首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA of all living organisms is constantly modified by exogenous and endogenous reagents. The mutagenic threat of modifications such as methylation, oxidation, and hydrolytic deamination of DNA bases is counteracted by base excision repair (BER). This process is initiated by the action of one of several DNA glycosylases, which removes the aberrant base and thus initiates a cascade of events that involves scission of the DNA backbone, removal of the baseless sugar-phosphate residue, filling in of the resulting single nucleotide gap, and ligation of the remaining nick. We were interested to find out how the BER process functions in hyperthermophiles, organisms growing at temperatures around 100 degrees C, where the rates of these spontaneous reactions are greatly accelerated. In our previous studies, we could show that the crenarchaeon Pyrobaculum aerophilum has at least three uracil-DNA glycosylases, Pa-UDGa, Pa-UDGb, and Pa-MIG, that can initiate the BER process by catalyzing the removal of uracil residues arising through the spontaneous deamination of cytosines. We now report that the genome of P. aerophilum encodes also the remaining functions necessary for BER and show that a system consisting of four P. aerophilum encoded enzymes, Pa-UDGb, AP endonuclease IV, DNA polymerase B2, and DNA ligase, can efficiently repair a G.U mispair in an oligonucleotide substrate to a G.C pair. Interestingly, the efficiency of the in vitro repair reaction was stimulated by Pa-PCNA1, the processivity clamp of DNA polymerases.  相似文献   

2.
U/G and T/G mismatches commonly occur due to spontaneous deamination of cytosine and 5-methylcytosine in double-stranded DNA. This mutagenic effect is particularly strong for extreme thermophiles, since the spontaneous deamination reaction is much enhanced at high temperature. Previously, a U/G and T/G mismatch-specific glycosylase (Mth-MIG) was found on a cryptic plasmid of the archaeon Methanobacterium thermoautotrophicum, a thermophile with an optimal growth temperature of 65 degrees C. We report characterization of a putative DNA glycosylase from the hyperthermophilic archaeon Pyrobaculum aerophilum, whose optimal growth temperature is 100 degrees C. The open reading frame was first identified through a genome sequencing project in our laboratory. The predicted product of 230 amino acids shares significant sequence homology to [4Fe-4S]-containing Nth/MutY DNA glycosylases. The histidine-tagged recombinant protein was expressed in Escherichia coli and purified. It is thermostable and displays DNA glycosylase activities specific to U/G and T/G mismatches with an uncoupled AP lyase activity. It also processes U/7,8-dihydro-oxoguanine and T/7,8-dihydro-oxoguanine mismatches. We designate it Pa-MIG. Using sequence comparisons among complete bacterial and archaeal genomes, we have uncovered a putative MIG protein from another hyperthermophilic archaeon, Aeropyrum pernix. The unique conserved amino acid motifs of MIG proteins are proposed to distinguish MIG proteins from the closely related Nth/MutY DNA glycosylases.  相似文献   

3.
The Ugi protein inhibitor of uracil-DNA glycosylase encoded by bacteriophage PBS2 inactivates human uracil-DNA glycosylases (UDG) by forming a tight enzyme:inhibitor complex. To create human cells that are impaired for UDG activity, the human glioma U251 cell line was engineered to produce active Ugi protein. In vitro assays of crude cell extracts from several Ugi-expressing clonal lines showed UDG inactivation under standard assay conditions as compared to control cells, and four of these UDG defective cell lines were characterized for their ability to conduct in vivo uracil-DNA repair. Whereas transfected plasmid DNA containing either a U:G mispair or U:A base pairs was efficiently repaired in the control lines, uracil-DNA repair was not evident in the lines producing Ugi. Experiments using a shuttle vector to detect mutations in a target gene showed that Ugi-expressing cells exhibited a 3-fold higher overall spontaneous mutation frequency compared to control cells, due to increased C:G to T:A base pair substitutions. The growth rate and cell cycle distribution of Ugi-expressing cells did not differ appreciably from their parental cell counterpart. Further in vitro examination revealed that a thymine DNA glycosylase (TDG) previously shown to mediate Ugi-insensitive excision of uracil bases from DNA was not detected in the parental U251 cells. However, a Ugi-insensitive UDG activity of unknown origin that recognizes U:G mispairs and to a lesser extent U:A base pairs in duplex DNA, but which was inactive toward uracil residues in single-stranded DNA, was detected under assay conditions previously shown to be efficient for detecting TDG.  相似文献   

4.
The extremely radiation resistant bacterium, Deinococcus radiodurans, contains a spectrum of genes that encode for multiple activities that repair DNA damage. We have cloned and expressed the product of three predicted uracil-DNA glycosylases to determine their biochemical function. DR0689 is a homologue of the Escherichia coli uracil-DNA glycosylase, the product of the ung gene; this activity is able to remove uracil from a U : G and U : A base pair in double-stranded DNA and uracil from single-stranded DNA and is inhibited by the Ugi peptide. DR1751 is a member of the class 4 family of uracil-DNA glycosylases such as those found in the thermophiles Thermotoga maritima and Archaeoglobus fulgidus. DR1751 is also able to remove uracil from a U : G and U : A base pair; however, it is considerably more active on single-stranded DNA. Unlike its thermophilic relatives, the enzyme is not heat stable. Another putative enzyme, DR0022, did not demonstrate any appreciable uracil-DNA glycosylase activity. DR0689 appears to be the major activity in the organism based on inhibition studies with D. radiodurans crude cell extracts utilizing the Ugi peptide. The implications for D. radiodurans having multiple uracil-DNA glycosylase activities and other possible roles for these enzymes are discussed.  相似文献   

5.
6.
Deamination of cytosine (C), 5-methylcytosine (mC) and 5-hydroxymethylcytosine (hmC) occurs spontaneously in mammalian DNA with several hundred deaminations occurring in each cell every day. The resulting potentially mutagenic mispairs of uracil (U), thymine (T) or 5-hydroxymethyluracil (hmU) with guanine (G) are substrates for repair by various DNA glycosylases. Here, we show that targeted inactivation of the mouse Smug1 DNA glycosylase gene is sufficient to ablate nearly all hmU-DNA excision activity as judged by assay of tissue extracts from knockout mice as well as by the resistance of their embryo fibroblasts to 5-hydroxymethyldeoxyuridine toxicity. Inactivation of Smug1 when combined with inactivation of the Ung uracil-DNA glycosylase gene leads to a loss of nearly all detectable uracil excision activity. Thus, SMUG1 is the dominant glycosylase responsible for hmU-excision in mice as well as the major UNG-backup for U-excision. Both Smug1-knockout and Smug1/Ung-double knockout mice breed normally and remain apparently healthy beyond 1 year of age. However, combined deficiency in SMUG1 and UNG exacerbates the cancer predisposition of Msh2(-/-) mice suggesting that when both base excision and mismatch repair pathways are defective, the mutagenic effects of spontaneous cytosine deamination are sufficient to increase cancer incidence but do not preclude mouse development.  相似文献   

7.
Oxidative damage represents a major threat to genomic stability, as the major product of DNA oxidation, 8-oxoguanine (GO), frequently mispairs with adenine during replication. In order to prevent these mutagenic events, organisms have evolved GO-DNA glycosylases that remove this oxidized base from DNA. We were interested to find out how GO is processed in the hyperthermophilic archaeon Pyrobaculum aerophilum, which lives at temperatures around 100°C. To this end, we searched its genome for open reading frames (ORFs) bearing the principal hallmark of GO-DNA glycosylases: a helix–hairpin–helix motif and a glycine/proline-rich sequence followed by an absolutely conserved aspartate (HhH-GPD motif). Interestingly, although the P.aerophilum genome encodes three such ORFs, none of these encodes the potent GO-processing activity detected in P.aerophilum extracts. Fractionation of the extracts, followed by analysis of the active fractions by denaturing polyacrylamide gel electrophoresis, showed that the GO-processing enzyme has a molecular size of ~30 kDa. Mass spectrometric analysis of proteins in this size range identified several peptides originating from P.aerophilum ORF PAE2237. We now show that PAE2237 encodes AGOG (Archaeal GO-Glycosylase), the founding member of a new family of DNA glycosylases, which can remove GO from single- and double-stranded substrates with great efficiency.  相似文献   

8.
In view of removing lesions in DNA produced by the deamination of cytosine to uracil, uracil-DNA glycosylases were anticipated to be ubiquitous. However, an analogous activity in Drosophila melanogaster was not detected. Instead, a nuclease was identified that acts specifically upon DNA containing uracil. The cleavage of uracil-containing DNA by the nuclease generates acid-soluble oligonucleotides in a reaction which can be inhibited by pretreatment of the DNA with Escherichia coli uracil-DNA glycosylase. Uracil-containing DNA with either A:U base pairs or G:U base pairs were susceptible to cleavage by the nuclease, whereas other damaged DNA substrates were not. The nuclease activity is transient and appears only in third instar larvae, with other developmental stages of Drosophila lacking significant levels of the nuclease.  相似文献   

9.
The bacterial mismatch-specific uracil-DNA glycosylase (MUG) and eukaryotic thymine-DNA glycosylase (TDG) enzymes form a homologous family of DNA glycosylases that initiate base-excision repair of G:U/T mismatches. Despite low sequence homology, the MUG/TDG enzymes are structurally related to the uracil-DNA glycosylase enzymes, but have a very different mechanism for substrate recognition. We have now determined the crystal structure of the Escherichia coli MUG enzyme complexed with an oligonucleotide containing a non-hydrolysable deoxyuridine analogue mismatched with guanine, providing the first structure of an intact substrate-nucleotide productively bound to a hydrolytic DNA glycosylase. The structure of this complex explains the preference for G:U over G:T mispairs, and reveals an essentially non-specific pyrimidine-binding pocket that allows MUG/TDG enzymes to excise the alkylated base, 3, N(4)-ethenocytosine. Together with structures for the free enzyme and for an abasic-DNA product complex, the MUG-substrate analogue complex reveals the conformational changes accompanying the catalytic cycle of substrate binding, base excision and product release.  相似文献   

10.
In Escherichia coli and human cells, many sites of cytosine methylation in DNA are hot spots for C to T mutations. It is generally believed that T.G mismatches created by the hydrolytic deamination of 5-methylcytosines (5meC) are intermediates in the mutagenic pathway. A number of hypotheses have been proposed regarding the source of the mispaired thymine and how the cells deal with the mispairs. We have constructed a genetic reversion assay that utilizes a gene on a mini-F to compare the frequency of occurrence of C to T mutations in different genetic backgrounds in exponentially growing E. coli. The results identify at least two causes for the hot spot at a 5meC: (1) the higher rate of deamination of 5meC compared to C generates more T.G than uracil.G (U.G) mismatches, and (2) inefficient repair of T.G mismatches by the very short-patch (VSP) repair system compared to the repair of U. G mismatches by the uracil-DNA glycosylase (Ung). This combination of increased DNA damage when the cytosines are methylated coupled with the relative inefficiency in the post-replicative repair of T.G mismatches can be quantitatively modeled to explain the occurrence of the hot spot at 5meC. This model has implications for mutational hot and cold spots in all organisms.  相似文献   

11.
Uracil-DNA glycosylase activities in hyperthermophilic micro-organisms   总被引:1,自引:0,他引:1  
Abstract Hyperthermophiles exist in conditions which present an increased threat to the informational integrity of their DNA, particularly by hydrolytic damage. As in mesophilic organisms, specific activities must exist to restore and protect this template function of DNA. In this study we have demonstrated the presence of thermally stable uracil-DNA glycosylase activities in seven hyperthermophiles; one bacterial: Thermotoga maritima , and six archaeal: Sulfolobus solfataricus, Sulfolobus shibatae, Sulfolobus acidocaldarius, Thermococcus litoralis, Pyrococcus furiosus and Pyrobaculum islandicum . Uracil-DNA glycosylase inhibitor protein of the Bacillus subtilis bacteriophage PBS1 shows activity against all of these, suggesting a highly conserved tertiary structure between hyperthermophilic and mesophilic uracil-DNA glycosylases.  相似文献   

12.
The most common mutations in cancer are C to T transitions, but their origin has remained elusive. Recently, mutational signatures of APOBEC-family cytosine deaminases were identified in many common cancers, suggesting off-target deamination of cytosine to uracil as a common mutagenic mechanism. Here we present evidence from mass spectrometric quantitation of deoxyuridine in DNA that shows significantly higher genomic uracil content in B-cell lymphoma cell lines compared to non-lymphoma cancer cell lines and normal circulating lymphocytes. The genomic uracil levels were highly correlated with AID mRNA and protein expression, but not with expression of other APOBECs. Accordingly, AID knockdown significantly reduced genomic uracil content. B-cells stimulated to express endogenous AID and undergo class switch recombination displayed a several-fold increase in total genomic uracil, indicating that B cells may undergo widespread cytosine deamination after stimulation. In line with this, we found that clustered mutations (kataegis) in lymphoma and chronic lymphocytic leukemia predominantly carry AID-hotspot mutational signatures. Moreover, we observed an inverse correlation of genomic uracil with uracil excision activity and expression of the uracil-DNA glycosylases UNG and SMUG1. In conclusion, AID-induced mutagenic U:G mismatches in DNA may be a fundamental and common cause of mutations in B-cell malignancies.  相似文献   

13.
Cells contain low amounts of uracil in DNA which can be the result of dUTP misincorporation during replication or cytosine deamination. Elimination of uracil in the base excision repair pathway yields an abasic site, which is potentially mutagenic unless repaired. The Trypanosoma brucei genome presents a single uracil-DNA glycosylase responsible for removal of uracil from DNA. Here we establish that no excision activity is detected on U:G, U:A pairs or single-strand uracil-containing DNA in uracil-DNA glycosylase null mutant cell extracts, indicating the absence of back-up uracil excision activities. While procyclic forms can survive with moderate amounts of uracil in DNA, an analysis of the mutation rate and spectra in mutant cells revealed a hypermutator phenotype where the predominant events were GC to AT transitions and insertions. Defective elimination of uracil via the base excision repair pathway gives rise to hypersensitivity to antifolates and oxidative stress and an increased number of DNA strand breaks, suggesting the activation of alternative DNA repair pathways. Finally, we show that uracil-DNA glycosylase defective cells exhibit reduced infectivity in vivo demonstrating that efficient uracil elimination is important for survival within the mammalian host.  相似文献   

14.
Gene-targeted knockout mice have been generated lacking the major uracil-DNA glycosylase, UNG. In contrast to ung- mutants of bacteria and yeast, such mice do not exhibit a greatly increased spontaneous mutation frequency. However, there is only slow removal of uracil from misincorporated dUMP in isolated ung-/- nuclei and an elevated steady-state level of uracil in DNA in dividing ung-/- cells. A backup uracil-excising activity in tissue extracts from ung null mice, with properties indistinguishable from the mammalian SMUG1 DNA glycosylase, may account for the repair of premutagenic U:G mispairs resulting from cytosine deamination in vivo. The nuclear UNG protein has apparently evolved a specialized role in mammalian cells counteracting U:A base pairs formed by use of dUTP during DNA synthesis.  相似文献   

15.
DNA-uracil and human pathology   总被引:1,自引:0,他引:1  
Uracil is usually an inappropriate base in DNA, but it is also a normal intermediate during somatic hypermutation (SHM) and class switch recombination (CSR) in adaptive immunity. In addition, uracil is introduced into retroviral DNA by the host as part of a defence mechanism. The sources of uracil in DNA are spontaneous or enzymatic deamination of cytosine (U:G mispairs) and incorporation of dUTP (U:A pairs). Uracil in DNA is removed by a uracil-DNA glycosylase. The major ones are nuclear UNG2 and mitochondrial UNG1 encoded by the UNG-gene, and SMUG1 that also removes oxidized pyrimidines, e.g. 5-hydroxymethyluracil. The other ones are TDG that removes U and T from mismatches, and MBD4 that removes U from CpG contexts. UNG2 is found in replication foci during the S-phase and has a distinct role in repair of U:A pairs, but it is also important in U:G repair, a function shared with SMUG1. SHM is initiated by activation-induced cytosine deaminase (AID), followed by removal of U by UNG2. Humans lacking UNG2 suffer from recurrent infections and lymphoid hyperplasia, and have skewed SHM and defective CSR, resulting in elevated IgM and strongly reduced IgG, IgA and IgE. UNG-defective mice also develop B-cell lymphoma late in life. In the defence against retrovirus, e.g. HIV-1, high concentrations of dUTP in the target cells promotes misincorporation of dUMP-, and host cell APOBEC proteins may promote deamination of cytosine in the viral DNA. This facilitates degradation of viral DNA by UNG2 and AP-endonuclease. However, viral proteins Vif and Vpr counteract this defense by mechanisms that are now being revealed. In conclusion, uracil in DNA is both a mutagenic burden and a tool to modify DNA for diversity or degradation.  相似文献   

16.
The hydrolytic deamination of cytosine and 5-methylcytosine drives many of the transition mutations observed in human cancer. The deamination-induced mutagenic intermediates include either uracil or thymine adducts mispaired with guanine. While a substantial array of methods exist to measure other types of DNA adducts, the cytosine deamination adducts pose unusual analytical problems, and adequate methods to measure them have not yet been developed. We describe here a novel hybrid thymine DNA glycosylase (TDG) that is comprised of a 29-amino acid sequence from human TDG linked to the catalytic domain of a thymine glycosylase found in an archaeal thermophilic bacterium. Using defined-sequence oligonucleotides, we show that hybrid TDG has robust mispair-selective activity against deaminated U:G and T:G mispairs. We have further developed a method for separating glycosylase-released free bases from oligonucleotides and DNA followed by GC–MS/MS quantification. Using this approach, we have measured for the first time the levels of total uracil, U:G, and T:G pairs in calf thymus DNA. The method presented here will allow the measurement of the formation, persistence, and repair of a biologically important class of deaminated cytosine adducts.  相似文献   

17.
Uracil-DNA glycosylases (UDGs) catalyse the removal of uracil by flipping it out of the double helix into their binding pockets, where the glycosidic bond is hydrolysed by a water molecule activated by a polar amino acid. Interestingly, the four known UDG families differ in their active site make-up. The activating residues in UNG and SMUG enzymes are aspartates, thermostable UDGs resemble UNG-type enzymes, but carry glutamate rather than aspartate residues in their active sites, and the less active MUG/TDG enzymes contain an active site asparagine. We now describe the first member of a fifth UDG family, Pa-UDGb from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum, the active site of which lacks the polar residue that was hitherto thought to be essential for catalysis. Moreover, Pa-UDGb is the first member of the UDG family that efficiently catalyses the removal of an aberrant purine, hypoxanthine, from DNA. We postulate that this enzyme has evolved to counteract the mutagenic threat of cytosine and adenine deamination, which becomes particularly acute in organisms living at elevated temperatures.  相似文献   

18.
Genomic uracil is a DNA lesion but also an essential key intermediate in adaptive immunity. In B cells, activation-induced cytidine deaminase deaminates cytosine to uracil (U:G mispairs) in Ig genes to initiate antibody maturation. Uracil-DNA glycosylases (UDGs) such as uracil N-glycosylase (UNG), single strand-selective monofunctional uracil-DNA glycosylase 1 (SMUG1), and thymine-DNA glycosylase remove uracil from DNA. Gene-targeted mouse models are extensively used to investigate the role of these enzymes in DNA repair and Ig diversification. However, possible species differences in uracil processing in humans and mice are yet not established. To address this, we analyzed UDG activities and quantities in human and mouse cell lines and in splenic B cells from Ung(+/+) and Ung(-/-) backcrossed mice. Interestingly, human cells displayed ~15-fold higher total uracil excision capacity due to higher levels of UNG. In contrast, SMUG1 activity was ~8-fold higher in mouse cells, constituting ~50% of the total U:G excision activity compared with less than 1% in human cells. In activated B cells, both UNG and SMUG1 activities were at levels comparable with those measured for mouse cell lines. Moreover, SMUG1 activity per cell was not down-regulated after activation. We therefore suggest that SMUG1 may work as a weak backup activity for UNG2 during class switch recombination in Ung(-/-) mice. Our results reveal significant species differences in genomic uracil processing. These findings should be taken into account when mouse models are used in studies of uracil DNA repair and adaptive immunity.  相似文献   

19.
Enzymes involved in genomic maintenance of human parasites are attractive targets for parasite-specific drugs. The parasitic protozoan Trypanosoma cruzi contains at least two enzymes involved in the protection against potentially mutagenic uracil, a deoxyuridine triphosphate nucleotidohydrolase (dUTPase) and a uracil-DNA glycosylase belonging to the highly conserved UNG-family. Uracil-DNA glycosylase activities excise uracil from DNA and initiate a multistep base-excision repair (BER) pathway to restore the correct nucleotide sequence. Here we report the biochemical characterisation of T.cruzi UNG (TcUNG) and its contribution to the total uracil repair activity in T.cruzi. TcUNG is shown to be the major uracil-DNA glycosylase in T.cruzi. The purified recombinant TcUNG exhibits substrate preference for removal of uracil in the order ssU>U:G>U:A, and has no associated thymine-DNA glycosylase activity. T.cruzi apparently repairs U:G DNA substrate exclusively via short-patch BER, but the DNA polymerase involved surprisingly displays a vertebrate POLdelta-like pattern of inhibition. Back-up UDG activities such as SMUG, TDG and MBD4 were not found, underlying the importance of the TcUNG enzyme in protection against uracil in DNA and as a potential target for drug therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号