO in Asteraceae, homologous genes were further isolated from the representative species of three major subfamilies of Asteraceae (sunflower, chicory, and costus from Asteroideae, Cichorioideae, and Carduoideae, respectively) and also from the phylogenetically basal species, Barnadesia spinosa, from Barnadesioideae. The recombinant GAOs from these genes clearly showed germacrene A oxidase activities, suggesting that GAO activity is widely conserved in Asteraceae including the basal lineage. All GAOs could catalyze the three-step oxidation of non-natural substrate amorphadiene to artemisinic acid, whereas amorphadiene oxidase diverged from GAO displayed negligible activity for germacrene A oxidation. The observed amorphadiene oxidase activity in GAOs suggests that the catalytic plasticity is embedded in ancestral GAO enzymes that may contribute to the chemical and catalytic diversity in nature.  相似文献   

17.
Aims: Dammarenediol production by an engineered yeast Saccharomyces cerevisiae was investigated. Methods and Results: A dammarenediol‐producing engineered yeast was constructed by heterologous expression of the dammarenediol synthase gene from Panax ginseng hairy roots through RT‐PCR. Fermentation was carried out in a 5‐L GRJY‐bioreactor with an inoculum size of 1% v/v at 30°C. Dammarenediol detection was performed with silica gel chromatography and HPLC. Determination of dammarenediol synthase activity subcellular distribution was carried out by surveying the enzyme activity in microsomes, lipid particles and total yeast homogenate. When cultured under aerobic conditions, the engineered yeast could produce dammarenediol up to 250 μg l?1. However, when an anaerobic shift strategy was employed, dammarenediol accumulated at a level as twice as that under aerobic condition. The dammarenediol synthase and dammarenediol were mainly localized in lipid particles. Conclusions: Dammarenediol could be heterologously produced in engineered yeast. The heterologously expressed dammarenediol synthase is mainly localized in lipid particles. Anaerobic shift strategy could enhance the dammarenediol level in the engineered yeast. Significance and Impact of the Study: This study showed that the high‐value plant product dammarenediol could be produced by heterologous expression of the according gene in yeast. Furthermore, the anaerobic shift strategy could be potentially applied in oxidosqualene‐derived compounds production in yeast. Here, the information about subcellular distribution of heterologously expressed dammarenediol synthase in the engineered yeast was also provided.  相似文献   

18.
Artemisinin, in the form of artemisinin‐based combination therapies (ACTs), is currently the most important compound in the treatment of malaria. The current commercial source of artemisinin is Artemisia annua, but this represents a relatively expensive source for supplying the developing world. In this study, the possibility of producing artemisinin in genetically modified plants is investigated, using tobacco as a model. Heterologous expression of A. annua amorphadiene synthase and CYP71AV1 in tobacco led to the accumulation of amorphadiene and artemisinic alcohol, but not artemisinic acid. Additional expression of artemisinic aldehyde Δ11(13) double‐bond reductase (DBR2) with or without aldehyde dehydrogenase 1 (ALDH1) led to the additional accumulation dihydroartemisinic alcohol. The above‐mentioned results and in vivo metabolic experiments suggest that amorphane sesquiterpenoid aldehydes are formed, but conditions in the transgenic tobacco cells favour reduction to alcohols rather than oxidation to acids. The biochemical and biotechnological significance of these results are discussed.  相似文献   

19.
Metabolic engineering in microbes could be used to produce large amounts of valuable metabolites that are difficult to extract from their natural sources and too expensive or complex to produce by chemical synthesis. As a step towards the production of Taxol in the yeast Saccharomyces cerevisiae, we introduced heterologous genes encoding biosynthetic enzymes from the early part of the taxoid biosynthetic pathway, isoprenoid pathway, as well as a regulatory factor to inhibit competitive pathways, and studied their impact on taxadiene synthesis. Expression of Taxus chinensis taxadiene synthase alone did not increase taxadiene levels because of insufficient levels of the universal diterpenoid precursor geranylgeranyl diphosphate. Coexpression of T. chinensis taxadiene synthase and geranylgeranyl diphosphate synthase failed to increase levels, probably due to steroid-based negative feedback, so we also expressed a truncated version of 3-hydroxyl-3-methylglutaryl-CoA reductase (HMG-CoA reductase) isoenzyme 1 that is not subject to feedback inhibition and a mutant regulatory protein, UPC2-1, to allow steroid uptake under aerobic conditions, resulting in a 50% increase in taxadiene. Finally, we replaced the T. chinensis geranylgeranyl diphosphate synthase with its counterpart from Sulfolobus acidocaldarius, which does not compete with steroid synthesis, and codon optimized the T. chinensis taxadiene synthase gene to ensure high-level expression, resulting in a 40-fold increase in taxadiene to 8.7±0.85 mg/l as well as significant amounts of geranylgeraniol (33.1±5.6 mg/l), suggesting taxadiene levels could be increased even further. This is the first demonstration of such enhanced taxadiene levels in yeast and offers the prospect for Taxol production in recombinant microbes.  相似文献   

20.
解脂耶氏酵母是一种具有独特生理代谢特征的非常规酵母.它具有可以利用多种廉价碳源、低pH值耐受性好、分泌能力强等优点,因此非常适合用于各种工业产品的微生物发酵.目前,解脂耶氏酵母已被证实具有高效生产多种(同源或异源)有机羧酸的能力.本文对近年来利用代谢工程及合成生物学技术改造解脂耶氏酵母生产羧酸的实例进行了总结,并重点介...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号