首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied two X-ray-sensitive mutants xrs 5 and xrs 6 (derived from the CHO-K1 cell line), known to be defective in repair of double-strand breaks, for cell killing and frequency of the chromosomal aberrations induced by X-irradiation. The survival experiments showed that mutants are very sensitive to X-rays, the D0, for the wild-type CHO-K1 was 6-fold higher than D0 value for the mutants. The modal number of chromosomes (2 n = 23) and the frequency of spontaneously occurring chromosomal aberrations were similar in all 3 cell lines. X-Irradiation of synchronized mutant cells in G1-phase significantly induced both chromosome- and chromatid-type of aberrations. The frequency of aberrations in xrs mutants was 12-fold more than in the wild-type CHO-K1 cells. X-Irradiation of G2-phase cells also yielded higher frequency of aberrations in the mutants, namely 7-8-fold in xrs 5 and about 3.5-fold in xrs 6 compared to the wild-type CHO-K1 cells. There was a good correlation between relative inability to repair of DNA double-strand breaks and induction of aberrations. The effect of 3-aminobenzamide (3AB), an inhibitor of poly(ADP-ribose) synthetase on the frequency of X-ray-induced chromosomal aberrations in these 3 cell lines was also studied. 3AB potentiated the frequency of aberrations in G1 and G2 in all the cell types. In the mutants, 3AB had a potentiating effect on the frequency of X-ray-induced chromosomal aberrations only at low doses. X-Ray-induced G2 arrest and its release by caffeine was studied by cytofluorometric methods. The relative speed with which irradiated S-G2 cells progressed into mitosis in the presence of caffeine was CHO-K1 greater than xrs 5 greater than xrs 6. Caffeine could counteract G2 delay induced by X-rays in CHO-K1 and xrs 5 but not in xrs 6. Large differences in potentiation by caffeine were observed among these cells subjected to X-rays and caffeine post-treatment for different durations. These responses and possible reasons for the increased radiosensitivity of xrs mutants are discussed and compared to ataxia telangiectasia (A-T) cells and a radiosensitive mutant mouse lymphoma cell line.  相似文献   

2.
Two X-ray-sensitive mutants of CHO-K1 cells, xrs 5 and xrs 6, were characterised with regard to their responses to genotoxic chemicals, namely bleomycin, MMS, EMS, MMC and DEB for induction of cell killing, chromosomal aberrations and SCEs at different stages of the cell cycle. In addition, induction of mutations at the HPRT and Na+/K+ ATPase (Oua) loci was evaluated after treatment with X-rays and MMS. Xrs 5 and xrs 6 cells were more sensitive than wild-type CHO-K1 to the cell killing effect of bleomycin (3 and 13 times respectively) and for induction of chromosomal aberrations (3 and 4.5 times). In these mutants a higher sensitivity for induction of chromosomal aberrations to MMS, EMS, MMC and DEB was observed (1.5-3.5 times). The mutants also showed increased sensitivity for cell killing effects of mono- and bi-functional alkylating agents (1.7-2.5 times). The high cell killing effect of X-rays in these mutants was accompanied by a slight increase in the frequency of HPRT mutation. The xrs mutants were also more sensitive to MMS for the increased frequency of TGr and Ouar mutants when compared to wild-type CHO-K1 cells. Though bleomycin is known to be a poor inducer of SCEs, an increase in the frequency of SCEs in xrs 6 cells (doubling at 1.2 micrograms/ml) was found in comparison to no significant increase in xrs 5 or CHO-K1 cells. The induced frequency of SCEs in all cell types increased in a similar way after the treatment with mono- or bi-functional alkylating agents. MMS treatment of G2-phase cells yielded a higher frequency of chromatid breaks in the mutants in a dose-dependent manner compared to no effect in wild-type CHO-K1 cells. Treatment of synchronised mutant cells at G1 stage with bleomycin resulted in both chromosome- and chromatid-type aberrations (similar to the response to X-ray treatment) in contrast to the induction of only chromosome-type aberrations in wild-type CHO-K1 cells. The frequency of chromosomal aberrations chromosome and chromatid types) also increased with MMC treatment in G1 cells of xrs mutants. DEB treatment of G1 cells induced mainly chromatid-type aberrations in all cell types. The possible reasons for the increased sensitivity of xrs mutants to the chemical mutagens studied are discussed and the results are compared to cells derived from radiosensitive ataxia telangiectasia patients.  相似文献   

3.
Induction of chromosomal aberrations and sister-chromatid exchanges (SCEs) was studied in wild-type Chinese hamster ovary (CHO-K1) cells and its 2 X-ray-sensitive mutants xrs 5 and xrs 6 (known to be deficient in repair of DNA double-strand breaks (DSBs] by restriction endonucleases (REs) and inhibitors of DNA topoisomerase II known to induce DNA strand breaks. Five different types of REs, namely CfoI, EcoRI, HpaII (which induce cohesive DSBs), HaeIII and AluI (which induce blunt DSBs) were employed. REs that induce blunt-end DNA DSBs were found to be more efficient in inducing chromosomal aberrations than those inducing cohesive breaks. xrs 5 and xrs 6 mutants responded with higher sensitivity (50-100% increase in the frequency of aberrations per aberrant cell) to these REs than wild-type CHO-K1 cells. All these REs were also tested for their ability to induce SCEs. The frequency of SCEs increased in wild-type as well as mutant CHO cells, the induced frequency being about 2-fold higher in xrs mutants than in the wild-type cells. We also studied the effect of inhibitors of DNA topoisomerase II, namely 4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA) and etoposid (VP 16), at different stages of the cell cycle of these 3 types of cells. Both drugs increased the frequency of chromosomal aberrations in G2 cells. The mutants showed increased sensitivity to m-AMSA and VP 16, xrs 6 cells being 10- and 2-fold more sensitive than wild-type CHO-K1 cells respectively, and xrs 5 responding with 2-fold higher sensitivity than xrs 6 cells. G1 treatment of CHO cells with m-AMSA increased both chromosome- and chromatid-type aberrations, xrs mutants being about 3-fold more sensitive than CHO-K1 cells. The frequency of SCEs increased also after treatment of exponentially growing and S-phase CHO cells with m-AMSA and the higher sensitivity of xrs mutants (2-fold) was evident. The S-phase appeared to be a specific stage which is most prone for the induction of SCEs by m-AMSA. The results indicate that DNA DSBs induced by REs and inhibitors of DNA topoisomerase II correlate closely with induced chromosomal aberrations and SCEs in these cell lines, indicating that DSBs are responsible for the production of these 2 genetic endpoints.  相似文献   

4.
The X-ray-sensitive Chinese hamster ovary (CHO) mutant cell lines xrs 5 and xrs 6 were used to study the relation between X-ray-induced DNA lesions and biological effects. The frequencies of chromosomal aberrations and sister-chromatid exchanges (SCE) were determined in wild-type CHO-K1 as well as mutants xrs 5 and xrs 6 cells following X-irradiation under aerobic and anaerobic conditions. Furthermore, we used a newly developed immunochemical method (based on the binding of a monoclonal antibody to single-stranded DNA) to assay DNA single-strand breaks (SSBs) induced by gamma-rays in these CHO cells, after a repair time of up to 4 h. For all cell lines tested the frequency of X-ray-induced chromosomal aberrations was strongly increased after irradiation in air compared with hypoxic conditions. When compared to the wild-type line, the xrs mutants known to have a defect in repair of DNA double-strand breaks (DSBs) exhibited a markedly enhanced sensitivity to aerobic irradiation, and a high OER (oxygen enhancement ratio) of 2.8-3.5, compared with 1.8-2 in CHO-K1 cells. The induction of SCE by X-rays was relatively little affected in CHO-K1 irradiated in air compared with hypoxic conditions (OER = 0.8), and in xrs 5 (OER = 0.7). A dose-dependent increase in the frequency of SCEs was obtained in xrs 6 cells treated with X-rays in air, and a further increase by a factor of 2 was evident under hypoxic conditions (OER = 0.4). With the immunochemical assay of SSB following gamma-irradiation, no difference was found between wild-type and mutant strains in the number of SSBs induced. The observed rate of rejoining of SSBs was also the same for all cell lines studied.  相似文献   

5.
The role of UV-induced DNA lesions and their repair in the formation of chromosomal aberrations in the xrs mutant cell lines xrs 5 and xrs 6 and their wild-type counterpart, CHO-K1 cells, were studied. The extent of induction of DNA single-strand breaks (SSBs) and DNA double-strand breaks (DSBs) due to UV irradiation in the presence or absence of 1-beta-D-arabinofuranosylcytosine (ara-C) and hydroxyurea (HU) was determined using the alkaline and neutral elution methods. Results of these experiments were compared with the frequencies of induced chromosomal aberrations in UV-irradiated G1 cells treated under similar conditions. Xrs 6 cells showed a defect in their ability to perform the incision step of nucleotide repair after UV irradiation. Accumulation of breaks 2 h after UV irradiation in xrs 6 cells in the presence of HU and ara-C remained at the level of incision breaks estimated after 20 min, which was about 35% of that found in wild-type CHO-K1 cells. In UV-irradiated CHO-K1 and xrs 5 cells, more incision breaks were present after 2 h compared with 20 min post-treatment with ara-C, a further increase was evident when HU was added to the combined treatment. The level of incision breaks induced under these conditions in xrs 5 was about 80% of that observed in CHO-K1 cells. UV irradiation itself did not induce any detectable DNA strand breaks. Accumulation of SSBs in UV-irradiated cells post-treated with ara-C and HU coincides with the increase in the frequency of chromosomal aberrations. These data suggest that accumulated SSBs when converted to DSBs in G1 give rise to chromosome-type aberrations, whereas strand breaks persisting until S-phase result in chromatid-type aberrations. Xrs 6 appeared to be the first ionizing-radiation-sensitive mutant with a partial defect in the incision step of DNA repair of UV-induced damage.  相似文献   

6.
The complementation effect of wild-type CHO-K1 and xrs mutants after fusion, as judged by the frequencies of X-ray-induced G1 and G2 premature chromosome condensation (PCC), was studied. For induction of PCC, X-irradiated interphase cells (G1 and G2) were fused immediately with untreated mitotic cells of the same cell line or with mitotic cells of another line. The frequencies of breaks in G1-PCC, or breaks and chromatid exchanges in G2-PCC were determined and the latter parameter was compared with the frequency of chromosomal aberrations in mitotic cells following G2 irradiation. CHO-K1 cells were capable of complementing the X-ray sensitivity of both xrs 5 and xrs 6 cells. However, full restoration of the repair defect in xrs cells could never be accomplished. The mutants failed to complement each other. In CHO-K1 cells, the incidence of chromosomal aberrations was significantly higher in G2-PCC (2.5-fold) than that observed in mitotic cells at 2.5 h after irradiation. The ratio of the induced frequency of aberrations in G2-PCC to that in mitotic cells was correlated with the degree of repair of DNA double-strand breaks (dsb) and reached almost 1 in xrs 5 cells indicating no repair. In addition the data indicated that, during the period of recovery of CHO-K1 cells, X-ray-induced breaks decreased but exchanges remained at the same level. In contrast, due to a deficiency in rejoining of dsb in xrs mutants, breaks remained open for a long period of time, allowing the formation of additional chromatid exchanges during recovery time.  相似文献   

7.
In an attempt to determine whether exposure to extremely low frequency (ELF) electromagnetic fields can affect cells, Ku80-deficient cells (xrs5) and Ku80-proficient cells (CHO-K1) were exposed to ELF electromagnetic fields. Cell survival, and the levels of the apoptosis-related genes p21, p53, phospho-p53 (Ser(15)), caspase-3 and the anti-apoptosis gene bcl-2 were determined in xrs5 and CHO-K1 cells following exposure to ELF electromagnetic fields and X-rays. It was found that exposure of xrs5 and CHO-K1 cells to 60 Hz ELF electromagnetic fields had no effect on cell survival, cell cycle distribution and protein expression. Exposure of xrs5 cells to 60 Hz ELF electromagnetic fields for 5 h after irradiation significantly inhibited G(1) cell cycle arrest induced by X-rays (1 Gy) and resulted in elevated bcl-2 expression. A significant decrease in the induction of p53, phospho-p53, caspase-3 and p21 proteins was observed in xrs5 cells when irradiation by X-rays (8 Gy) was followed by exposure to 5 mT ELF magnetic fields. Exposure of xrs5 cells to the ELF electromagnetic fields for 10 h following irradiation significantly decreased X-ray-induced apoptosis from about 1.7% to 0.7%. However, this effect was not found in CHO-K1 cells within 24 h of irradiation by X-rays alone and by X-rays combined with ELF electromagnetic fields. Exposure of xrs5 cells to 60 Hz ELF electromagnetic fields following irradiation can affect cell cycle distribution and transiently suppress apoptosis by decreasing the levels of caspase-3, p21, p53 and phospho-p53 and by increasing bcl-2 expression.  相似文献   

8.
Activation of poly (ADP-ribose) polymerase -1 (PARP-1) is an early DNA damage response event that, together with phosphorylation of p53, prompts various cellular functions important in the maintenance of the genome stability. In mammalian cells, DSB are repaired by nonhomologous end-joining (NHEJ) and by homologous recombination (HR). To investigate the role of PARP-1 in HR, CHO-K1 wild type and xrs-6 mutant cell line were transfected with pLrec plasmids which carry two nonfunctional copies of the β-galactosidase (lacZ) gene in a tandem array. In result of HR they can give rise to a functional copy of β-galactosidase. To test whether PARP-1 affects the frequency of spontaneous and induced recombination repair, we treated CHO-K1 and xrs6 clones carrying chromosomally integrated pLrec with the PARP-1 inhibitor 3-aminobenzamide (3AB). Our results show that the spontaneous homologous intrachromosomal recombination frequency between the two lacZ copies was almost two orders of magnitude higher in xrs6 cells than in CHO-K1 cells, but that it was not affected by 3AB treatment. Induction of DNA damage by irradiation or electroporation of restriction enzymes did not significantly increase the recombination frequency. Furthermore, in both the cell lines, the effect of PARP-1 inhibition on DSB repair was examined using the neutral comet assay. There was no effect of 3AB treatment on DSB rejoining after 10 Gy irradiation. The results presented support the conclusion that PARP-1 is not directly involved in HR.  相似文献   

9.
The DNA unwinding technique has been used to measure the induction and repair of DNA strand breaks by X-rays in the X-ray-sensitive (xrs 5) mutant and its parent CHO K1 line of Chinese hamster cells. Results show that frequency of induction of DNA strand breaks was the same for both cell lines. The repair of single-strand breaks was found to be slightly slower in xrs 5 over the first 20 min after X-ray exposure, but the level of repair of ssb reached after an incubation of 1h following X-ray exposure in xrs 5 was the same as in CHO K1. Our results also show that the rate of repair of DNA double-strand breaks in xrs 5 cells was clearly slower than that in CHO K1, supporting the conclusion of Kemp et al. (1984) who used the neutral elution technique, that xrs 5 is defective in the repair pathway of DNA double-strand breaks.  相似文献   

10.
Gene recombination in X-ray-sensitive hamster cells.   总被引:6,自引:0,他引:6       下载免费PDF全文
Recombination was measured in Chinese hamster ovary (CHO-K1) cells and in the X-ray-sensitive mutants xrs1 and xrs7, which show a defect in DNA double-strand break repair. To assay recombination, pairs of derivatives of the plasmid pSV2gpt were constructed with nonoverlapping deletions in the gpt gene region and cotransferred into the different cell types. Recombination efficiencies, measured as the transformation frequency with a pair of deletion plasmids relative to that with the complete pSV2gpt plasmid, were about 6% in both CHO-K1 and the xrs mutants for plasmids linearized at a site outside the gpt gene. However, these efficiencies were substantially enhanced by the introduction of a double-strand break into the homologous region of the gpt gene in one of a pair of deletion plasmids before cotransfer. This enhancement was apparently only about half as great for the xrs cells as for CHO-K1, but variation in the data was considerable. A much larger difference between CHO-K1 and the xrs mutants was found when the DNA concentration dependence of transformation was explored. While the transformation frequency of CHO-K1 increased linearly with DNA concentration, no such increase occurred with the xrs mutants irrespective of whether complete plasmids or pairs of deletion plasmids were transferred. The fraction of cells taking up DNA, assayed autoradiographically, was similar in all cell types. Therefore we suggest that while homologous recombination of plasmid molecules may not be substantially reduced in the xrs mutants,processes involved in the stable integration of plasmid DNA into genomic DNA are significantly impaired.  相似文献   

11.
The frequency of both spontaneous and X-ray- (95 rad) induced cytogenetical aberrations has been determined for 2 X-ray-sensitive strains (xrs-6 and xrs-7) of the Chinese hamster ovary cell line, and their wild-type parent (CHO-K1). Increased levels of spontaneous aberrations were not a general feature of the xrs strains, although xrs-7 did show a 2-fold increase in chromatid gaps. Unsynchronied populations of xrs cells, estimated to have been irradiated in late S and G2, showed a 3-5-fold increase in chromatid gaps, breaks and exchanges compared to CHO-K1. The irradiation of synchronised populations of xrs-7 and CHO-K1 in G1 demonstrated a 3-5-fold increase in chromosome breaks, gaps and exchanges in xrs-7. In addition xrs-7 displayed a large increase in chromatid-type aberrations, particularly triradials. These X-ray-sensitive strains have previously been shown to have a defect in double-strand break rejoining (Kemp et al., 1984), and an increased number of double-strand breaks (DBSs) remain in their DNA after irradiation compared to wild-type cells. The increased number of DSBs remaining in these strains 20 min after irradiation, correlates well with the increase in chromosome breaks.  相似文献   

12.
The thymidine kinase locus (tk) has been utilised as the target locus to measure the induced mutation frequency following X-irradiation in the X-ray-sensitive xrs5 mutant and its parent CHO K1 line of Chinese hamster cells. Mutations to tk- cells were measured by plating cells in selective medium containing trifluorothymidine after a post-irradiation expression time of 4 days. Our results show that the mutation frequency was 3-4 times higher in the xrs5 mutant than in the CHO K1 cell line. This enhanced mutation frequency in xrs5 is though to result from the deficiency in DNA double-strand break repair in this cell line which also results in the enhanced cell killing and higher frequencies of chromosomal aberrations in response to X-irradiation. The findings of the present study suggest that DNA double-strand break is a critical lesion leading to mutations in irradiated cells.  相似文献   

13.
The cytogenetic effects of restriction endonucleases (RE) and X-rays were examined in the radiosensitive mutant Chinese hamster cell line xrs 5 and its normal parental line CHO K1. Cells were permeabilized with Sendai virus and exposed to Pvu II and Eco RV which induce blunt-ended double-strand breaks (dsb) in the DNA of cells, or Bam H1 and Eco R1 which induce cohesive-ended dsb with a four-base overlap. Treated cells were then assayed for the presence of metaphase chromosomal aberrations by sampling at multiple fixation times and in experiments where cells were exposed to graded series of RE concentrations. Exposure to X-rays or RE causing blunt-ended dsb was found to be between two and three times more effective in xrs 5 than in CHO K1 cells. We interpret this higher chromosomal sensitivity of xrs 5 cells as reflecting the reported defect in dsb repair in xrs 5. Both xrs 5 and CHO K1 cells yielded less aberrations after exposure to Bam H1 or Eco R1 than after exposure to Pvu II or Eco RV, confirming our previous results and demonstrating that cohesive-ended dsb are less damaging than blunt-ended dsb. Multiple fixation time experiments showed that the higher sensitivity of xrs 5 was evident at several different sampling times after treatment. Similarly the low yield of aberrations after exposure of cells to Bam H1 was evident at all sampling times. Overdispersion of chromosomal aberrations was observed in samples exposed to RE. This is thought to be due to a non-uniform permeabilization of the cell population to RE. Our results indicate that RE-induced dsb are handled by cells in a similar way to those arising during X-ray exposure.  相似文献   

14.
Recently we have reported the kinetics of DNA double-strand breaks (dsb) induced in electroporated mammalian (CHO) cells that had been treated with the restriction endonuclease PvuII, as measured by the filter elution assay at the non-denaturing pH of 9.6. A gradual accumulation of dsb was observed over a 24-h incubation period following the restriction endonuclease (RE) treatment and this was attributed to a competition between incision of the DNA by PvuII and dsb repair. In order to test this 'competition' hypothesis we have carried out similar experiments in the radiosensitive xrs5 mutant cell line, which has been shown to be deficient in dsb repair. The levels of dsb monitored by the non-denaturing filter elution assay in the xrs5 cell line treated with PvuII was found to be 3-4 times higher than that found for the wild-type CHO K1 cell line. Levels of dsb were also significantly raised in xrs5 cells treated with BamHI, as compared with the background levels observed in the CHO line. These data lend strong support to the competition hypothesis of simultaneous incision and repair of RE-induced dsb.  相似文献   

15.
Mitotic compaction of chromatin was generated by treatment of cells with nocodazole. Alternatively, chromatin structure was altered by incubating cells in 500 mM NaCl. The irradiation response in the dose range of 1-10 Gy was measured by colony assay and by a modified fluorometric analysis of DNA unwinding (FADU) assay which measures the amount of undamaged DNA by EtBr fluorescence. Cell survival curves of irradiated CHO-K1 cells showed that treatment with nocodazole increases radiosensitivity as indicated by a decrease of the mean inactivation dose (D) from 4.446 to 4.376. Nocodazole treatment increased the initial radiation-induced DNA damage detected by the FADU assay from 7% to 13%. In repair-defective xrs1 cells, the same conditions increased the radiosensitivity from 1.209 to 0.7836 and the initial DNA damage from 43% to 57%. Alterations to chromatin structure by hypertonic medium increased radiosensitivity in CHO-K1 cells from of 4.446 to 3.092 and the initial DNA damage from 7% to 15%. In xrs1 cells these conditions caused radiosensitivity to decrease from 1.209 to 1.609 and the initial DNA damage to decrease from 43% to 36%. Disruption of chromatin structure by hypertonic treatment was found to be time-dependent. A threefold increase of exposure time to hypertonic medium from 40 to 120 min increased the initial DNA damage in CHO-K1 cells from 7% to 18% but decreased initial DNA damage in xrs1 cells from 43% to 21%. Perturbation of chromatin structure with hypertonic treatment has been shown to increase the radiosensitivity and the initial DNA damage in repair-competent CHO-K1 cells and decrease the radiosensitivity and DNA damage in repair-defective xrs1 cells. Hypertonic treatment thus abolishes differences in chromatin structure between cell lines and differences in initial DNA damage. Radiosensitivity and initial DNA damage are correlated ( r(2)=0.92; p=0.0026) and this correlation also holds when chromatin compaction is altered. The experiments demonstrate that initial DNA damage and chromatin structure are major determinants of radiosensitivity.  相似文献   

16.
Six X-ray-sensitive (xrs) strains of the CHO-K1 cell line were shown to revert at a very high frequency after treatment with 5-azacytidine. This suggested that there was a methylated xrs+ gene in these strains which was structurally intact, but not expressed. The xrs strains did not complement one another, and the locus was autosomally located. In view of the frequency of their isolation and their somewhat different phenotypes, we propose that the xrs strains are mutants derived from an active wild-type gene. However, there is in addition a methylated silent gene present in the genome. Azacytidine treatment reactivated this gene. We present a model for the functional hemizygosity of mammalian cell lines, which is based on the inactivation of genes by de novo hypermethylation. In contrast to results with xrs strains, other repair-defective lines were found not to be reverted by azacytidine.  相似文献   

17.
Cultures of JU56 cells were irradiated with 2.5 Gy X-rays and 16 h later the cultures were exposed to a moderately inhibitory dose of 1-beta-D-arabinofuranosylcytosine (ara-C) or aphidicolin (APC) and to colcemid, for 2 h. The c-metaphases collected for examination had therefore been exposed to X-rays in G1 or early S, and to the repair inhibitors APC and ara-C during the latter half of G2. It was found that treatment of cells irradiated early in cell cycle, that is, in G1 and early S, with APC or ara-C in G2, (1) reduced the frequency of chromatid and chromosome exchanges below that of cells treated with X-rays alone, (2) produced no more chromatid breaks and gaps than were seen in unirradiated cells, (3) increased the number of chromosome fragments and gaps in a more than additive fashion, and (4) produced only an additive effect, by comparison with the effect of X-rays and drug given separately, on the total number of chromosomal aberrations.  相似文献   

18.
19.
Sirtuins (type III histone deacetylases) are an important member of a group of enzymes that modify chromatin conformation. We investigated the role of sirtuin inhibitor, GPI 19015, in double strand break (DSB) repair in CHO-K1 wt and xrs-6 mutant cells. The latter is defective in DNA-dependent protein kinase (DNA-PK)-mediated non-homologous end-joining (D-NHEJ). DSB were estimated by the neutral comet assay and histone gammaH2AX foci formation. We observed a weaker effect of GPI 19015 treatment on the repair kinetics in CHO wt cells than in xrs6. In the latter cells the increase in DNA repair rate was most pronounced in G1 phase and practically absent in S and G2 cell cycle phases. The decrease in the number of histone gammaH2AX foci was faster in xrs6 than in CHO-K1 cells. The altered repair rate did not affect survival of X-irradiated cells. Since in G1 xrs6 cells DNA-PK-dependent non-homologous end-joining, D-NHEJ, does not operate, these results indicate that inhibition of sirtuins modulates DNA-PK-independent (backup) non-homologous end-joining, B-NHEJ, to a greater extent than the other DSB repair system, D-NHEJ.  相似文献   

20.
Genetic analysis of X-ray-sensitive mutants of the CHO cell line   总被引:6,自引:0,他引:6  
P A Jeggo 《Mutation research》1985,146(3):265-270
The genetic diversity of 6 X-ray-sensitive (xrs) mutants of the CHO cell line has been investigated. Hybrids were constructed by fusing ouabain- and 6-thioguanine-resistant cells to ouabain- and 6-thioguanine-sensitive cells and selecting in HAT and ouabain medium. Hybrids were examined for ploidy and X-ray sensitivity. Crosses between xrs mutants and wild-type showed that each mutant was recessive. Crosses between different xrs mutants showed that all were in the same complementation group. Although all the mutants are primarily sensitive to ionizing radiation and bleomycin, and all have a defect in double-strand break rejoining, their cross-sensitivity to other DNA-damaging agents differed to some degree. One explanation is that this repair gene is involved in a pleiotropic response to DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号