首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
γ-Aminobutyric acid transaminase (GABA-T, EC 2.6.1.19) is a pyridoxal phosphate (PLP) dependent enzyme that catalyzes the degradation of γ-aminobutyric acid. The kinetics of this reaction are studied in vitro, both in the absence, and in the presence of two inhibitors: γ-vinyl GABA (4-aminohex-5-enoic acid), and a natural product, taurine (ethylamine-2-sulfonic acid). A kinetic model that describes the transamination process is proposed. GABA-T from Pseudomonas fluorescens is inhibited by γ-vinyl GABA and taurine at concentrations of 51.0 and 78.5?mM. Both inhibitors show competitive inhibition behavior when GABA is the substrate and the inhibition constant (Ki) values for γ-vinyl GABA and taurine were found to be 26±3?mM and 68±7?mM respectively. The transamination process of α-ketoglutarate was not affected by the presence of γ-vinyl GABA, whereas, taurine was a noncompetitive inhibitor of GABA-T when α-ketoglutarate was the substrate. The inhibition dissociation constant (Kii) for this system was found to be 96±10?mM. The Michaelis-Menten constant (Km) in the absence of inhibition, was found to be 0.79±0.11?mM, and 0.47±0.10?mM for GABA and α-ketoglutarate respectively.  相似文献   

2.
The effects of intraperitoneal administration of (S)-4-amino-5-fluoropentanoic acid, a mechanism-based covalent inactivator of γ-aminobutyric acid transaminase (GABA-T), on whole brain GABA metabolism in mice were investigated. A dose-dependent and time-dependent irreversible inactivation of GABA-T was observed with a concomitant increase in whole brain GABA levels. The compound exhibited no in vitro nor in vivo time-dependent inhibition of glutamate decarboxylase (GAD), alanine transaminase, or aspartate transaminase (Asp-T). It was, however, a potent competitive reversible inhibitor of GAD and a weak competitive inhibitor of Asp-T. The chloro analogue, (S)-4-amino-5-chloropentanoic acid, was ineffective.  相似文献   

3.
(1) The inhibitor of γ-aminobutyrate transaminase (GABA-T), amino-oxyacetic acid (AOAA), drastically reduced the activity of GABA-T to 30 per cent of the control value, with a corresponding increase of brain GABA, but had no effect on the activity of glutamate decarboxylase (GAD). (2) The monoamine oxidase (MAO) inhibitors phenelzine, phenylpropylhydrazine and phenylvalerylhydrazine, lowered GABA-T activity to 58, 49 and 48 per cent, respectively; this was associated with a marked elevation of brain GABA. (3) The action of phenelzine and phenylpropylhydrazine in vivo and in vitro could be abolished by pre-treatment of the tissue with the structurally related MAO inhibitors phenylisopropylhydrazine and trans-2-phenylcyclopropylamine. These had no action on the GABA system in vivo, either on the GABA content or on the GABA-T activity. These latter drugs, however, were unable to influence the effects of AOAA either on GABA or on GABA-T. (4) The possible mechanism of action on GABA and the enzyme activities of the GABA system is discussed.  相似文献   

4.
Abstract— 2-Keto-4-pentenoic acid, a potent inhibitor of brain glutamate decarboxylase (Orlowski et al., 1977) was prepared by oxidative deamination of l -allylglycine with snake venom l -amino acid oxidase. In the presence of glutamate the keto acid is a competitive inhibitor of the enzyme with respect to glutamate; its Ki is 2.4 ± 10?6m . After preincubation of brain glutamate decarboxylase with 2-keto-4-pentenoic acid in the absence of glutamate, a slow and incomplete reactivation is obtained by prolonged dialysis, Sephadex gel-filtration, and dilution, suggesting the formation of a slowly dissociating enzyme-inhibitor complex and partial inactivation of the enzyme. In vivo inhibition of brain glutamate decarboxylase after administration of allylglycine is maximal after 2-8 h with activity returning to normal after 16 h. The inhibition of the enzyme after administration of d -allylglycine was greatest in the cerebellum and the medulla-pons area, the sites of the highest activity of d -amino acid oxidase. These results are interpreted as strongly supporting the postulate that allylglycine-induced inhibition of brain glutamate decarboxylase is due to the in vivo formation of 2-keto-4-pentenoic acid.  相似文献   

5.
The kinetics of the inhibition of mouse brain glutamate decarboxylase by pyri-doxaI-5′-phosphate oxime-O-acetic acid (PLPOAA) was studied. The inhibition was noncompetitive with regard to glutamic acid; it could be partially reversed by pyridoxal phosphate, but only when the concentration of the latter in the incubation medium was higher than that of pyridoxal-5′-phosphate oxime-O-acetic acid. The inhibition produced by aminooxyacetic acid, which is remarkably greater than that produced by PLPOAA, was also partially reversed only when an excess of pyridoxal phosphate was added. Both in the presence and in the absence of a saturating concentration of pyridoxal phosphate, the activity of the enzyme was decreased by PLPOAA at a 10?4m concentration to a value of about 50 per cent of the control value obtained without added coenzyme. This activity could not be further reduced even when PLPOAA concentration was increased to 5 × 10?3m . This same minimal activity of glutamate decarboxylase was obtained after dialysis of the enzymic preparation, or after incubation with glutamic acid in the cold followed by filtration through Sephadex G-25. The addition of pyridoxal phosphate to the dialysed or glutamic acid-treated enzyme restored the activity to almost the control values. PLPOAA did not affect the activity of glutamate decarboxylase from E. coli or that of DOPA decarboxylase and GABA transaminase from mouse brain. To account for the results obtained it is postulated that brain glutamate decarboxylase has two types of active site, one with firmly bound, non-dialysable pyridoxal phosphate and the other with loosely bound, dialysable coenzyme; PLPOAA behaves as a weak inhibitor probably because it can combine mainly with the loosely bound coenzyme site, while aminooxyacetic acid is a potent inhibitor probably because it can block both the ‘loosely bound coenzyme’ and the ‘firmly bound coenzyme’ sites.  相似文献   

6.
Substantial synthesis of γ-aminobutyric acid occurs in rat renal cortex. Renal glutamate decarboxylase activity (24.3±2.9 (S.E.) nmols/mg protein per h) is 15% of that in brain; renal γ-aminobutyric acid content (39.5±5.3 (S.E.) nmols/g wet wt.) is 5% of the whole brain concentration. Properties of glutamate decarboxylase were studied in homogenates of rat renal cortex and rat brain under conditions for which γ-aminobutyric acid formation from [2,3-3H]glutamate and CO2 release from [1-14C]glutamate were equal. Several properties of renal glutamate decarboxylase distinguish it from the corresponding brain enzyme: (1) renal glutamate decarboxylase is selectively inhibited by cysteine sulfinic acid (Ki = 5·10?5 M) ; (20 renal glutamate decarboxylase is less sensitive (Ki = 3–5·10?5 M)_to inhibition by aminooxyacetic acid than is the brain enzyme (Ki = 1·10?6 M); (3) brain but not renal glutamate decarboxylase activity can be substantially stimulated in vitro by the addition of exogenous pyridoxal 5′-phosphate; (4) renal glutamate decarboxylase is significantly decreased in renal cortex from rats on a low-salt diet. Proximal tubules are enriched in glutamate decarboxylase compared to the activity in whole renal cortex or glomeruli (42, 22 and 14 nmols/mg protein per h, respectively). We speculate that renal γ-aminobutyric acid synthesis does not reflect the presence of GABAergic renal nerves, but may serve a function in proximal tubular cells.  相似文献   

7.
The effects on GABA metabolism of an anticonvulsant drug, di-n-propylacetate (DPA), were studied. Given intraperitoneally DPA increases the brain GABA content and does not change its biosynthesis from glutamic acid. However, it inhibits in vitro both glutamate decarboxylase and aminobutyrate transaminase (GABA-T) activities. The inhibition is more pronounced on the GABA-T and this observation might explain the increase of GABA level.  相似文献   

8.
—Bulk prepared neuronal perikarya, nerve endings and glial cells have been used to study amino acid concentrations and GABA metabolism in vitro. All amino acids were more concentrated in synaptosomes and glial cells than in neuronal perikarya. Cell specificity was found with respect to the relative distribution of some amino acids. Glutamate decarboxylase activity was considerably higher in synaptosomes than in glial cells. The inhibitory effect of amino-oxyacetic acid on glutamate decarboxylase activity differed between synaptosomes and glial cells. γ-Aminobutyric acid-α-ketoglutarate transaminase had the highest activity in the glial cell fraction; the inhibition of amino-oxyacetic acid differed between glial and neuronal material. The metabolism of exogenous GABA just accumulated by a cell showed similar time characteristics in neuronal and glial material.  相似文献   

9.
—The concentrations of taurine and GABA were determined in isolated mouse brain synaptosomes incubated in Krebs-Ringer phosphate medium (pH 7·4). The concentration of GABA gradually decreased during incubation, but that of taurine remained approximately unchanged. In the presence of chlorpromazine the amount of GABA in the synaptosomes increased, but the efflux and influx of GABA were slightly reduced. The content and efflux of both taurine and GABA increased in electrically stimulated synaptosomes, and the influx of taurine, GABA and glutamate into the synaptosomes similarly increased. All three amino acids are taken up by the synaptosomes through at least two mechanisms: low-affinity and high-affinity. In the high-affinity system the Km values were 33 μm for taurine, 24 μm for GABA and 68 μm for glutamate, and in the low-affinity one 1·1 mil, 0·9 mm and 1·2mm , respectively. The influx capacity (Vmax) was highest for glutamate, second highest for GABA and lowest for taurine.  相似文献   

10.
Abstract— 4-Amino hex-5-ynoic acid (γ-acetylenic GABA, γ-ethynyl GABA, RM171.645), a catalytic inhibitor of GABA transaminase in vitro , induces a rapid, long-lasting dose-dependent decrease of GABA transaminase activity and, to a lesser extent, of glutamate decarboxylase activity in the brains of rats and mice when given by a peripheral route. The GABA concentration in whole brain increases up to 6-fold over control values. The action of γ-acetylenic GABA is relatively specific, as no in vivo inhibition of brain aspartate and alanine transaminase activities could be detected. Furthermore, the amount of radioactive drug bound to the protein fraction of brain homogenate is of the same order of magnitude as that of the GABA transaminase present, as calculated from total GABA transaminase activity, molecular weight and specific activity of the pure enzyme. γ-Acetylenic GABA illustrates the usefulness of a catalytic irreversible enzyme inhibitor in altering neurotransmitter metabolism in vivo .  相似文献   

11.
Abstract— Previous studies have shown that inorganic phosphate relieves the inhibition of brain glutamate decarboxylase by ATP. Since the evidence suggested that inhibition by ATP resulted in formation of the inactive apoenzyme, it was possible that Pi might relieve this inhibition by promoting activation of the apoenzyme by its cofactor, pyridoxal-5′-phosphate. We have investigated this possibility using apoenzyme from rat brain. In most experiments, apoenzyme was prepared by incubating glutamate decarboxylase with 20 μM-aminooxyacetate followed by exhaustive dialysis. Activation was studied by incubating the enzyme with pyridoxal-P under various conditions after which the amount of holoenzyme formed was measured by a 5 min enzyme assay. In the absence of Pi there was an initially rapid but incomplete activation by pyridoxal-P which stopped after 15-20 min. The amount of holoenzyme formed after 20 min increased without saturating as the concentration of pyridoxal-P was raised from 0.03 to 250 μm Addition of 1-10mm -Pi increased the initial rate of activation and the final degree of activation. Pi stimulated activation whether present initially or added after 15 min, indicating that incomplete activation in the absence of Pi was not attributable to destruction of pyridoxal-P or irreversible inactivation of the enzyme. Pi reduced the concentration of pyridoxal-P, giving half maximal activation from about 10 μm to about 0.07 μm . Pi also stimulated the residual enzyme activity in the apoenzyme preparation in the absence of added pyridoxal-P, suggesting that Pi may convert the holoenzyme to a more active form. Pi had very similar effects on glutamate apodecarboxylase from vitamin B6-deficient rats and also stimulated the activation of apoenzyme which had been prepared by dissociation of the cofactor by treatment with glutamate, indicating that stimulation by Pi is unrelated to the method of preparing apoenzyme. Activation was also strongly stimulated by methylphosphonate and arsenate and weakly stimulated by sulfate. Trichloromethylphosphonate, cacodylate, pyrophosphate and AMP had little or no effect. The results suggest that Pi relieves the inhibition by ATP, at least in part, by promoting the activation of glutamate apodecarboxylase, and that Pi may be an important factor in the regulation of glutamate decarboxylase in vivo.  相似文献   

12.
Properties of brain L-glutamate decarboxylase: inhibition studies   总被引:15,自引:12,他引:3  
—l -Glutamate decarboxylase purified from mouse brain was found to be highly sensitive to the sulfhydryl reagents, 5,5-dithiobis (2-nitrobenzoic acid) (DTNB) and p-chloromerburibenzoate (PCMB), which were competitive inhibitors (Ki for DTNB is 1·1 · 10?8m ). Iodoacetamide and iodoacetic acid were less effective inhibitors than DTNB and PCMB. The mercapto acids, 3-mercaptopropionic, 2-mercaptopropionic, and 2-mercaptoacetic acids were potent competitive inhibitors with Ki values of 1·8, 53 and 300 μm , respectively. 2-Mercaptoethanol was less effective. Aminooxyacetic acid was the most potent carbonyl-trapping reagent tested inhibiting the enzyme activity completely at 1·6 μm , followed by hydroxylamine, hydrazine, semicarbazide, and d -penicillamine. Carboxylic acids with a net negative charge were strong competitive inhibitors e.g. d -glutamate (Ki 0·9 mm ), α-ketoglutarate (Ki, l·2mm ), fumarate (Ki,1·8 mm ), dl -β-hydroxyglutamate (Ki, 2·8 mm ), l -aspartate (ki, 3·1 mm ) and glutarate (Ki, 3·5 mm ). 2-Aminophosphonobutyric and 2-aminophosphonopropionic acids, phosphonic analogs of glutamate and aspartate, respectively, had no effect at l0mm . γ-Aminobutyric acid, l -glutamine, l -γ-methylene-glutamine, and α,γ-diaminoglutaric acid, amino acids with no net negative charge at neutral pH, had no effect at 5 mm . Glutaric and α-ketoglutaric acids were the most potent inhibitors among the various dicarboxylic and α-keto-dicarboxylic acids tested (Ki, 3·5 and 1·2 mm , respectively). Compounds with one carbon less, succinic and oxalacetic acids, or with one carbon more, adipic and α-ketoadipic acids, were less inhibitory. The monovalent cations, Li+, Na+, NH4+, and Cs+ had no effect on l -glutamate decarboxylase activity in concentrations up to 10mm . Divalent cations, on the other hand, were very potent inhibitors. Among eleven divalent cations tested, Zn2+ was the most potent inhibitor, inhibiting to the extent of 50 per cent at 10μm . The decreasing order of inhibitory potency was: Zn2+ > Cd2+, Hg2+, Cu2+ > Ni2+ > Mn2+ Co2+ > Ba2+ > Ca2+ > Mg2+ > Sr+2, The anions, I?, Br?, Cl? and F? were only weak inhibitors. The Ki value for Cl? was 17mm . The above findings suggest minimally the presence of aldehyde, sulfhydryl and positively charged groups at or near the active site of the holoenzyme. Intermediates of glycolysis had little effect on l -glutamate decarboxylase activity, but intermediates of the tricarboxylic acid cycle, e.g. α-ketoglutarate (Ki= 1·2 mm ) and fumarate (Ki= 1·8 mm ) were relatively potent inhibitors. The nucleotides, ATP, ADP, AMP, cyclic AMP, GTP, GDP, GMP, and cyclic GMP were weak inhibitors. l -Norepinephrine (Ki= 1·3 mm ) and serotonin were potent inhibitors, while acetylcholine, dopamine and histamine were less effective. Ethanol and dioxane inhibited the enzyme activity to the extent of 20-50 per cent at 10 per cent (v/v), while slight activation was observed at low concentrations (0·1-1 per cent) of both solvents. The possible role of Zn2+ and some metabolites in the regulation of steady-state levels of γ-aminobutyric acid also was discussed.  相似文献   

13.
Abstract— dl -Allylglycine, a potent inhibitor of glutamate decarboxylase in vivo when given intraperitoneally, causes a marked decrease in brain GABA concentration and at the same time a dramatic increase in l -ornithine decarboxylase activity and a simultaneous decrease in S -adenosyl- l -methionine decarboxylase activity followed by putrescine accumulation. It does not, however, alter the degree of GABA formation from putrescine. The timing of the recovery of glutamate decarboxylase activity after the injection of dl -allylglycine is concomitant with that of the GABA concentration, indicating that it is probably glutamate decarboxylase that is solely responsible for making up the GABA deficit caused by dl -allylglycine, and that the changes in polyamine metabolism are associated in some indirect way with the recovery process.  相似文献   

14.
(1) The metabolism of glucose and amino acids in vitro was compared in the rat cerebral cortex and the optic and vertical lobes of the octopus brain. (2) Specific activities and pool sizes of the five amino acids, glutamate, aspartate, glutamine, alanine and γ-aminobutyric acid (GABA), were determined in octopus and rat brain slices after 2 hr incubation with 10 mm -[U-14C]glucose, 10 mm -L-[U-14C]glutamate, and 10mm -L-[U-14C]glutamate with added 10 mM-glucose. Amino acid pool sizes were similar in rat and octopus brain, with the exception of alanine, which was higher in the octopus. Generally specific activities were from four- to 20-fold higher in rat brain. With [U-14C]glucose as substrate, specific activities of GABA and glutamate were highest in rat; those of alanine and glutamine highest in octopus brain. With L-[U-14C]glutamate the specific activities of GABA and aspartate were highest in rat, that of aspartate highest and GABA lowest in octopus. The addition of glucose to L-[U-14C]glutamate as substrate had little effect on the specific activities of any of the amino acids. (3) The uptake of some amino acids was determined by incubation with [U-14C]amino acids for 2 hr, and 14CO2 formation was also measured. The amount of label taken up by octopus was uniformly 20-25 per cent of that found for rat brain. The amount of 14CO2, however, differed according to the amino acid. Four times as much 14CO2 was generated from alanine by octopus optic lobe and twice as much by the vertical lobe than rat cortex, but from glutamate, only 24 per cent in the optic and 15 per cent in the vertical lobe. No 14CO2 was generated from [U-14C]GABA in the octopus, by contrast with the rat. (4) Activity of some of the enzymes involved in amino acid metabolism was determined in homogenates of rat cortex and octopus optic and vertical lobes, with and without activation by Triton X-100. Enzymic activities in the octopus, with the exception of alanine aminotransferase, were lower than in the rat, and glutamate decarboxylase could not be detected in octopus brain, in the absence of detergent.  相似文献   

15.
Abstract— The glutamic acid decarboxylase has been purified from the lobster central nervous system. Potassium ion (0-075 m ) and β-mercaptoethanol (0-025 m ) were essential for enzyme activity. Enzyme had about 60 per cent of its optimal activity in the absence of added pyridoxal phosphate. Carbonyl reagents (10?4m -hydroxylamine or amino oxyacetic acid) would abolish this residual activity. The pH optimum of the enzyme was about 8-0. Standard Michaelis-Menten kinetics were applied to the decarboxylation of glutamate and a Km of 0.02 m was calculated. GABA inhibited the reaction (Ki= 1.25 × 10?3m ), but the inhibition showed anomalous behaviour when graphed by the method of Lineweaver and Burk (1934). The GABA inhibition resembled competitive inhibition, but curves rather than straight lines intersecting at a common point on the velocity axis were obtained. This effect remains unexplained. Preliminary studies failed to reveal any subunit structure of the enzyme. The sedimentation coefficient (.S20.w) was 6-55 in a sucrose density gradient in an ultracentrifuge. This was unchanged by the addition of any of the agents that influence enzyme activity. The subcellular localization of the decarboxylase was explored in crude homogenates of lobster central nervous system prepared in various ways. The major proportion (about 90 per cent) of the enzyme activity was in the soluble fraction.‘Particulate’enzyme could be prepared, but gentle suspension of this material in buffer liberated most of the activity. A contaminant in the radioactive substrates led to the production of radioactive GABA without the simultaneous evolution of CO2. In this case, GABA production required active enzyme but was not an exclusive property of the glutamic decarboxylase activity.  相似文献   

16.
Abstract— γ-Vinyl GABA (4-amino-hex-5-enoic acid, RMI 71754) is a catalytic inhibitor of GABA-T in vitro. When given by a peripheral route to mice, it crosses the blood-brain barrier and induces a long-lasting, dose-dependent, irreversible inhibition of brain GABA transaminase (GABA-T). Glutamate decarboxylase (GAD) is only slightly affected even at the highest doses used. γ -Vinyl GABA has little or no effect on brain succinate semialdehyde dehydrogenase, aspartate transaminase and alanine transaminase activities. GABA-T inhibition is accompanied by a sustained dose-dependent increase of brain GABA concentration. From the rate of accumulation of GABA it was estimated that GABA turnover in brain was at least 6.5 μmol/g/h. Based on recovery of enzyme activity the half-life of GABA-T was found to be 3.4 days, that of GAD was estimated to be about 2.4 days. γ -Vinyl GABA should be valuable for manipulations of brain GABA metabolism.  相似文献   

17.
The amino acid γ-carboxyglutamic acid, recently discovered in some vitamin K-dependent blood-clotting factors, shows interesting kinetic effects on glutamate dehydrogenase. It is not metabolized by the enzyme; it is a powerful competitive inhibitor (Ki = 3.8 × 10?4 m) with respect to NAD+ and glutamate. On the other hand the reverse reaction is activated by γ-carboxyglutamate, both Km and V being altered; this effect is additive with the well-known activating effect of ADP.  相似文献   

18.
Abstract— The effects of several inhibitors, including vinblastine and colchicine, on the accumulation of a number of putative transmitters by a rat brain synaptosomal preparation and their subsequent release by excess K+ was examined. In addition, the effect of the alkaloids on the ATPase activity of the actomyosin-like protein, neurostenin, isolated from the synaptosomal preparation, was studied. The uptakes of radioactive glutamate, GABA, dopamine and norepinephrine were energy-dependent, as evidenced by their susceptibility to 0.01 mM carbonyl cyanide m-chlorophenylhydrazone (Cl-CCP), 01 mM ouabain and temperature. The active accumulations of GABA, dopamine and norepinephrine were also greatly inhibited by 1 mM6-hydroxydopamine (6-OHDA), 01 mM mersalyl, 0.05–0.25mM vinblastine and 0.1–1.0 mM colchicine. Vinblastine was approximately 10-fold more potent (K1, ?0.1 mM) than colchicine as an inhibitor. The release of actively accumulated dopamine or norepinephrine by excess K+ (increasing the [K+] from 5 to 30 mM) was inhibited somewhat when vinblastine was present during the entire incubation period. If the synaptosomes were preloaded with the radioactive compounds prior to addition of vinblastine, there was no discernible effect on the relative amount of material released by excess K+. However, the addition of inhibitor under the latter conditions caused a leakage of radioactivity into the medium even without excess K+ being present. Glutamate accumulation was somewhat different from that of GABA, dopamine or norepinephrine. Although it required energy for uptake, 6-OHDA, mersalyl, vinblastine or colchicine were not inhibitory. Studies of the oxidative metabolism of glutamate and GABA by this synaptosomal preparation indicated that the mechanisms of inhibition by vinblastine was not attributable to a metabolic effect. Both vinblastine and colchicine inhibited the Mg2+-stimulated, but not the Ca2+-activated ATPase of neurostenin. This effect was probably attributable to an interaction of the vinblastine with the neurin moiety of this actomyosin-like protein. We suggest that the inhibitory phenomena exhibited by vinblastine and colchicine in this synaptosomal preparation arose from the effect of these alkaloids on the neurin associated with the synaptic membrane.  相似文献   

19.
Rat kidney cortex converts l-glutamate to γ-aminobutyrate by a decarboxylation reaction which differs from the corresponding reaction in brain. Renal l-glutamate decarboxylase has two apparent Km values for glutamate in homogenates (0.4 and 2.5 mM). γ-Aminobutyrate is converted by a transaminase whose capacity appears to exceed the decarboxylase. γ-Aminobutyrate is converted ultimately to succinate and CO2.γ-Aminobutyrate stimulates respiration of kidney cortex slices in vitro and the compound crosses cell membranes in kidney by a respiration-linked, mediated process.Chronic acidosis lowers renal γ-aminobutyrate in the rat; brain γ-aminobutyrate is unaffected by acidosis. Glutamic acid decarboxylase and γ-aminobutyrate transaminase activities are unchanged in acidosis. α-Methylglutamate, an inhibitor of renal glutaminase, lowers the γ-aminobutyrate and glutamate content of rat kidney in normal and acidotic states. Aminooxyacetic acid in vivo, an inhibitor of γ-aminobutyrate transaminase, causes a striking increase in renal γ-aminobutyrate during chronic acidosis.At concentrations of glutamate in vitro, which are similar to the tissue glutamate content in vivo, the γ-aminobutyrate pathway accounts for approximately one-fourth of glutamate disposal in rat kidney cortex slices.  相似文献   

20.
§-Aminolaevulinic acid (§-ALA) is an omega amino acid which can be considered as an analogue of γ-aminobutyric acid (GABA). We have examined the effect of §-ALA on [3H]GABA uptake and release in the synaptosome fraction of rat cerebral cortex and report: (1) High concentrations of §-ALA (0.75-5 mM) stimulated [3H]GABA release very markedly, the stimulation with 1mM and 5mM-§-ALA exceeding the maximum obtainable with unlabelled GABA; (2) Low concentrations of §-ALA (0.1-0.5 mM) produced little stimulation of [3H]GABA efflux, less than that produced by similar concentrations of unlabelled GABA; (3) 0.1 mM-§-ALA reduced the stimulation of [3H]GABA efflux elicited by 55 mM-K+ and the combination of 1 mM-§-ALA and 55mM-K+ produced a lower stimulation of efflux than 1 mM-§-ALA alone; (4) §-ALA inhibits [3H]GABA uptake in a linearly competitive fashion and inhibition is maximal at 0.5 mM-§-ALA. These results are discussed in relation to the neuronal high affinity GABA transport mechanism and inhibition of the synaptosomal Na+ and K+ -dependent ATPase. It is also postulated that §-ALA increases the chloride conductance of the synaptosomal membrane, possibly by acting on presynaptic GABA receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号