首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several structural homologues of the chemotactic peptide neutrophil-activating peptide 1/IL-8 (NAP-1/IL-8) were tested for their ability to influence the expression and function of adhesion-promoting receptors on human polymorphonuclear leukocytes (PMN). NAP-2, melanoma growth stimulatory activity, and two forms of NAP-1/IL-8 (ser-NAP-1/IL-8 and ala-NAP-1/IL-8, consisting of 72 and 77 amino acids, respectively), each caused an increase in the expression of CD11b/CD18 (CR3) and CR1, which was accompanied by a decrease in the expression of leukocyte adhesion molecule-1 (LAM-1, LECAM-1). The binding activity of CD11b/CD18 was also enhanced 3- to 10-fold by these peptides, but enhanced function was transient: binding of erythrocytes coated with C3bi reached a maximum by 30 min and declined thereafter. Ser-NAP-1/IL-8, ala-NAP-1/IL-8, NAP-2, and melanoma growth stimulatory activity also caused a two- to threefold enhancement of the phagocytosis of IgG-coated erythrocytes (EIgG) by PMN without causing a large increase in the expression of Fc gamma receptors. Enhanced phagocytosis of EIgG appeared to be mediated through CD11b/CD18, because F(ab')2 fragments of an antibody directed against CD18 inhibited NAP-1/IL-8-stimulated ingestion of EIgG. The four active peptides caused a rapid, transient increase in the amount of F-actin within PMN, indicating that they are capable of influencing the structure of the microfilamentous cytoskeleton, which participates in phagocytosis. Two other NAP-1/IL-8-related peptides, platelet factor 4 and connective tissue-activating peptide III, were without effect on expression of CD11b/CD18, CR1, and LAM-1, binding activity of CD11b/CD18, or Fc-mediated phagocytosis, and increased actin polymerization only slightly. Our observations indicate that several members of the NAP-1/IL-8 family of peptides were capable of promoting integrin-mediated adhesion and Fc-mediated phagocytosis, processes important in the recruitment of PMN to sites of inflammation and antimicrobial responses of PMN.  相似文献   

2.
C receptor CR3 (iC3b-receptor, CD11b/CD18) plays an essential role in several phagocytic and adhesive neutrophil functions. Recent evidence suggests that stimulus-induced phosphorylation of the CR3 beta-chain, CD18, may mediate certain neutrophil functions by transiently converting the molecule to an activated state. Staurosporine, a protein kinase C inhibitor that blocks PMA-induced CD18 phosphorylation, was used to study the functional relevance of this event. Neutrophils adhered to glass were assayed for binding and phagocytosis of iC3b-opsonized sheep E (EC3bi) in the presence or absence of PMA and/or staurosporine. Binding of EC3bi was markedly increased, not only by PMA, but also by staurosporine and by a combination of both agents (three- to sevenfold). The enhancement of rosetting by staurosporine was likely caused by increased surface expression of CR3 via exocytosis of specific granular contents. In contrast, staurosporine alone did not stimulate phagocytosis of EC3bi and markedly inhibited PMA-induced phagocytosis. Staurosporine also inhibited phagocytosis of yeast beta glucan particles, a CR3 ligand that, in contrast to EC3bi, is bound and ingested without additional prior treatment with PMA. beta glucan phagocytosis was associated with a low level of CD18 phosphorylation. Staurosporine did not block phagocytosis in general, because this agent had relatively little effect on FcR-mediated phagocytosis. These data demonstrate that phagocytosis mediated by CR3 requires activation of CR3 via a staurosporine-sensitive pathway. Increased binding of EC3bi, a function of increased surface expression of CR3, does not require activation of CR3 by such a pathway, confirming previous evidence for the independence of these two phenomena. A direct role for CD18 phosphorylation in the activation of CR3 for phagocytosis is consistent with these data.  相似文献   

3.
Upon stimulation with C5a, TNF, or phorbol dibutyrate (PDB), polymorphonuclear leukocytes (PMN) exhibit first an increase then a decrease in adhesion to unstimulated endothelial cells (EC). Essentially all of this adhesion is mediated by the CD18 family of leukocyte integrins on PMN. To determine the individual roles of CD11a/CD18 (LFA-1), CD11b/CD18 (CR3, Mac-1) and CD11c/CD18 (p150,95) in adhesion of PDB-stimulated PMN to unstimulated EC, mAb against the CD11 chains were used. mAb against CD11a or CD11b each blocked adhesion of PMN to EC by approximately 50%, but mAb against CD11c had no effect. Inasmuch as a combination of anti-CD11a and CD11b mAb completely blocked adhesion, it appears that CD11a/CD18 and CD11b/CD18 make approximately equal contributions to binding, and CD11c does not participate. Anti-CD11a or CD11b each blocked adhesion by about 50% throughout the transient time course of PDB-stimulated adhesion, indicating that the capacity of each of these receptors to bind EC is transiently activated by PDB. We next examined the role of ICAM-1 on EC as a ligand for CD18. Two anti-ICAM-1 mAb (LB-2 and 84H10) each inhibited PMN adhesion in a dose-dependent fashion, reaching a maximal inhibition of approximately 50%. Anti-ICAM-1 mAb blocked the CD11a/CD18-dependent portion of adhesion because concomitant use of anti-CD11a and anti-ICAM-1 did not cause additive inhibition. In contrast, anti-CD11b plus anti-ICAM-1 resulted in complete blockade of adhesion. This result suggests that CD11a/CD18 recognizes ICAM-1 on EC, but CD11b/CD18 recognizes a different ligand(s). To determine if CD11b CD18 has the ability to recognize ICAM-1, human macrophages were plated on culture surfaces coated with purified ICAM-1. Interaction of CD11a/CD18 with the surface-bound ICAM-1 resulted in selective down-modulation of CD11a/CD18 from the apical portion of the macrophages. In contrast, ICAM-1-coated surfaces did not down-modulate CD11b/CD18. The data suggest that CD11b/CD18 does not recognize ICAM-1, and that this receptor functions in adhesion of PMN to EC by recognizing novel ligand(s) on EC.  相似文献   

4.
We have examined the contributions of endothelial-leukocyte adhesion molecule-1 (ELAM-1) and the complex of leukocyte surface adhesion molecules designated CD11/CD18 to the adhesion of human polymorphonuclear leukocytes (PMN) to cultured human endothelial cells (HEC), activated by rIL-1 beta for 4 or 24 h. Inhibition of PMN attachment to IL-1-activated HEC was measured in a quantitative in vitro monolayer adhesion assay, after treatment with mAb directed to ELAM-1 (mAb H18/17), and to CD11a (mAb L11), CD11b (mAb 44), CD11c (mAb L29), and CD18 (mAb 10F12), alone or in combination. Pretreatment of activated HEC with mAb H18/7 inhibited PMN adhesion by 47 +/- 8% whereas control mAb had no effect. CD11/CD18-directed mAb significantly blocked PMN adhesion to activated HEC (anti-CD11a, 40 +/- 3%; anti-CD11b, 34 +/- 4%; anti-CD18, 78+/- 6% inhibition). The combination of mAb H18/7 and each of the various anti-CD11/CD18 mAb resulted in greater inhibition of PMN adhesion than any Mab alone. After 24 h of rIL-1 beta treatment, when ELAM-1 was markedly decreased but elevated PMN adhesion was still observed, mAb H18/7 had no effect on PMN adhesion. At this time, CD11/CD18-dependent adhesive mechanisms predominated and a CD11c-dependent mechanism became apparent (anti-CD11a, 67 +/- 4% inhibition; anti-CD11b, 45 +/- 9%; anti-CD11c, 26 +/- 6%; anti-CD18, 97 +/- 1%). In summary, PMN adhesion to IL-1-activated HEC involves both CD11/CD18-dependent mechanisms and an ELAM-1-dependent mechanism, and the relative contribution of these varies at different times of IL-1-induced HEC activation. The additive blocking observed at 4 h with mAb H18/7 in combination with CD11/CD18-directed Mab implies that members of the CD11/CD18 complex do not function as an obligate ligand(s) for ELAM-1.  相似文献   

5.
Monocyte adherence to endothelial cells (EC) is selectively increased during inflammation. The mechanisms underlying monocyte-EC interaction indicated the involvement of surface-adhesion molecules on monocytes and EC. In earlier studies we noticed that the monocyte-specific mAb, designated mAb 63D3, in contrast to mAb against the beta 2-integrin molecules, inhibited the monocyte binding to monolayers of rIL-1 alpha-stimulated venous EC. The aim of the present study was to further characterize the Ag recognized by mAb 63D3 and to investigate the specific contribution of this Ag to the adherence of monocytes to cultured human macrovascular venous or arterial EC. Flow cytometric analysis demonstrated that the 63D3 Ag is expressed exclusively on the surface of peripheral blood monocytes. SDS-PAGE analysis of mAb 63D3 immunoprecipitates of 125I-labeled human monocyte surface proteins revealed that the target Ag for mAb 63D3 is a 52- to 55-kDa molecule identical to the myeloid differentiation protein CD14. Stimulation of EC with rIL-1 alpha or rTNF-alpha for 4 or 24 h or rIFN-gamma for 24 h increased (p less than 0.005) the number of monocytes bound to both types of EC. This cytokine-induced increase in monocyte adherence was significantly (p less than 0.0005) inhibited when the monocytes were coated with various mAb against CD14. The binding of monocytes to nonstimulated venous or arterial EC was not inhibited by anti-CD14 mAb. Our results lead to the conclusion that CD14 molecules, which on basis of their structure and m.w. are not related to the beta 2-integrin family of heterodimeric leukocyte adhesion molecules, participate in the binding of monocytes to cytokine-stimulated EC.  相似文献   

6.
CD38 signaling, either induced by ligation with specific agonistic monoclonal antibody (mAb) or after interaction with CD31, its cognate counter-receptor, is involved in release of IL-1beta, IL-6, and IL-10 cytokines in resting human monocytes. CD38 ligation by the F(ab')(2) IB4 mAb did not induce signals relevant for cytokine secretion and the block of the Fcgamma receptor I (FcgammaRI) by anti-CD64 or FcgammaRII by anti-CD32 mAb did not inhibit CD38-mediated IL-1beta release. Dimerization or multimerization of the CD38 molecule by: (i) cross-linking of the receptor ligated by F(ab')(2) or by (ii) increasing CD38 expression by treating monocytes with IFNgamma were able to restore the truncated CD38-mediated signals involved in cytokine secretion. These data indicate that CD38 receptor-mediated signals operate directly suggesting a Fcgamma receptorial surface molecule independent activation pathway. The key element for the receptor mediated signaling is represented by surface density of CD38 on resting monocytes.  相似文献   

7.
Treatment of Raji or Daudi cells with human serum under conditions which allow the alternative pathway of C activation results in their C3-opsonization and enhanced sensitivity to NK-mediated lysis. The effector lymphocytes have low buoyant density, carry CD16 and HNK1 markers as well as the CD11a-c/CD18 leukocytic cell adhesion molecules. One of these molecules, made up of CD11b-CD18 (alpha- and beta-chains), is also the receptor for iC3b. We studied the role of the cell adhesion molecules in the NK effect on targets with and without C3-fragments. We focused on the E/T interaction of opsonized cells in the presence of anti CD18 mAb. mAb directed to the CD11a molecule caused 0 to 30% inhibition of the lysis of both non-opsonized and opsonized cells whereas the mAb antibody directed to the CD11c molecule had no effect. Reagents reactive with the iC3b binding site of CD11b (alpha-chain of the CR3) molecule did not alter the lysis of non-opsonized targets whereas they abrogated the C3-mediated increment of the Nk effect on opsonized cells. Two mAb preparations, 60.3 and IB4, directed to the CD18 chain shared by the three cell adhesion molecules abrogated in a dose-dependent way the lysis of both non-opsonized and opsonized targets. The 60.3 mAb inhibited the iC3b binding site of CR3 (despite its localization on the alpha-chain) and in accordance it inhibited the binding of lymphocytes to the opsonized target also. The IB4 did not affect this site and in accordance it inhibited only partially the binding of effectors to the C3 fragment carrying Raji, nevertheless it inhibited their lysis. This result indicates that the iC3b-CR3 bridge is insufficient for triggering the lysis in absence of the contact through the adhesion molecules.  相似文献   

8.
Neutrophil (PMN) migration in the systemic and pulmonary circulation of rabbits was compared by using different inflammatory stimuli to determine the role of the leukocyte adhesion complex, CD11/CD18, in each of these vascular beds. The adhesion complex was blocked by administering the anti-CD18 mAb 60.3. The data show that mAb 60.3 blocks PMN emigration into inflammatory foci in the abdominal wall produced by implanting sponges containing either hydrochloric acid, Streptococcus pneumoniae, Escherichia coli endotoxin, or PMA. mAb 60.3 also inhibited PMN emigration in response to peritoneal instillation of S. pneumoniae. The effect of mAb 60.3 on PMN emigration in the lungs varied depending upon the stimulus. PMN failed to migrate into the PMA-induced pneumonia; however, mAb 60.3 pretreatment only partially inhibited endotoxin-induced pneumonia and did not inhibit S. pneumoniae or hydrochloric acid-induced pneumonias. PMN lavaged from the alveolar spaces in the Streptococcal pneumonia had similar quantities of mAb 60.3 bound to their surfaces as the circulating PMN. We conclude that the CD11/CD18 complex mediates PMN adherence in the systemic circulation. However, PMN adherence in the pulmonary circulation may occur by either CD18-dependent or -independent mechanisms that are specific to the inciting stimulus.  相似文献   

9.
Leukocyte adhesion deficiency (LAD) is a hereditary disease characterized by defective expression of leukocyte adhesion glycoproteins; lymphocyte function-associated Ag-1 (CD11a/CD18), CR3 (CD11b/CD18) and p150,95 (CD11c/CD18). Granulocytes, monocytes, and lymphocytes of patients with LAD show profoundly defective in vivo and in vitro adherence-dependent immune functions. We investigated the expression of FcR for IgG on polymorphonuclear cells (PMN) and monocytes from patients with LAD, and their luminol- and lucigenin-enhanced chemiluminescence production in response to SRBC sensitized with murine (m) IgG2a and IgG2b. Unstimulated patient PMN showed an enhanced chemiluminescence in response to mIgG2a-SRBC and an increased phagocytosis of mIgG2a-SRBC. The up-regulated functions were inhibited by monomeric human IgG in a dose-dependent manner, which was attributed to an increase in expression of FcRI on patient PMN, as shown by flow cytometry using monoclonal antibody, 32.2, specific for human FcRI. In contrast, neither the expression of FcR on the monocytes of LAD patients nor their FcR-mediated functions were different from those of controls.  相似文献   

10.
We investigated the requirement for cellular cytoskeleton in CR- and FcR-mediated phagocytosis by human monocyte-derived macrophages (M phi). Inhibition of actin microfilament (MF) assembly and stability by cytochalasins B and D completely inhibited M phi phagocytosis of sheep E coated with C3b (EC3b), iC3b (EC3bi), and IgG (EIgG) via CR1, CR3, and FcR, respectively. Ligand-binding to either CR or FcR was not effected by cytochalasins. Nocodazole (NOC), which prevents microtubule (MT) polymerization, and taxol, which causes random polymerization of MT inhibited M phi phagocytosis of EC3b(i) but not EIgG. However, the combination of taxol (5 x 10(-4) M) and NOC (2 x 10(-6) M) augmented M phi CR-mediated phagocytosis. In addition, agents known to increase intracellular cGMP augmented phagocytosis of EC3b(i). Conversely, agents that increase intracellular cAMP inhibited CR-mediated phagocytosis. These agents had no effect on FcR-mediated phagocytosis, and did not effect ligand-binding to CR or FcR. PMA markedly enhanced CR- but not FcR-mediated phagocytosis, and augmentation of CR-mediated phagocytosis by PMA was inhibited by both CD and NOC. In contrast, the synthetic diacylglycerol, 1-oleoyl-2-acetoyl-sn-3-glycerol augmented, and inhibitors of protein kinase C inhibited M phi phagocytosis via CR and FcR. These data indicate that for adherently cultured human M phi: 1) binding of ligand-coated E to CR or FcR does not require an intact cytoskeleton; 2) intact actin microfilament are required for phagocytosis via CR and FcR; 3) phagocytosis via CR1 and CR3 but not FcR is dependent on MT assembly; 4) PMA most likely augments CR-mediated phagocytosis through promotion of MT assembly; and 5) PKC activity is involved in the phagocytic signal generated by both CR and FcR.  相似文献   

11.
We have examined phagocytosis of Mycobacterium leprae by human monocyte-derived macrophages (MDM). Compared with monocytes, MDM exhibit greatly enhanced adherence of M. leprae (6.5 +/- 2-fold increase). MDM adherence of M. leprae is serum dependent and requires heat-labile serum components because heat inactivation of serum reduces adherence by 70 +/- 3%. mAb against C receptors CR1 (CD35), CR3 (CD11b/CD18), and CR4 (CD11c/CD18) inhibit phagocytosis of M. leprae in fresh nonimmune serum. Single mAb against each receptor inhibit M. leprae adherence by 25 +/- 4% - 33 +/- 6%. Single mAb used in combination against all three receptors inhibit M. leprae adherence by 51 +/- 6%. Most significantly, pairs of mAb used in combination against all three receptors inhibit by 80 +/- 4%. By electron microscopy, MDM ingest all M. leprae that adhere in fresh nonimmune serum. In the presence of mAb against CR1, CR3, and CR4, the percentage of MDM cross-sections that contain intracellular bacteria is reduced 66 +/- 3% and the mean number of bacteria per cross-section is reduced 78 +/- 10%. MDM activated by IFN-gamma exhibit markedly reduced adherence (by light microscopy) and ingestion (by electron microscopy) of M. leprae. MDM in culture for 5 days inhibit M. leprae adherence by 83 +/- 2% and ingestion by 88% when activated for 5 days. Paralleling this, IFN-gamma-activated MDM exhibit markedly reduced C receptor function, reflected by markedly decreased adherence and ingestion of C3b- and C3bi-coated E. Decreased C receptor function by IFN-gamma-activated MDM correlates with decreased surface expression of CR1 but not CR3 or CR4. CR1 expression on MDM in culture for 5 days is reduced by 32 +/- 9% and 75 +/- 3% after IFN-gamma activation for 5 and 2 days, respectively. This study demonstrates that MDM have an enhanced capacity to phagocytize M. leprae, and that in addition to CR1 and CR3, phagocytosis involves CR4, whose expression on MDM is highly maturation-dependent. This study also demonstrates that IFN-gamma activation markedly reduces the capacity of MDM to phagocytize M. leprae, and it provides a molecular mechanism for this phenomenon-decreased C receptor function.  相似文献   

12.
The interaction of monocytes with cultured large vessel venous and arterial endothelial cells (EC) and with cultured microvascular EC was studied. Analysis of time-lapse microcinematographic video recordings showed that monocytes adhere rapidly to the surface of EC and subsequently remain spherical and fixed to the initial site of adherence. Some monocytes adherent to EC stretch out within 30 to 90 min and migrate over the EC surface or become stretched for about 10 to 30 min and then detach from the EC surface and move rapidly over the EC monolayer. It was shown that the interaction of monocytes with EC is dynamic, that the morphology of monocytes adherent to EC changes constantly, and that stretching of the monocytes over the surface of the EC is not an inevitable and irreversible consequence of binding. A quantitative adherence assay was developed in which both the morphology and the number of monocytes bound to EC were determined. For each type of EC the number of monocytes bound to a single EC was found to be linearly related to the number of monocytes added and was lower for smaller EC. The adherence of monocytes to venous and arterial EC followed a different time course than the adherence to capillary EC and adherence to both types of macrovascular EC was higher than adherence to microvascular EC was higher than adherence to microvascular EC. The percentage of adherent monocytes with a stretched morphology was lower when these cells were adherent to capillary EC than to both types of macrovascular EC and increased upon addition of serum. Adherence of monocytes to venous, arterial, and capillary EC was partially inhibited by mAb directed against the alpha-chain of lymphocyte function-associated Ag-1 or C3bi receptor (with mAb LM2/1, but not with mAb OKM1) and by mAb against the common beta-chain of the three leukocyte adhesion molecules. The degree of inhibition of monocyte adherence to EC by mAb against lymphocyte function-associated Ag-1 alpha and the common beta-chain was dependent on the type of EC and was higher for venous EC (57 to 70% inhibition) than for arterial (40 to 44% inhibition) and capillary (44 to 49% inhibition) EC. Inhibition of monocyte adherence obtained with anti-C3bi receptor-alpha mAb was similar for each EC type. mAb against p150, 95 did not affect adherence. None of the mAb could block binding completely; combinations of the mAb also did not result in increased inhibition of monocyte adherence to EC.  相似文献   

13.
Murine mAb to CD13, CD14, and class II MHC, are able to mobilize calcium in normal human monocytes and enhance superoxide production in primed cells. Antibodies to CD35 (CR1) also cause a minor calcium response in some individuals. Antibodies to CD11a, CD11b, CD11c, CD15, CD17, CD18, and CD45 do not activate monocytes. The ability of mAb to cause monocyte activation is not only dependent on the Ag with which they react but also on the isotype of the antibodies and the individual from whom the monocytes were obtained. It is shown that this is because the mAb that activate monocytes do so by formation of Ag-antibody-FcR complexes. F(ab')2 fragments of mAb to CD13 and CD14 do not therefore activate monocytes even when cross-linked with F(ab')2 anti-mouse Ig but do so when cross-linked with intact anti-mouse Ig. These data indicate that activation via the FcR requires perturbation of this receptor but does not necessarily require cross-linking of one FcR to another. Antibody-coated particles or cells able to bind to cell surface receptors on monocytes other than the FcR would thus augment FcR-mediated activation.  相似文献   

14.
Freshly explanted monocytes phagocytosing IgG antibody-coated erythrocyte targets (EIgG) release a factor(s) that stimulates phagocytosis by neighboring monocytes and polymorphonuclear leukocytes (PMN). Culture supernatants obtained after 30-min incubation of adherent monocytes with EIgG, but not unopsonized sheep erythrocytes, markedly up-regulated the extent of PMN phagocytosis and enhanced the rate at which monocytes ingested EIgG. The presence of this factor(s) was first evident in phagocytic studies in which monocytes were prepared by a colloidal silica-based continuous gradient technique (Sepracell-Mn). After introduction of erythrocyte targets, there was a 20- to 30-min delay before initiation of phagocytosis that was not observed with monocytes prepared by the standard Percoll-gradient technique. Experiments suggest that, when compared with monocytes prepared by the Percoll-gradient method, Sepracell-Mn monocytes are closer to a base line state of activation with regard to the expression of Fc gamma RI and the ability to ingest EIgG. The mechanism of PMN upregulation by the monocyte factor(s) was explored. Monocyte supernatants did not induce an increase in the surface expression of PMN Fc gamma RI, II, or III. Neither anti-TNF, anti-IL-2, nor anti-GM-CSF had any significant effect on monocyte supernatant activity. Neutrophil activating protein-1 was not detected by ELISA. In contrast, anti-IL-1 completely blocked the effect of the supernatant on subsequent monocyte phagocytosis, and partially inhibited its effect on PMN phagocytosis. Furthermore, it was shown that RIL-1 as well as TNF markedly enhanced monocyte and PMN ingestion of EIgG. These results suggest that monocytes, after Fc gamma R-mediated phagocytosis, release monokines, including at least IL-1, which enhance the phagocytic function of neighboring PMN and monocytes to augment the host defense process.  相似文献   

15.
Human polymorphonuclear leukocytes (PMN) released large quantities of hydrogen peroxide in response to tumor necrosis factor, but only when the cells were adherent to surfaces coated with extracellular matrix proteins. The PMN did not respond when exposed to cytokines and matrix proteins in suspension, or when exposed to cytokines while adherent to surfaces coated with stearic acid. PMN from children with genetic deficiency of the CD11/CD18 integrins underwent a normal respiratory burst upon adherence to uncoated polystyrene, but not in response to tumor necrosis factor when tested on polystyrene that was coated with serum, fibronectin, vitronectin, fibrinogen, thrombospondin, or laminin. Anti-CD18 antibodies, alone of sixteen antibodies tested, induced a similar defect in PMN from normal donors, when the PMN were tested on surfaces coated with serum, fibrinogen, thrombospondin, or laminin; no defect was induced by the anti-CD18 monoclonal antibody IB4 in normal PMN tested on surfaces coated with fibronectin or vitronectin. Thus, for cytokines to induce a respiratory burst in PMN, the cells must be able to use CD11/CD18 integrins and must interact with matrix proteins in the solid phase. CD11/CD18, which is already known to serve as a receptor for fibrinogen, may also be a receptor for thrombospondin and laminin. Finally, receptor(s) exist on PMN for fibronectin and vitronectin which are not blocked by the anti-CD18 antibody IB4 but which are nonetheless CD11/CD18 dependent.  相似文献   

16.
Adherence of neutrophils to endothelium is a key event in the sequence of inflammatory leukocyte responses. Double-color FACS analysis was used to determine the extent and kinetics of neutrophil adherence to rIL-1 beta-pretreated endothelial cells (EC). Neutrophils bound very avidly when the EC were prestimulated for 4 to 6 h with rIL-1 beta. Anti-ELAM-1 F(ab)2 fragments inhibited this adherence for more than 80%. On the other hand, anti-CD18 F(ab)2 fragments also inhibited the neutrophil adherence (40 to 50%). Combined use of anti-ELAM-1 and anti-CD18 F(ab)2 fragments completely prevented adherence. Neutrophils became activated as soon as they made contact with the rIL-1 beta-pretreated EC. First, neutrophils depleted of intracellular ATP showed a clearly decreased adherence completely dependent on ELAM-1-mediated binding, i.e., without additional effects of CD18 adhesion proteins. Thus, CD18 is activated during neutrophil adherence and then participates in the binding process. Secondly, the neutrophils responded with a transient rise in [Ca2+]i upon binding to rIL-1 beta-pretreated EC, which was demonstrated to be caused by endothelial cell-associated platelet-activating factor (PAF). However, the extent of neutrophil adherence to rIL-1 beta-pretreated EC was not affected by the use of the PAF-receptor antagonist WEB 2086, or removal of the EC-bound PAF. The only effect was a complete dependency of the neutrophil adherence on ELAM-1-mediated binding, although anti-CD18 mAb still induced 40 to 50% inhibition under these conditions. We therefore conclude that ELAM-1-mediated binding is the major mechanism for CD18 activation during neutrophil adherence to rIL-1 beta-pretreated EC.  相似文献   

17.
Neutrophils (PMN) are short-lived cells but their survival is often prolonged in inflammation. The beta2 (CD11/CD18) integrins are involved in PMN migration into inflammation but their role in PMN survival is not well understood. We investigated the role of beta2 integrins in PMN caspase activation, a key enzyme cascade in apoptosis. After 20 h, caspase activation (Western blotting) was markedly decreased in PMN cultured on fibrinogen, a ligand for Mac-1 (CD11b/CD18), but not on fibronectin or albumin. In the presence of TNF-alpha or endotoxin (LPS), blockade of CD18 (beta2 chain) with mAb markedly increased caspase activation in PMN on fibrinogen. PMN which migrated through endothelium in vitro in response to TNF-alpha, LPS, IL-1alpha, IL-8 or C5a contained 58% fewer active caspase positive PMN after 20 h than non-migrated PMN remaining on the endothelium. When beta2 (CD18) integrin or lymphocyte function antigen (LFA)-1 (CD11a) plus Mac1 (CD11b) were blocked by mAb (intact or Fab'), the proportion of migrated PMN (but not of non-migrated PMN) with active caspases was significantly increased (2-4-fold) and this was associated with accelerated PMN apoptosis and death. Thus, engagement of ligands on extracellular matrix and endothelium by the beta2 integrins Mac-1 and LFA-1 plays a role in delaying apoptosis in PMN recruited in response to LPS and TNF-alpha. Inhibition of beta2 integrin function may not only inhibit PMN infiltration, but also accelerate PMN clearance from inflamed tissue.  相似文献   

18.
Human neutrophils (PMN) have received little attention as to the role they play in host defense against Histoplasma capsulatum (Hc). We have characterized the binding and phagocytosis of Hc yeasts by human PMN and quantified the PMN respiratory burst in response to this organism. mAb specific for CD11a, CD11b, and CD11c all partially blocked the attachment of unopsonized yeasts to PMN; a mAb to CD18 inhibited attachment by greater than 90%. Thus, human PMN recognize and bind Hc yeasts via CD18 adhesion receptors as has been found for human cultured macrophages and alveolar macrophages. Unopsonized yeasts were phagocytosed by PMN, but phagocytosis was increased markedly by heat-labile and heat-stable serum opsonins. These opsonins promoted enhanced phagocytosis of yeasts by increasing the attachment of Hc yeasts to the PMN membrane. Phagocytosis of viable or heat-killed Hc yeasts by PMN did not induce the secretion of superoxide anion (O2-) as quantified by the reduction of cytochrome c. O2- was not detected when yeasts were opsonized in normal serum or immune serum, or at a ratio of yeasts to PMN of up to a 100:1. However, phagocytosis of opsonized yeasts by PMN did not prevent them from subsequently releasing O2- after further incubation with opsonized zymosan or PMA. Opsonized Hc yeasts clearly stimulated the PMN respiratory burst as quantified by intracellular reduction of nitroblue tetrazolium, reduction of cytochrome c in the presence of cytochalasin D, oxygen consumption, luminol-enhanced and nonenhanced chemiluminescence, and H2O2 production. These data suggest that phagocytosis of Hc yeasts by PMN is associated with intracellular entrapment of O2- that is not detectable by reduction of extracellular cytochrome c.  相似文献   

19.
It has been reported that the Fc gamma R-mediated phagocytic activity of polymorphonuclear leukocytes (PMN) from patients with acute bacterial infections is markedly enhanced when compared with healthy controls. Inasmuch as several potent cytokines are known to be involved in inflammatory and infectious processes, we studied the effects of three such cytokines (IL-1 beta, IL-2, and TNF-alpha) on normal PMN Fc gamma R-mediated phagocytosis. IL-1 beta and TNF alpha both caused a significant increase in the ingestion of EIgG by adherent PMN. In combination, IL-1 beta and TNF-alpha had an additive effect, even when each was used at its optimal concentration. In contrast to the enhancing effects mediated by IL-1 beta and TNF-alpha, IL-2 alone had no significant effect on PMN phagocytosis. Notably, however, IL-2 at a concentration of 10(4) U/ml partially inhibited TNF-alpha-mediated enhancement of phagocytosis by decreasing TNF binding to the PMN cell surface. This inhibitory effect of IL-2 on TNF was reversed by anti-IL-2 antibody and mAb directed against the low affinity IL-2R (anti-Tac), whereas mAb directed against the intermediate affinity receptor (mik-beta 1) had no such effect. These findings may have important physiologic implications, because patients receiving IL-2 therapy have been shown to have increased susceptibility to infection.  相似文献   

20.
Neutrophil migration to lung alveoli is a characteristic of lung diseases and is thought to occur primarily via capillaries rather than postcapillary venules. The role of adhesion molecules CD18 and CD29 on this migration in a mouse model of lung inflammation has been investigated. The number of neutrophils present in bronchoalveolar lavage fluid was determined 4 h after intratracheal instillation of LPS (0.1-1 microg) or murine recombinant KC (CXC chemokine, 0.03-0.3 microg). Both stimuli produced a dose-related increase in neutrophil accumulation. Intravenous anti-mouse CD18 mAb, 2E6 (0.5 mg/mouse), significantly (p < 0.001) attenuated LPS (0.3 microg)- but not KC (0.3 microg)-induced neutrophil accumulation. The anti-mouse CD29 mAb, HM beta 1-1 (0.02 mg/mouse), significantly (p < 0.05) inhibited both LPS (0.3 microg)- and KC (0.3 microg)-induced neutrophil migration. A second mAb to CD18 (GAME-46) and both F(ab')(2) and Fab of HM beta 1-1 produced similar results to those above, while coadministration of mAbs did not result in greater inhibition. Electron microscopy studies showed that CD29 was involved in the movement of neutrophils from the interstitium into alveoli. The effect of mAbs to CD49 (alpha integrin) subunits of CD29 was also examined. mAbs to CD49e and CD49f inhibited both responses, while anti-CD49b and CD49d significantly inhibited responses to KC only. These data suggest that CD29 plays a critical role in neutrophil migration in pulmonary inflammation and that CD49b and CD49d mediate CD18-independent neutrophil accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号